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Abstract: The endocannabinoid system is involved in physiological and pathological processes,
including pain generation, modulation, and sensation. Its role in certain types of chronic orofa-
cial pain (OFP) has not been thoroughly examined. By exploring the profiles of specific salivary
endocannabinoids (eCBs) in individuals with different types of OFP, we evaluated their use as
biomarkers and the influence of clinical parameters and pain characteristics on eCB levels. The
salivary levels of anandamide (AEA), 2-arachidonoyl glycerol (2-AG), and their endogenous break-
down product arachidonic acid (AA), as well as the eCB-like molecules N-palmitoylethanolamide
(PEA) and N-oleoylethanolamide (OEA), were assessed in 83 OFP patients and 43 pain-free controls
using liquid chromatography/tandem mass spectrometry. Patients were grouped by diagnosis:
post-traumatic neuropathy (PTN), trigeminal neuralgia (TN), temporomandibular disorder (TMD),
migraine, tension-type headache (TTH), and burning mouth syndrome (BMS). Correlation analyses
between a specific diagnosis, pain characteristics, and eCB levels were conducted. Significantly lower
levels of 2-AG were found in the TN and TTH groups, while significantly lower PEA levels were
found in the migraine group. BMS was the only group with elevated eCBs (AEA) versus the control.
Significant correlations were found between levels of specific eCBs and gender, health-related quality
of life (HRQoL), BMI, pain duration, and sleep awakenings. In conclusion, salivary samples exhibited
signature eCBs profiles for major OFP disorders, especially migraine, TTH, TN, and BMS. This finding
may pave the way for using salivary eCBs biomarkers for more accurate diagnoses and management
of chronic OFP patients.

Keywords: endocannabinoids; anandamide; 2-AG; chronic pain; orofacial pain; neuropathic pain;
migraine; saliva

1. Introduction

Chronic orofacial pain (OFP) is a debilitating condition that is associated with the
structures innervated by the trigeminal nerve (head, face, and intraoral structures). It
is one of the most common pain conditions, with a reported prevalence of 7–11% in
the general population [1]. Currently, the presumed underlying causes of chronic OFP
are classified as musculoskeletal, neuropathic, or neurovascular. The complex histories,
pathophysiology, and associated psychosocial co-morbidities (e.g., depression and anxiety)
make the diagnosis and management of OFP disorders challenging [2]. The difficulty
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is compounded by the lack of clarity regarding the pathophysiological mechanisms and
etiology of these pain disorders [3].

Due to the nature of pain as a sensory experience that cannot be directly quantified or
measured [4], subjective ratings play a vital role in pain diagnosis and treatment. These
ratings are complicated by profound individual differences in sensitivity [5]. Therefore, pain
assessment using biomarkers related to pain mechanisms may provide the objective data
we are currently lacking [4]. Indeed, the search for pain biomarkers focuses on identifying
objective, measurable correlates to the neurobiological processes that cause these conditions
in order to base diagnosis and treatment on the underlying pathophysiological mechanisms
rather than symptomatology [5].

Sensation to the orofacial tissues, such as teeth, facial skin, TMJ, and adjacent muscula-
ture, is mainly supplied by branches of the trigeminal (V) nerve [6]. Pain pathways are part
of this complex sensory system. Input regarding noxious stimuli is transmitted from noci-
ceptors by primary afferent Aδ and C-fibers. These fibers have cell bodies in the trigeminal
ganglion and synapse with neurons in the V brainstem complex, mainly in the subnucleus
caudalis. Various neurotransmitters, such as glutamate and calcitonin gene-related peptide
(CGRP), are released via signal transduction. Projection neurons from the subnucleus
caudalis ascend in the ventral trigeminothalamic tract to the ventral posterolateral nuclei
of the thalamus. Finally, the information is transmitted to the somatosensory cortex and
brain areas involved in memory and affective aspects of pain (amygdala, hypothalamus,
etc.) [7–9]. The development of chronic pain is associated with synaptic plasticity, which
causes changes in various areas of the CNS that modulate pain [7].

In this context, recent research found that the endogenous cannabinoid (endocannabi-
noid (eCB)) system is essential in pain pathophysiology [10], and there is evidence that it has
a critical modulatory role in nociception [11]. The endocannabinoid system (ECS) operates
in the CNS and its periphery and has three principal components: (1) “classical” (CB1, CB2)
and “non-classical” (transient receptor potential vanilloid 1 (TRPV1), G-protein-coupled
receptor 55 (GPR55), and peroxisome proliferator-activated receptors (PPARs)) cannabinoid
receptors; (2) endogenous ligands (N-arachidonoylethanolamide (anandamide) (AEA) and
2-arachidonoyl glycerol (2-AG)); and (3) enzymes, which are responsible for the biosynthe-
sis/inactivation of the ligands. Furthermore, AEA is a member of the N-acylethanolamines
(NAEs) family, which includes the eCB-like compounds N-palmitoylethanolamide (PEA)
and N-oleoylethanolamide (OEA) [12].

eCBs are synthesized and released locally by enzymatic cleavage of membrane phos-
pholipids in response to physiological and pathological stimuli [13]. N-acylphosphatidyle-
thanolamine-phospholipase D (NAPE-PLD) catalyzes AEA biosynthesis, whereas 2-AG is
catalyzed by sn-1-specific diacyl-glycerol lipase (DAGL). The released eCBs are retrieved by
a membrane transporter. AEA is degraded by fatty acid amide hydrolase (FAAH), whereas
monoglyceride lipase (MAGL) is the main 2-AG hydrolase [14]. 2-AG is a full agonist of
CB1 and CB2 receptors, whereas AEA shows slight selectivity for CB1 over CB2 [11]. AEA
also acts on other receptors implicated in pain processing, such as TRPV1 and PPARs [13].
ECS components are expressed ubiquitously throughout pain-processing pathways [11],
which balance GABAergic inhibitory activity and glutamatergic excitatory activity by eCBs
released from postsynaptic neurons that stimulate presynaptic CB1 [14]. Based on their
neuromodulatory role [12], it is reasonable to consider eCBs as reliable biomarkers for
chronic pain conditions.

Whereas blood serum/plasma is the most frequent source of measurable biomarkers,
saliva has many advantages over blood as a collectible bio-fluid, such as being easy to collect
in a non-invasive manner and safer to handle. Many substances enter saliva from the blood
via intercellular spaces due to transcellular or paracellular diffusion, and most substances
found in the blood are also present in saliva, reflecting physiological and pathological
states, making it a useful source of biomarkers for pain research [15].

A recent study conducted by our group demonstrated significantly reduced levels of
salivary eCB in chronic OFP disorders, which were categorized by etiology (neuropathic,
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neurovascular, and musculoskeletal) [16]. This avenue of research was broadened in the
current study with the following objectives: (I) to investigate the quality and quantity of
specific eCB compounds in distinct chronic OFP disorders and to evaluate their efficacy
as measurable biomarkers of these pain disorders, and (II) to evaluate the influence of
different clinical parameters and pain characteristics on salivary eCB levels in specific
chronic OFP disorders.

2. Results

A total of 126 individuals participated in the current study, 83 of which had OFP, including
TMD (25.3%), migraine (28.9%), TTH (6%), PTN (13.4%), TN (13.4%), and BMS (8.5%). A total
of 4.8% were defined as “others”. Figure 1 summarizes the cohort distribution.
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Figure 1. Cohort distribution according to the diagnosis.

Of the 126 participants forming the cohort, 83 (66%) had OFP, while 43 (34%) were
pain-free and formed the control group. Of the OFP group 21 (25.3%) had TMD, 24 (28.9%)
had migraine, 5 (6%) had TTH, 11 (13.4%) had PTN, 11 (13.4%) had TN, 7 (8.5%) had BMS,
and the remaining 4 (4.8%) were defined as “others”.

The primary headaches group represents the sum of migraine (including orofacial
migraine) and TTH, while the neuropathic group included PTN, TN, and BMS.

Table 1 summarizes the significant differences between TMD, primary headaches
(migraine and TTH), the neuropathic pain group (including PTN, TN, and BMS), and
the control group. Due to the non-significant differences in salivary eCB levels in the
TMD group compared with the controls, we focused on the migraine and neuropathic
pain groups.

Table 2 summarizes the salivary eCB levels in the pain groups that were significantly
different from the controls.

Table 3 summarizes the patient and pain characteristics with significant correlations
to salivary eCBs in PTN, TN, and migraine. Gender, BMI, VPS, HRQoL, sleep awakening,
burning and pressing pain quality, and pain onset were found to be significantly related to
certain eCB levels.
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Table 1. Salivary eCB levels in primary headache and neuropathic pain groups compared with the
controls (mean ± SD; fmol/mg protein).

Group * eCBs Pain Control p-Value

Primary headache group
(migraine and TTH)

AEA 0.09 ± 0.09 0.17 ± 0.18 0.02

OEA 35.65 ± 40.31 67.7 ± 77.09 0.04

AA 1354.3 ± 1386.9 2327.15 ± 2539.3 0.06

Neuropathic group
(PTN, TN, and BMS) 2-AG 35.97 ± 42.56 54.71 ± 36.47 0.05

AEA, OEA, and AA levels were lower in the migraine sufferers than the controls (p = 0.02, p = 0.04, and p = 0.06,
respectively). 2-AG was lower in the neuropathic group than in the controls (p = 0.05). * Grouped according to
etiology and characteristics as previously reported [17,18]. Non-parametric Mann–Whitney U test.

Table 2. Salivary eCB levels for migraine, TTH, TN, and BMS compared with the controls (mean ± SD;
fmol/mg protein).

Diagnosis eCBs Pain Control p-Value
Migraine PEA 10.77 ± 11.76 12.92 ± 11.75 0.05

TTH 2-AG 16.85 ± 6.56 54.71 ± 36.47 0.02

TN 2AG 12.71 ± 14.07 54.71 ± 36.47 <0.001

BMS AEA 0.56 ± 0.87 0.17 ± 0.18 0.01

Lower levels of PEA were found for migraine and 2-AG for TTH and TN compared with the controls (p = 0.05,
p = 0.02, and p < 0.001 respectively) and higher levels of AEA were found for BMS compared with the controls
(p = 0.01). Non-parametric Mann–Whitney U test.

Table 3. Patient and pain characteristics in relation to eCB levels for PTN, TN, and migraine.

Post-Traumatic Neuropathy (PTN)

eCBs N Mean ± SD (fmol/mg) p-Value
M 5 2547.9 ± 1662 0.017

Gender AA W 6 613.2 ± 449
HRQoL (0→10) AA 6 ** 0.926 0.008

Trigeminal Neuralgia (TN)
No 7 0.08 ± 0.13 0.033

AEA Yes 3 0.43 ± 0.23
No 7 16.55 ± 12.54 0.017

OEA Yes 3 200.06 ± 125.08
No 7 4.8 ± 4.08 0.017

Waken

PEA Yes 3 38.42 ± 21.51
Pain onset (months) AA 10 0.726 * 0.017

Migraine
M 4 93.4 ± 73 0.006

OEA W 15 25.9 ± 15
M 4 25.31 ± 20 0.004Gender

PEA W 15 6.9 ± 4
>30 6 52.8 ± 53 0.046

BMI 2-AG <30 13 34.3 ± 50
OEA 19 −0.582 ** 0.009

VPS (0→10) PEA 19 −0.470 * 0.042
For PTN, AA was significantly lower in women and was also positively correlated with HRQoL. For TN, AA was
positively and significantly correlated with pain onset. AEA, OEA, and PEA correlated with sleep awakenings (due
to pain). In the migraine group, OEA and PEA were significantly lower in women. 2AG was significantly higher
in patients with BMI > 30, while OEA and PEA were negatively correlated with VPS. * Correlation was significant
at the 0.05 level (two-tailed). ** Correlation was significant at the 0.01 level (two-tailed). Kruskal–Wallis test.

Considering the vast amount of data collected and the many comparisons performed
between the clinical factors and patient pain characteristics for each of the five measured
eCBs, we decided to only present the statistically significant results. It is important to note
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that for some of the diagnoses, e.g., BMS and TTH, there were not enough patients for
within-group comparisons.

3. Discussion

The limited understanding of the etiology and pathogenesis of OFP disorders, the
subjective nature of current pain assessments, and the limited efficacy of existing treatment
options highlight the urgent need for objective data to assist with chronic pain evaluation
and management. The identification of mechanistic biomarkers is crucial since it would
not only improve our understanding and ability to diagnose pain disorders accurately
but also facilitate the development of disease-modifying drugs [3]. Over the past few
decades, an endogenous system with previously unknown anti-nociceptive properties
was revealed, namely, the ECS [11]. Studies found that eCBs produced in response to
high levels of stimulation cause an analgesic effect via negative feedback and inhibition of
the transmission of pain signals [11]. Accordingly, the current study aimed to determine
whether different types of chronic OFP disorders alter salivary levels of eCBs (2-AG, AEA),
their endogenous breakdown product (AA) levels, and eCB-like compounds (PEA, OEA).

Our data demonstrated significantly lower salivary PEA levels in the migraine group
compared with the controls. No other significant differences between these groups were
found. PEA, an endogenous fatty acid amide signaling molecule, is synthesized on demand
as a protective response to tissue injury or stress as part of homeostatic mechanisms. It has
anti-inflammatory, pain relieving, and neuroprotective actions [19]. PEA’s direct targets
are the PPARα and GPR55 receptors. PPARα is a transcriptional factor that promotes the
expression of genes with anti-inflammatory activity and GPR55 regulates neuroinflamma-
tion [19].

One of the most important anti-inflammatory effects of PEA is the inhibition of mast
cell activation [20], which is critical in the development of inflammation in migraine.
Furthermore, the administration of ultra-micronized PEA caused significant pain relief and
a reduction in the number of migraine attacks in pediatric migraineurs [19].

Interestingly, in contrast to our findings, Sarchielli et al. [21] found that PEA was
significantly higher, whereas AEA levels were lower in the cerebrospinal fluid (CSF) of
chronic migraineurs compared with the controls. Since these dissimilarities were found in
different biofluids (CSF versus saliva), and since PEA is hydrolyzed by various enzyme
classes, namely, FAAH and N-acylethanolamine acid amidase (NAAA), which catabolize
PEA and AEA at significantly different rates [22], it is possible that the differences in
the quality and quantity of these enzymes in the examined fluids caused the disparity.
Nonetheless, our study strengthened the evidence of a dysregulated ECS ‘tone’ with
reduced eCB activity, which may play a role in migraines [14].

Our data also demonstrated low salivary 2-AG levels in the TTH group compared
with the controls. Although TTH is the most prevalent type of headache, its pathophysiol-
ogy remains unclear [23]. Interrelationships between peripheral and central mechanisms
seemingly underlie TTH initiation [18]. Olesen [24] suggested that TTH occurs due to an
interaction between the descending inhibitory system, which controls nociceptive brain-
stem neurons, and peripheral input from the vascular system, with mainly myofascial
sources. In addition, input from the limbic structures (e.g., anxiety, depression) may reduce
descending inhibitory function and produce more chronic TTH [23]. 2-AG has high affinity
and potency regarding both CB1 and CB2 receptors. It is anti-nociceptive and is thought
to participate in pain initiation. Hence, its reduced levels in TTH may contribute to the
development of chronic pain disorders. Considering the wide distribution of cannabi-
noid receptors along central and peripheral pain pathways [13], it is reasonable to assume
that 2-AG deficiency will affect both the peripheral and central mechanisms underlying
TTH. Furthermore, women with depression had significantly lower circulating 2-AG lev-
els [25]. Therefore reduced 2-AG may have an impact on limbic components with a role in
TTH pathophysiology.
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We also found significantly lower levels of salivary 2-AG in the TN group. TN
is a chronic neuropathic condition that affects one or more divisions of the trigeminal
nerve [2]. Demyelination is the predominant theory of the cause of neuralgic pain [23].
Devor et al. [26] described the ignition hypothesis, whereby TN starts following damage to
trigeminal axons in the nerve root or ganglion, often due to vascular compression of the
nerve [2]. 2-AG stimulation of cannabinoid receptors may reduce excitatory neurotransmit-
ter release and attenuate neuropathic pain symptoms [13]. Furthermore, 2-AG may have
neuroprotective effects in response to harmful stimuli [27]. The abovementioned studies
support 2-AG’s significant role in nerve damage and neuropathic pain prevention. Indeed,
various studies reported increased eCB levels at central and peripheral nervous system
sites in neuropathic pain conditions. This elevation may be caused by inbuilt protective
mechanisms responding to a pathological condition [13]. We suggest that the lower salivary
2-AG levels in TN were due to a defect in this compensatory eCB mechanism.

Surprisingly, we found an elevation in salivary AEA levels for BMS compared with
the controls. No other significant differences between these groups were found. BMS is a
chronic neuropathic pain disorder characterized by an oral mucosal burning sensation and
is frequently associated with xerostomia and dysgeusia [28]. The etiology of BMS is un-
known, and studies have associated it with inflammation and psychiatric disturbances [12].
Interestingly, immune-histochemical staining of tongue biopsies revealed significantly
increased TRPV1, decreased CB1 receptor, and increased CB2 receptor expressions in the
epithelium [29]. In addition, neurotrophic factors, which regulate TRPV1 expression, i.e.,
nerve growth factor and artemin, were also overexpressed in BMS [28]. The previously
reported TRPV1 overexpression, together with our findings of increased AEA levels, may
be related to BMS symptoms. This receptor, which is found peripherally in the nociceptive
terminals of Aδ and C-fibers, conducts heat, spicy taste (capsaicin), and nociceptive signals,
and its expression corresponds with hypersensitivity to noxious heat stimulation, such
as to capsaicin experienced by those with BMS [29]. TRPV1 is an ionotropic cannabinoid
receptor and is desensitized upon agonist exposure, where AEA is an agonist of this re-
ceptor [30]. However, AEA has low intrinsic efficacy at this receptor and is only a partial
agonist in the trigeminal nerve [31]. The physiological implication of action as a partial
agonist is attenuation of the effects of full agonists, whether exogeneous, e.g., capsaicin, or
endogenous, e.g., N-arachidonoyl-dopamine. Additionally, the intrinsic efficacy of AEA on
TRPV1 is lower than at the CB1 receptor, implying that in the presence of CB1, AEA action
on TRPV1 may be attenuated [31]. AEA is also a partial agonist of CB1 and CB2, whereas
2-AG is a full agonist of these receptors [32]. Indeed, 2-AG is three times more potent than
AEA, and effective attenuation of the functional activity of 2-AG was demonstrated in a
pre-clinical trial when co-incubated with AEA [33].

Therefore, despite AEA being a known anti-nociceptive eCB and its stimulation of
cannabinoid receptors producing analgesic effects, it may act as an antagonist in the
presence of full cannabinoid agonists [34].

Taken together, we hypothesize that the significant elevation of salivary AEA in
BMS with no concomitant elevations of full eCB agonists, such as 2-AG, reflects a faulty
mechanism of the ECS in these patients. The elevated AEA accompanied by altered
epithelial tongue cell eCB receptor expression [12] implies that altered eCB signaling is
involved in BMS pathogenesis. Salivary AEA elevation may also play a role in the frequently
reported BMS-related xerostomia [28]. This assumption is supported by in vivo and in vitro
studies [35] showing that AEA decreased saliva secretion from the submandibular glands
via CB1 and CB2 receptors. Kopach et al. [36] also elucidated CB receptor-mediated
salivary regulation.

In addition to the correlations between specific pain disorder subgroups and salivary
eCB levels, we also found a correlation between ECS activity and patient characteristics in
three pain disorder groups: TN, PTN, and migraine. There were significantly lower salivary
AA levels in women than men in the PTN group and this trend was also noted for OEA
and PEA levels in the migraine group. These findings are consistent with Cupini et al. [37],
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who detected a higher activity of FAAH and the AEA transporter in the platelets of female
migraine patients than in males. In rodents, the ECS within pain modulatory pathways
demonstrated sexual dimorphism, with significant differences between males and females
in 2-AG and AEA concentrations [38]. Furthermore, it was suggested that sex differences
in eCB ‘tone’ develop early, with growing pre-clinical evidence that gonadal hormones
influence the expression of cannabinoid receptors and ligands, as well as their affinity and
efficacy at receptors in various brain regions [39]. These differences help to explain the
well-documented higher prevalence of chronic pain disorders in females [38]. Nonetheless,
further research is needed to investigate ECS gender dimorphism and to correlate this
disparity with the manifestations of chronic pain.

Interestingly, our data indicated a significant negative correlation between the VPS
and salivary OEA and PEA levels in the migraine group. This is congruent with previous
studies, where chronic administration of PEA reduced pain behaviors and counteracted
spinal neuronal hyper-excitability in murine models of persistent pain [40,41].

HRQoL reflects the perceptions and reactions of an individual to their health status
and the non-medical aspects of their lives and assesses their psychological functioning
and, to a smaller extent, physical functioning [42]. We found a significant positive cor-
relation between the HRQoL score and salivary AA levels in the PTN group. Indeed,
pre-clinical and human data demonstrate that eCB/CB1 receptor signaling regulates stress
responses and moods. Thus, inhibition of this signaling can result in increased anxiety [38].
Lower circulating AEA levels are associated with higher anxiety measurements [43] and
lower circulating 2-AG concentrations in women with depression. Taken together, we
suggest that altered ECS activity in this chronic pain group may affect pain perception and
psychological status.

We found that a BMI above 30 was significantly related to higher salivary 2-AG
levels in the migraine group. This is consistent with previous studies, where levels of
circulating 2-AG positively correlated with BMI, total body fat, and intra-abdominal adipose
tissue [31,43]. This correlation was not found in the other pain subgroups and was possibly
concealed by the dysregulated ECS activity in these patients that was discussed above.

In the TN group, a positive correlation was found between sleep awakenings and sali-
vary AEA, OEA, and PEA levels. Significant OEA elevation was shown in human CSF after
24 h of sleep deprivation [44]. It is possible that OEA elevation has a neuroprotective role in
sleep-deprived individuals via the activation of PPARα, yet the AEA levels were stable in
this particular investigation [44]. Other studies demonstrated serum AEA elevations later
in the day following a night of complete sleep deprivation [45]. Systemic administration of
AEA significantly increased adenosine levels in the basal forebrain of rats and increased
sleep [46]. These findings may imply an auto-regulatory role of AEA in sleep deprivation.
PEA may be involved in sleep regulation since eight weeks of daily PEA supplementation
reduced sleep onset time and improved cognition on waking [47]. Inconsistent with our
findings are previous studies that identified an elevation in circulating 2-AG following
restricted sleep [43]. This could be explained by the significantly lower salivary 2-AG levels
found in the TN group compared to controls. 2-AG’s role in sleep deprivation was probably
related to dysfunctional ECS activity in this chronic pain group.

Finally, our data demonstrated a significant positive correlation between pain duration
and salivary AA levels in the TN group. This may have been due to pain-management-
related symptom relief over time. This assumption is strengthened by the inverse correla-
tion between pain intensity and salivary eCB levels [16].

There were some important limitations to this carefully designed study. First, we
only measured salivary eCB levels from samples taken at a single point in time, gathering
samples over more time points may reveal other important information, such as correlations
between treatment outcomes and eCB levels or their correlation with long-term clinical
symptoms. Second, there were several therapeutic treatments with different efficacies,
which could have affected the salivary eCBs concentrations. Third, serum eCB levels were
not measured in our study. Thus, a correlation between salivary and circulating eCBs could
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not be evaluated. Fourth, we had relatively small sample sizes for each subgroup, which
limited the comparative statistical analysis.

4. Materials and Methods
4.1. Participants

The study was approved by the Ethical Committee of Hadassah Medical Center,
request no. 0662-17-HMO. All data were fully anonymized; informed consent was waived
according to the ethical committee’s instructions. The medical records of 83 (56 female,
27 male) OFP patients meeting our inclusion criteria attending the Orofacial Pain Clinic at
the Hebrew University-Hadassah School of Dental Medicine between 2017 and 2018 were
reviewed. Forty-three (28 female, 15 male) pain-free participants formed the control group.

Inclusion criteria: over 18 years of age, definite diagnosis of chronic OFP for at least
3 months according to the IHS or ICOP [17,48], and able to provide a saliva sample at a rate
of at least 200 µL per 10 min.

Exclusion criteria: background illnesses, including cancer or diseases affecting the
salivary glands, such as Sjögren syndrome; alcohol use; patients who did not sign the
consent form; and patients whose saliva sample was unusable, e.g., too foamy or bloody.

4.2. Orofacial Pain Diagnosis

The pain patients were divided based on their diagnoses:

a. Temporomandibular disorders (TMD) according to the diagnostic criteria for tem-
poromandibular disorders (DC/TMD) [49], which are often associated with pain in
the pre-auricular region and/or masticatory muscles, TMJ, and mandibular move-
ment dysfunction.

b. Primary headaches (also present in the facial area), including migraine (as well as
facial migraine) and tension-type headache (TTH), according to the ICHD-3 [50].

c. Trigeminal neuralgia (TN) [51], which is characterized by recurrent unilateral brief
electric-shock-like pains that are abrupt in onset and termination along the distribu-
tion of the trigeminal nerve and triggered by innocuous stimuli [48].

d. Post-traumatic trigeminal neuropathy (PTN) [23], which involves unilateral facial or
oral pain following trauma to the trigeminal nerve [48].

e. Burning mouth syndrome (BMS), which is a chronic pain condition characterized by
a moderate-to-severe sensation of burning from the oral mucosa, especially from the
dorsum of the tongue with no clinical signs [48].

TN, PTN, and BMS formed the “neuropathic” group. Other diagnoses that were rare
and non-specific (8 patients) formed the “others” group.

4.3. Collection of Data from Medical Records

Primary and resultant data were recorded on the standard intake form used in our
clinic [52,53]. Demographic data included gender, age, and body mass index (BMI). Pain
characteristics included onset (months) and distribution, which was charted by marking five
areas on each side of the face. Patients were asked to report whether the pain was constant,
came as an acute attack, or both, and were asked to rate the pain quality and intensity. Pain
quality was assessed using the following descriptive terms: burning, electrical, pressure,
throbbing, and stabbing sharp [54,55]. The intensity was rated by employing an 11-point
verbal pain scale (VPS), where 0 was no pain and 10 was the worst imaginable pain.
Health-related quality of life (HRQoL) over the last month on a 0–10 numeric scale was
also recorded [56]. Patients were asked if their pain woke them from sleep. Clinical
examination included masticatory apparatus palpation as previously described [57,58].
Intra-oral examination, including imaging, was performed to exclude dental, periodontal,
and mucosal pathology. Brain and brainstem imaging were performed for TN to exclude
intracranial pathology.
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4.4. Saliva Collection

Unstimulated saliva was collected for 10 min as described previously [16,59] into
pre-calibrated tubes. All 126 participants refrained from eating, drinking, and brushing
their teeth 1 h prior to saliva collection. Patients did not take their medications, including
sialagogues, before saliva collection. Volunteers rested for 10 min before saliva collection,
sitting in an upright position in a quiet room, and were asked not to speak or leave the
room until after the saliva was collected.

Saliva samples were centrifuged at 3500× g for 10 min at 2 ◦C to remove insoluble
materials, cell debris, and food remnants. The supernatant fraction was aliquoted into
polypropylene tubes and immediately stored at −80 ◦C. The running order of the samples
was cycles of 2 samples from pain patients with the same diagnosis and then a control
sample with the same gender and general BMI.

4.5. eCB Purification

The extraction, purification, and quantification of saliva eCBs were performed using
stable isotope dilution liquid chromatography/tandem mass spectrometry (LC-MS/MS) as
previously described [60]. Briefly, total proteins were precipitated using ice-cold acetone
and Tris buffer (50 mM, pH 8.0). Samples were then homogenized using a mixture of 0.5 mL
ice-cold methanol/Tris buffer (50 mM, pH 8.0), 1:1, and 7 µL internal standard (22.4 ng d4-
AEA). The homogenates were then extracted using ice-cold CHCl3:MeOH (2:1, vol/vol) and
then washed with ice-cold chloroform three times. The samples were then dried under a
thin stream of nitrogen and reconstituted in MeOH. Analysis using LC-MS was performed
on an AB Sciex (Framingham, MA, USA) Triple Quad 5500 Mass Spectrometer and a
Shimadzu (Kyoto, Japan) UHPLC System, while the liquid chromatographic separation
was acquired via a Kinetex (Phenomenex) column (C18, 2.6 mm particle size, 100 × 2.1 mm).
Sample levels of AEA, 2-AG, AA, PEA, and OEA were measured against standard curves
and then expressed as fmol/mg protein.

4.6. Statistics

SPSS version 25 software was used for all calculations. To examine the differences in
eCB levels for nominal and categorical background variables, t-tests and one-way analysis
of variance were performed, and when significant differences were found, additional post
hoc Scheffe tests were performed.

A Spearman coordinator was used to examine the specific categories that made up the
differences. The differences between the eCB types and specific background variables were
examined for each diagnosis using the Kruskal–Wallis test.

5. Conclusions

Our findings suggested that the ECS played a significant role in the pathogenesis
of OFP disorders. In addition, the non-invasively gathered salivary samples exhibited
signature eCB profiles for prominent OFP disorders. Therefore, the profile of salivary
eCBs and eCB-like molecules may be used as biomarkers to aid in the diagnosis and
management of these patients. Future research is needed to evaluate whether salivary eCB
levels correlate with serum levels in chronic OFP disorders, to understand the underlying
mechanisms of altered ECS found in these patients, and to evaluate the therapeutic use of
cannabinoids possibly as part of a personalized medicine approach for the management of
chronic OFP disorders.
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Abbreviations

ECS Endocannabinoid system
eCB Endocannabinoid
AEA Anandamide, i.e., N-arachidonoylethanolamine
2-AG 2-arachidonoylglycerol
PEA N-palmitoylethanolamine
OEA N-oleoylethanolamine
AA Arachidonic acid
OFP Orofacial pain
VPS Verbal pain scale
HIS International Headache Society
TMD Temporomandibular disorders (i.e., myofascial or joint pain)
DC/TMD Diagnostic Criteria for Temporomandibular Disorders
NVOP Neurovascular orofacial pain (orofacial migraine),
TTH Tension-type headache
PTN Post-traumatic neuropathy
TN Trigeminal neuralgia
PHN Post-herpetic neuralgia
PIFP Persistent idiopathic facial pain
BMS Burning mouth syndrome
HRQoL Health-related quality of life
BMI Body mass index
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