From Nature to Synthetic Compounds: Novel 1(N),2,3 Trisubstituted-5-oxopyrrolidines Targeting Multiple Myeloma Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Compound 13: Enantiomeric Resolution and Absolute Configuration Assignment
2.3. Biological Investigation and Computational Studies
General structure of designed compounds | ||||||
Compounds | X | n | R1 | R2 | R3 | IC50 μM RPMI8226 |
(2R,3R/2S,3S)-1 | O | 1 | H | COOH | C6H5 | n.e.* |
(2R,3R/2S,3S)-2 | O | 1 | H | COOCH3 | C6H5 | n.e.* |
(S)-3 | NH | 1 | H | H | COOCH3 | n.e.* |
(S/R)-4 | N(CH2)3CH3 | 1 | COOH | H | H | n.e.* |
(S/R)-5 | N(CH2)3CH3 | 1 | COOCH3 | H | H | n.e.* |
(S/R)-6 | NH | 1 | COOCH3 | H | H | n.e.* |
(S/R)-7 | NCH3 | 1 | COOCH3 | H | H | n.e.* |
(2R,3R/2S,3S)-8 | NH | 1 | H | COOCH3 | COOCH3 | n.e.* |
(2R,3R/2S,3S)-9 | NCH2CH (CH3)2 | 1 | H | COOH | C6H5 | n.e.* |
(2R,3R/2S,3S)-10 | NCH2CH (CH3)2 | 1 | H | COOCH3 | C6H5 | 265 ± 49 |
(2R,3R/2S,3S)-11 | NCH2CH (CH3)2 | 1 | H | COOH | (3,5)-OCH3C6H4 | n.e.* |
(2R,3R/2S,3S)-12 | NCH2CH (CH3)2 | 1 | H | COOCH3 | (3,5)-OCH3C6H4 | 263 ± 41 |
(2R,3R/2S,3S)-13 | NCH2C6H5 | 1 | H | COOH | C6H5 | 169 ± 21 |
(2R,3R/2S,3S)-14 | NCH2C6H5 | 1 | H | COOCH3 | C6H5 | 61 ± 12 |
(2R,3R/2S,3S)-15 | NCH2C6H5 | 1 | H | COOH | (3,5)-OCH3C6H4 | n.e.* |
(2R,3R/2S,3S)-16 | NCH2C6H5 | 1 | H | COOCH3 | (3,5)-OCH3C6H4 | 138 ± 27 |
(2R,3R/2S,3S)-17 | NCH2CH (CH3)2 | 2 | H | COOH | C6H5 | n.e.* |
(2R,3R/2S,3S)-18 | NCH2CH (CH3)2 | 2 | H | COOCH3 | C6H5 | 301 ± 29 |
(2R,3R/2S,3S)-19 | NCH2C6H5 | 2 | H | COOH | C6H5 | n.e.* |
(2R,3R/2S,3S)-20 | NCH2C6H5 | 2 | H | COOCH3 | C6H5 | 152 ± 29 |
3. Materials and Methods
3.1. Synthesis
3.1.1. Dimethyl (2S,3R/2R,3S)-3-Hydroxy-5-oxotetrahydrofuran-2,3-dicarboxylate Dimethyl Ester (2S,3R/2R,3S)-Hib Ester
3.1.2. Methyl (2S,3R)-5-Oxo-2phenyltetrahydrofuran-3-Carboxylate (2S,3R/2R,3S)-2
3.1.3. (S)-Methyl-5-oxopyrrolidine-2-carboxylate-3
3.1.4. Methyl 1-Butyl-5-oxopyrrolidine-3-carboxylate (S/R)-5
3.1.5. Methyl 1-Methyl-5-oxopyrrolidine-3-carboxylate (S/R)-7
3.1.6. Methyl (E)-2-((2,2-Dimethylpropylidene) Amino) Acetate (E)-VI
3.1.7. Trimethyl (E)-1-((2,2-Dimethylpropylidene) Amino) Propane-1,2,3-tricarboxylate (E)-VII
3.1.8. Dimethyl 5-Oxopyrolidine-2,3-dicarboxylate (2R,3R/2S,3S)-8
3.2. General Procedure for the Preparation of 5- and 6-Oxo-piperidines
3.2.1. 1-Isobutyl-5-oxo-2-phenylpyrrolidine 3-Carboxylic Acid (2R,3R/2S,3S)-9
3.2.2. 2-(3,5-Dimethoxyphenyl)-1-isobutyl-5-oxopyrrolidine-3-carboxylic Acid (2R,3R/2S,3S)-11
3.2.3. 1-Benzyl-5-oxo-2-phenylpyrrolidine 3-Carboxylic Acid (2R,3R/2S,3S)-13
3.2.4. 1-Benzyl-2-(3,5-dimethoxyphenyl)-5-oxopyrrolidine-3-carboxylic Acid (2R,3R/2S,3S)-15
3.2.5. 1-Isobutyl-6-oxo-2-phenylpiperidine 3-Carboxylic Acid (2R,3R/2S,3S)-17
3.2.6. 1-Benzyl-6-oxo-2-phenylpiperidine 3-Carboxylic Acid (2R,3R/2S,3S)-19
3.3. Esterification Procedure
3.3.1. Methyl 1-Isobutyl-5-oxo-2-phenylpyrrolidine-3-carboxylate (2R,3R/2S,3S)-10
3.3.2. Methyl 2-(3,5-Dimethoxyphenyl)-1-isobutyl-5-oxopyrrolidine-3-carboxylate (2R,3R/2S,3S)-12
3.3.3. Methyl 1-Benzyl-5-oxo-2-phenylpyrrolidine-3-carboxylate (2R,3R/2S,3S)-14
3.3.4. Methyl 1-Benzyl-2-(3,5-dimethoxyphenyl)-5-oxopyrrolidine-3-carboxylate (2R,3R/2S,3S)-16
3.3.5. Methyl 1-Isobutyl-6-oxo-2-phenylpiperidine-3-carboxylate (2R,3R/2S,3S)-18
3.3.6. Methyl 1-Benzyl-6-oxo-2-phenylpiperidine-3-carboxylate (2R,3R/2S,3S)-20
3.4. HPLC Chiral Resolution
3.5. Biological Assays
3.5.1. Cell Culture
3.5.2. MTT Assay
3.5.3. Trypan Blue Cell Viability Assay
3.5.4. Proteasome Activity Assay
3.5.5. Statistical Analysis
3.6. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavda, S.J.; Yong, K. Multiple Myeloma. Br. J. Hosp. Med. 2017, 78, C21–C27. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Colombet, M.; Ferlay, J. Cancer Incidence in Five Continents. In Lyon: International Agency for Research on Cancer; IARC Scientific Publication No. 166; WHO: Geneve, Switzerland, 2017; Volume XI. [Google Scholar]
- Kyle, R.A.; Rajkumar, S.V. Multiple Myeloma. Blood 2008, 111, 2962–2972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazandjian, D. Multiple Myeloma Epidemiology and Survival: A Unique Malignancy. Semin. Oncol. 2016, 43, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shupp, A.B.; Kolb, A.D.; Mukhopadhyay, D.; Bussard, K.M. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers 2018, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.S.; Martin, T.; Wang, M.; Vij, R.; Jakubowiak, A.J.; Lonial, S.; Trudel, S.; Kukreti, V.; Bahlis, N.; Alsina, M.; et al. A Phase 2 Study of Single-Agent Carfilzomib (PX-171-003-A1) in Patients with Relapsed and Refractory Multiple Myeloma. Blood 2012, 120, 2817–2825. [Google Scholar] [CrossRef] [Green Version]
- Gelman, J.S.; Sironi, J.; Berezniuk, I.; Dasgupta, S.; Castro, L.M.; Gozzo, F.C.; Ferro, E.S.; Fricker, L.D. Alterations of the Intracellular Peptidome in Response to the Proteasome Inhibitor Bortezomib. PLoS ONE 2013, 8, e53263. [Google Scholar] [CrossRef] [Green Version]
- Okazuka, K.; Ishida, T. Proteasome Inhibitors for Multiple Myeloma. Jpn. J. Clin. Oncol. 2018, 48, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Malacrida, A.; Cavalloro, V.; Martino, E.; Cassetti, A.; Nicolini, G.; Rigolio, R.; Cavaletti, G.; Mannucci, B.; Vasile, F.; Di Giacomo, M.; et al. Anti-Multiple Myeloma Potential of Secondary Metabolites from Hibiscus Sabdariffa. Molecules 2019, 24, 2500. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, K.; Masuyama, S. Studies of Aliphatic Hydroxycarboxylic Acids as Antioxidants. III. The Preparation of Two Isomers of Hydroxycitric Acid Lactone (erythro- and threo-3,4-Dicarboxy-3-Hydroxy-γ-Butyrolactone). Bull. Chem. Soc. Jpn. 1970, 43, 551–552. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, R.; Majid, T.; Nelson, A. Towards Complete Stereochemical Control: Complementary Methods for the Synthesis of Six Diastereoisomeric Monosaccharide Mimetics. J. Chem. Soc. Perkin Trans. 1 2002, 12, 1444–1454. [Google Scholar] [CrossRef]
- Neises, B.; Steglich, W. Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. Engl. 1978, 17, 522–524. [Google Scholar] [CrossRef]
- Shelkov, R.; Nahmany, M.; Melman, A. Selective Esterifications of Alcohols and Phenols through Carbodiimide Couplings. Org. Biomol. Chem. 2004, 2, 397–401. [Google Scholar] [CrossRef] [PubMed]
- List, B.; Mitschke, B. The Steglich Esterification. Synfacts 2019, 15, 1185. [Google Scholar] [CrossRef] [Green Version]
- Gaggeri, R.; Rossi, D.; Collina, S.; Mannucci, B.; Baierl, M.; Juza, M. Quick Development of an Analytical Enantioselective High Performance Liquid Chromatography Separation and Preparative Scale-up for the Flavonoid Naringenin. J. Chromatogr. A 2011, 1218, 5414–5422. [Google Scholar] [CrossRef]
- Rossi, D.; Pedrali, A.; Marra, A.; Pignataro, L.; Schepmann, D.; Wünsch, B.; Ye, L.; Leuner, K.; Peviani, M.; Curti, D.; et al. Studies on the Enantiomers of RC-33 as Neuroprotective Agents: Isolation, Configurational Assignment, and Preliminary Biological Profile. Chirality 2013, 25, 814–822. [Google Scholar] [CrossRef]
- Rossi, D.; Nasti, R.; Marra, A.; Meneghini, S.; Mazzeo, G.; Longhi, G.; Memo, M.; Cosimelli, B.; Greco, G.; Novellino, E.; et al. Enantiomeric 4-Acylamino-6-Alkyloxy-2 Alkylthiopyrimidines as Potential A3 Adenosine Receptor Antagonists: HPLC Chiral Resolution and Absolute Configuration Assignment by a Full Set of Chiroptical Spectroscopy. Chirality 2016, 28, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Rossi, D.; Tarantino, M.; Rossino, G.; Rui, M.; Juza, M.; Collina, S. Approaches for Multi-Gram Scale Isolation of Enantiomers for Drug Discovery. Expert Opin. Drug Discov. 2017, 12, 1253–1269. [Google Scholar] [CrossRef]
- Rossi, D.; Nasti, R.; Collina, S.; Mazzeo, G.; Ghidinelli, S.; Longhi, G.; Memo, M.; Abbate, S. The Role of Chirality in a Set of Key Intermediates of Pharmaceutical Interest, 3-Aryl-Substituted-γ-Butyrolactones, Evidenced by Chiral HPLC Separation and by Chiroptical Spectroscopies. J. Pharm. Biomed. Anal. 2017, 144, 41–51. [Google Scholar] [CrossRef]
- Cavalloro, V.; Russo, K.; Vasile, F.; Pignataro, L.; Torretta, A.; Donini, S.; Semrau, M.S.; Storici, P.; Rossi, D.; Rapetti, F.; et al. Insight into GEBR-32a: Chiral Resolution, Absolute Configuration and Enantiopreference in PDE4D Inhibition. Molecules 2020, 25, 935. [Google Scholar] [CrossRef] [Green Version]
- Gogaladze, K.; Chankvetadze, L.; Tsintsadze, M.; Farkas, T.; Chankvetadze, B. Effect of Basic and Acidic Additives on the Separation of Some Basic Drug Enantiomers on Polysaccharide-Based Chiral Columns with Acetonitrile as Mobile Phase. Chirality 2015, 27, 228–234. [Google Scholar] [CrossRef]
- Della Volpe, S.; Nasti, R.; Queirolo, M.; Unver, M.Y.; Jumde, V.K.; Dömling, A.; Vasile, F.; Potenza, D.; Ambrosio, F.A.; Costa, G.; et al. Novel Compounds Targeting the RNA-Binding Protein HuR. Structure-Based Design, Synthesis, and Interaction Studies. ACS Med. Chem. Lett. 2019, 10, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Listro, R.; Rossino, G.; Della Volpe, S.; Stabile, R.; Boiocchi, M.; Malavasi, L.; Rossi, D.; Collina, S. Enantiomeric Resolution and Absolute Configuration of a Chiral δ-Lactam, Useful Intermediate for the Synthesis of Bioactive Compounds. Molecules 2020, 25, 6023. [Google Scholar] [CrossRef]
- Rui, M.; Rossi, D.; Marra, A.; Paolillo, M.; Schinelli, S.; Curti, D.; Tesei, A.; Cortesi, M.; Zamagni, A.; Laurini, E.; et al. Synthesis and Biological Evaluation of New Aryl-Alkyl(Alkenyl)-4-Benzylpiperidines, Novel Sigma Receptor (SR) Modulators, as Potential Anticancer-Agents. Eur. J. Med. Chem. 2016, 124, 649–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Pharmacopoeia. Liquid Chromatography, 8th ed.; EDQM European Pharmacopoeia: Strasbourg, France, 2013. [Google Scholar]
- Schrader, J.; Henneberg, F.; Mata, R.A.; Tittmann, K.; Schneider, T.R.; Stark, H.; Bourenkov, G.; Chari, A. The Inhibition Mechanism of Human 20S Proteasomes Enables Next-Generation Inhibitor Design. Science 2016, 353, 594–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malacrida, A.; Cavalloro, V.; Martino, E.; Costa, G.; Ambrosio, F.A.; Alcaro, S.; Rigolio, R.; Cassetti, A.; Miloso, M.; Collina, S. Anti-Multiple Myeloma Potential of Secondary Metabolites from Hibiscus Sabdariffa—Part 2. Molecules 2021, 26, 6596. [Google Scholar] [CrossRef]
- Glide. SiteMap; Schrödinger, LLC: New York, NY, USA, 2018. [Google Scholar]
- LigPrep. SiteMap; Schrödinger, LLC: New York, NY, USA, 2018. [Google Scholar]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Prime. SiteMap; Schrödinger, LLC: New York, NY, USA, 2018. [Google Scholar]
Compounds | MM-GBSA DG-Bind * |
---|---|
(2S,3S)-13 | −40.74 |
(2R,3R)-13 | −54.33 |
(2S,3S)-14 | −38.24 |
(2R,3R)-14 | −55.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Listro, R.; Malacrida, A.; Ambrosio, F.A.; Rossino, G.; Di Giacomo, M.; Cavalloro, V.; Garbagnoli, M.; Linciano, P.; Rossi, D.; Cavaletti, G.; et al. From Nature to Synthetic Compounds: Novel 1(N),2,3 Trisubstituted-5-oxopyrrolidines Targeting Multiple Myeloma Cells. Int. J. Mol. Sci. 2022, 23, 13061. https://doi.org/10.3390/ijms232113061
Listro R, Malacrida A, Ambrosio FA, Rossino G, Di Giacomo M, Cavalloro V, Garbagnoli M, Linciano P, Rossi D, Cavaletti G, et al. From Nature to Synthetic Compounds: Novel 1(N),2,3 Trisubstituted-5-oxopyrrolidines Targeting Multiple Myeloma Cells. International Journal of Molecular Sciences. 2022; 23(21):13061. https://doi.org/10.3390/ijms232113061
Chicago/Turabian StyleListro, Roberta, Alessio Malacrida, Francesca Alessandra Ambrosio, Giacomo Rossino, Marcello Di Giacomo, Valeria Cavalloro, Martina Garbagnoli, Pasquale Linciano, Daniela Rossi, Guido Cavaletti, and et al. 2022. "From Nature to Synthetic Compounds: Novel 1(N),2,3 Trisubstituted-5-oxopyrrolidines Targeting Multiple Myeloma Cells" International Journal of Molecular Sciences 23, no. 21: 13061. https://doi.org/10.3390/ijms232113061
APA StyleListro, R., Malacrida, A., Ambrosio, F. A., Rossino, G., Di Giacomo, M., Cavalloro, V., Garbagnoli, M., Linciano, P., Rossi, D., Cavaletti, G., Costa, G., Alcaro, S., Miloso, M., & Collina, S. (2022). From Nature to Synthetic Compounds: Novel 1(N),2,3 Trisubstituted-5-oxopyrrolidines Targeting Multiple Myeloma Cells. International Journal of Molecular Sciences, 23(21), 13061. https://doi.org/10.3390/ijms232113061