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Abstract: Tandemly arranged and dispersed repetitive DNA sequences are important structural
and functional elements that make up a significant portion of vertebrate genomes. Using high
throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have
identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the
genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variabil-
ity in structure, genomic organization, and chromosomal distribution as revealed by fluorescence
in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of
C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI
repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at
least three previously unannotated tandem repeats. Both LTR sequences identified here belong to
the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a
diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type
of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric
localization. Mapping of 18S–28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not
demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric
heterochromatic blocks.

Keywords: C-banding; CDAG-banding; FISH; GTG-banding; karyotype; heterochromatin; high-throughput
sequencing; repeats; reptile; ribosomal DNA; tandem repeats; telomeric DNA

1. Introduction

Reptiles are a large and paraphyletic class of predominantly terrestrial vertebrates. The
taxonomy of the group is complex and has changed repeatedly. Living reptiles comprise
turtles, crocodilians, squamates (lizards and snakes), and rhynchocephalians (tuatara). Rep-
tiles show a vast diversity in diploid chromosome number (2n), and karyotype morphology,
with various combinations of macro- and microchromosomes, and sex-determination sys-
tems [1–3]. The genome sequence databases contain only a limited amount of reptile data
and the complete analysis of chromosomes and genomes is still lacking for many species.

Crocodilians first appeared 95 million years ago in the Late Cretaceous period, and
are the closest living relatives of birds. Together they are combined into a single clade of
diapsid reptiles—Archosauria [4,5]. The order Crocodylia is divided into three families
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(Alligatoridae, Crocodylidae, and Gavialidae), and the number of currently described
species ranges from 23 to 27 [6–13]. Cytogenetic data for Crocodylia are usually restricted
to the description of chromosome numbers, karyotype composition, and some conventional
banding; only a few studies have used molecular cytogenetic tools [14–19]. Unlike birds
and turtles, crocodilian karyotypes do not contain typical reptile dot-shaped microchromo-
somes. It has been proposed that all microchromosomes disappeared by fusion events after
crocodilian divergence from their ancestors [20].

Repetitive DNA sequences make up a large proportion of every eukaryotic genome,
and among these, the majority is satellite DNA, organized in large head-to-tail blocks of
tandem repeats [21–23]. Satellite DNA can differ in the nucleotide sequence, repeating
unit length, and copy number both within the genome and between genomes of different
species [24]. Due to the fact that satellite DNA forms long arrays of almost identical
repeating units, this part of the genome is still difficult for modern sequencing, assembly,
and mapping methods [25,26].

Satellite sequences are a major component of centromeric and pericentromeric heterochro-
matin (see, for example, [27–30] for reviews). Despite satellite DNA being earlier considered as
“junk”, it has now become clear that these DNA arrays are integral to centromere function and
stability and they are functionally significant at the level of the spatial organization of chro-
mosomes, their pairing, and segregation during meiosis [24,30–32]. Satellite DNA transcripts
are also involved in the formation and maintenance of the heterochromatin structure [33,34].
Very often satellite DNAs are co-localized with other tandemly arranged sequences, such as
ribosomal RNA genes (rDNA) and telomeric sequences [35,36].

To date, only a few studies have addressed the characterization of repetitive sequences
in crocodilian genomes, and they are mostly focused on such common repeats as telomeric
and ribosomal DNA [17,18]. When localizing the telomeric (TTAGGG)n sequences, no
interstitial signals were found. Single rDNA sites have been found in the Siamese crocodile
(C. siamensis, CSI) and all studied Alligatoridae species, except both examined Paleosuchus
species, in which three chromosome pairs bear these sequences [17,18].

Using high-throughput sequencing, it was found that the frequency and distribution of
microsatellites differ between the Indian gharial (Gavialis gangeticus), the American alligator
(Alligator mississippiensis), and saltwater crocodile (C. porosus), and their genomic sequences
were dominated by dinucleotide repeats [37]. Physical mapping on chromosomes was
performed for (CGG)10 microsatellites only, which marked from four to eight chromo-
somes of Alligatoridae species [18]. Analysis of the molecular structure of centromeric
heterochromatin in the Siamese crocodile showed the centromeric heterochromatin was
composed mainly of two repetitive sequence families—two types of GC-rich CSI-HindIII
family sequences (305 bp and 405 bp) and the 94 bp CSI-DraI [17]. It was proposed that the
CSI-DraI-01 fragment is Crocodylidae-specific and present in the C. niloticus (CNI) genome,
as well as that both types of CSI-HindIII family sequences are characteristic for all three
crocodilian families (the Crocodylidae, Gavialidae, and Alligatoridae) [17]. However, chro-
mosomal localization of both types of the CSI-HindIII family sequences and the CSI-DraI-01
fragment has not been performed on any other species except for C. siamensis [17].

The main aim of this study was the identification, initial description, and cytogenetic
mapping of major fractions of repetitive DNAs in C. niloticus. Using a combination of
low-coverage whole-genome high-throughput sequencing, bioinformatics analysis, and
molecular cytogenetics we estimated the genomic abundance of repeat families and phys-
ically mapped them on chromosomes by FISH. We tested the distribution of identified
satellite sequences in the available reference genomic assemblies of various crocodilian
species. In order to improve the Nile crocodile karyotype description, we also performed
chromosome mapping of the 18S–28S ribosomal RNA genes and telomeric (TTAGGG)n
sequences and made C-banding and chromomycin a3 (CMA3)/DAPI staining of the Nile
crocodile chromosomes.
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2. Results
2.1. C. niloticus Karyotype

The C. niloticus karyotype with 2n = 32 has been described previously [14]. GTG-
banding made it possible to unambiguously identify homologous chromosomes in the
karyotype of the species (Figure 1). CBG-banding revealed blocks of pericentromeric
heterochromatin on all pairs of chromosomes. Less intensely stained heterochromatin
blocks were found in the distal regions of chromosome 1 q-arm and interstitial regions of
all chromosomes, except for pairs 4, 7, 9, and 15 (Figure 1).
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CDAG-staining (Chromomycin A3-DAPI-after G-banding) makes it possible to 
reveal the AT-/GC-composition and heterochromatin position on differentially stained 
chromosomes [38]. Intensive CMA3-positive pericentromeric blocks were seen in all C. 
niloticus chromosomes except pair 2. Chromosomes 6 and 11 carry large bright CMA3-
positive blocks in p-arms. Weak 4′,6-diamidino-2-phenylindole (DAPI)-positive blocks 
were revealed in pericentromeric regions of chromosomes 1 and 2 (Figure 2a). The 
18S/28S-rDNA probe gave the only interstitial signal on the pair 11 (Figures 1 and 2b). 
Telomeric repeat (TTTAGG)n marked the distal parts of all chromosomal arms and did 
not demonstrate any interstitial signals (Figure 2c). 

Figure 1. CBG- and GTG-banded Crocodylus niloticus karyotype. The black arrow marks the region of
18S/28S-rDNA probe localization. The black dots mark the positions of centromeres.

CDAG-staining (Chromomycin A3-DAPI-after G-banding) makes it possible to reveal
the AT-/GC-composition and heterochromatin position on differentially stained chromo-
somes [38]. Intensive CMA3-positive pericentromeric blocks were seen in all C. niloticus
chromosomes except pair 2. Chromosomes 6 and 11 carry large bright CMA3-positive
blocks in p-arms. Weak 4′,6-diamidino-2-phenylindole (DAPI)-positive blocks were re-
vealed in pericentromeric regions of chromosomes 1 and 2 (Figure 2a). The 18S/28S-rDNA
probe gave the only interstitial signal on the pair 11 (Figures 1 and 2b). Telomeric repeat
(TTTAGG)n marked the distal parts of all chromosomal arms and did not demonstrate any
interstitial signals (Figure 2c).
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Figure 2. CDAG-staining and localization of 18S/28S-rDNA and telomeric probes on Crocodylus ni-
loticus metaphases chromosomes. (a) CDAG-staining. From left to right: GTG-banded chromo-
somes, CDAG-staining, inverted DAPI-banding. Bright blue blocks contain AT-rich DAPI-positive 
heterochromatin. Bright green blocks consist of GC-rich CMA3-positive heterochromatin; (b) Local-
ization of 18S/28S-rDNA probe: GTG-banding on the left; (c) Localization of telomeric repeat 
(TTTAGG)n. Scale bar 10 µm. 
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given in Table 1. 
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95% 85.56% 

CNI-Sat-36 0.24% 101 60.4% OP480175 -   
CNI-Sat-58 0.12% 112 39.29% OP480176 Crocodylus porosus, satellite repeat, SAT-2_Crp   ~98% 

CNI-Sat-67 0.1% 94 44.68% OP480177 
Crocodylus siamensis DNA, centromere-specific re-
petitive sequences: clone CSI-DraI-05 (GenBank 

AB434506.1) 
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CNI-Sat-93 0.05% 31 67.74% OP480178 - - - 
CNI-Sat-96 0.046% 162 37.65% OP480179 Oikopleura dioica, part of Gypsy-9_OD-I - 71.7% 

CNI-LTR-48 0.17% 576 40.97% OP480180 Crocodylus porosus, ERV1-2B_Crp-LTR - 85.64% 
CNI-LTR-68 0.097% 5414 50.68% OP480181 Pelodiscus sinensis, ERV1-2_PSi-I - 80.68% 

Figure 2. CDAG-staining and localization of 18S/28S-rDNA and telomeric probes on Crocodylus
niloticus metaphases chromosomes. (a) CDAG-staining. From left to right: GTG-banded chromo-
somes, CDAG-staining, inverted DAPI-banding. Bright blue blocks contain AT-rich DAPI-positive
heterochromatin. Bright green blocks consist of GC-rich CMA3-positive heterochromatin; (b) Lo-
calization of 18S/28S-rDNA probe: GTG-banding on the left; (c) Localization of telomeric repeat
(TTTAGG)n. Scale bar 10 µm.

2.2. Bioinformatics Analysis of C. niloticus Repetitive DNA

The genome of C. niloticus was sequenced for the first time in this study. BGI MGISEQ-
2000 sequencing produced 5,118,575 read pairs (≈1 Gb). After pre-processing, only
3,439,364 read pairs (≈516 Mb) were analyzed with TAREAN for tandem repeats and
putative LTR consensus reconstruction. The nine most represented clusters of satellites
(Sat) and LTR were used in this work. A list of identified and characterized sequences is
given in Table 1.

Seven sequences (CNI-Sat-4, CNI-Sat-19, CNI-Sat-36, CNI-Sat-58, CNI-Sat-67, CNI-
Sat-93, and CNI-Sat-96) were identified as satellites. Their genome proportion ranged from
0.046% to 0.59%, and the length of the consensus sequence varied from 31 to 162 bp. GC
content varied from 37.65% in CNI-Sat-96 to 65% in CNI-Sat-4. Three sequences (CNI-Sat-4,
CNI-Sat-19, and CNI-Sat-67) shared homology with known satDNA previously described
for C. siamensis [17] (Table 1). CNI-Sat-58 has about 98% identity with the tandem satellite
SAT-2_Crp found in C. porosus. For CNI-Sat-36 and CNI-Sat-93 no significant homology to
previously described repetitive DNAs was found. CNI-Sat-96 has a distant similarity to a
fragment of Gypsy-9_OD-I of Oikopleura dioica.

The sequences CNI-LTR-48 and CNI-LTR-68 were identified as fragments of putative
LTR retrotransposons. Their genome proportion was 0.17% and 0.097%, respectively. CNI-
LTR-48 had a 576 bp consensus length and its GC content was 40.97%. The consensus
length for CNI-LTR-68 was 5414 bp and GC content was 50.68% (Table 1). Both sequences
obviously belong to the ERV1 family of endogenous retroviruses, whereas CNI-LTR-48
represents a reduced fragment with no coding sequences, while CNI-LTR-68 contains all
essential ORFs (gag, pol, and env). Different parts of CNI-LTR-68 (from 468 to 2707 bp in
size) demonstrate homology to different EVR1 elements from crocodiles and turtles, with
the largest percentage of identity with ERV1-2_PSi-I of Pelodiscus sinensis.
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Table 1. Putative satellites (Sat) and putative LTR elements (LTR) revealed in the Crocodylus niloticus
genome.

Repetitive
Sequence Name

Genome
Proportion

Consensus
Length GC-Content Accession

Number Homology to Known DNA (Best Hit) Query
Coverage

Percent
Identity

CNI-Sat-4 0.59% 40 65% OP480173

Crocodylus siamensis DNA,
centromere-specific GC-rich repetitive

sequences: clones CSI-HindIII-M02,
CSI-HindIII-S40, CSI-HindIII-S07 (GenBank

AB434504.1; AB434503.1; AB434500.1)

100% 97.5%

CNI-Sat-19 0.3% 93 40.86% OP480174

Crocodylus siamensis DNA,
centromere-specific repetitive sequences:

clones CSI-DraI-01, CSI-DraI-05 (GenBank
AB434505.1; AB434506.1)

95% 85.56%

CNI-Sat-36 0.24% 101 60.4% OP480175 -

CNI-Sat-58 0.12% 112 39.29% OP480176 Crocodylus porosus, satellite repeat,
SAT-2_Crp ~98%

CNI-Sat-67 0.1% 94 44.68% OP480177
Crocodylus siamensis DNA,

centromere-specific repetitive sequences:
clone CSI-DraI-05 (GenBank AB434506.1)

79% 90.67%

CNI-Sat-93 0.05% 31 67.74% OP480178 - - -

CNI-Sat-96 0.046% 162 37.65% OP480179 Oikopleura dioica, part of Gypsy-9_OD-I - 71.7%

CNI-LTR-48 0.17% 576 40.97% OP480180 Crocodylus porosus, ERV1-2B_Crp-LTR - 85.64%

CNI-LTR-68 0.097% 5414 50.68% OP480181 Pelodiscus sinensis, ERV1-2_PSi-I - 80.68%

2.3. Comparative Analysis of Satellite Sequences

We carried out a search for similar satellite sequences in the available reference ge-
nomic assemblies of various crocodilian species (Table 2). Six sequences (CNI-Sat-4, CNI-
Sat-19, CNI-Sat-36, CNI-Sat-58, CNI-Sat-67, and CNI-Sat-96) were revealed in the C. porosus
genome. CNI-Sat-67 is probably a Crocodylus-specific satellite, as it is missing from other
families. CNI-Sat-19 has not been identified in the genomes of the Alligatoridae families,
but it does occur in Gavialidae. CNI-Sat-93 was specific to the C. niloticus genome.

Table 2. Representation of satellite sequences in genome assemblies of four Crocodylia species.
Percentage of identity for the best hit (obtained using blastn) shown for each satellite.

Satellites Revealed in
Crocodylus niloticus Genome

Alligator sinensis
(GCA_000455745.1)

Alligator mississippiensis
(GCA_000281125.4)

Gavialis gangeticus
(GCA_001723915.1)

Crocodylus porosus
(GCA_000768395.2)

CNI-Sat-4 84.62% 89.47% 87.18% 100%
CNI-Sat-19 - - 74.68% 94.62%
CNI-Sat-36 81.82% 78.08% 79.73% 96.04%
CNI-Sat-58 83.81% 84.26% 88.89% 97.27%
CNI-Sat-67 - - - 89.77%
CNI-Sat-93 - - - -
CNI-Sat-96 73.38% 72.66% 77.03% 82.53%

2.4. Chromosomal Distribution of Repetitive Sequences

All analyzed repeats, with the exception of CNI-LTR-48, demonstrated a cluster
organization and were localized mainly in the pericentromeric regions of chromosomes
(Figure 3). The repeats showed specific chromosomal localization.

CNI-Sat-4 was localized in the pericentromeric regions of chromosomes CNI1, 3–16.
The signal on CNI16 was very weak (Figure 3a,b). The localization of repeat CNI-Sat-36
was similar to CNI-Sat-4. Although CNI-Sat-36 did not hybridize on CNI1, it labeled the
pericentromeric regions of chromosomes 3–16 (Figure 3a,e,f). At the same time, the signal
on CNI4 was very weak. The intensity of the signals between the repeats CNI-Sat-4 and
CNI-Sat-36 differed greatly.

Localization of CNI-Sat-19 was mainly restricted to pericentromeric regions of CNI
chromosomes 1–3, and 16 (Figure 3c,d). CNI-LTR-48 is a dispersed repeat, which forms
fairly clear blocks during hybridization in the subtelomeric region of the q-arm of CNI1
and in the pericentromeric regions of CNI6, 9, and 11 (Figure 3e).
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CNI-Sat-58 marked the p-arms of chromosomes 13, 14, and 16. At some metaphase
plates, it slightly marked the distal part of the p-arm of CNI8 (Figure 3g). CNI-Sat-67
hybridized with pericentromeric regions of all chromosomes, except CNI4. The signal on
CNI8 was very weak (Figure 3b,f,h,i).

A low signal intensity was observed during the hybridization of CNI-LTR-68
(Figure 3h). It gave weak signals in the pericentromeric regions of chromosomes 1 and 2,
and also weakly marked distal regions of all chromosome arms, similarly to the telomeric
repeat.

CNI-Sat-93 hybridized with the pericentromeric regions of chromosomes 5, 7, 10–12,
14, and 15; moreover, it gave an interstitial signal on the CNI9 q-arm (Figure 3g,j). On
a pair of chromosomes 12, the signal was observed only on one of the homologs. CNI-
Sat-96 marked pericentromeric regions of CNI1-3, 12, and 16 (Figure 3d,i,j). On a pair of
chromosomes 12, the signal was observed only on one of the homologs (the same homolog
contained CNI-Sat-93).
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Figure 3. FISH of repetitive DNA probes on metaphase plates of Crocodylus niloticus. For each pair of
probes from left to right, GTG-banded metaphase, green channel, red channel, and the colocalization
of probes are shown: (a) CNI-Sat-4 (green) and CNI-Sat-36 (red); (b) CNI-Sat-4 (green) and CNI-Sat-
67 (red); (c) CNI-Sat-19 (red) and CNI-Sat-67 (green); (d) CNI-Sat-19 (red) and CNI-Sat-96 (green);
(e) CNI-Sat-39 (green) and CNI-LTR-48 (red); (f) CNI-Sat-36 (green) and CNI-Sat-67 (red); (g) CNI-Sat-
58 (green) and CNI-Sat-93 (red); (h) CNI-Sat-67 (red) and CNI-LTR-68 (green); (i) CNI-Sat-67 (green)
and CNI-Sat-96 (red); (j) CNI-Sat-93 (red) and CNI-Sat-96 (green). Scale bar 10 µm.

3. Discussion

Tandem repeats content is well investigated in the genomes of only such vertebrates
as humans, mice, and some birds [30,39–44]. The number of works on other species is
steadily increasing (e.g., [45–50]). Tandem repeats are highly prevalent at centromeres of
both animal and plant genomes, but the repeat monomers vary greatly in composition and
sequence length [51]. The size of repeats ranges from a few base pairs (microsatellites) up
to several kilobases. Due to the very fast evolution and thus a high propensity for block
size polymorphism, repetitive sequences have proven to be good genetic [39,43,52,53] and
molecular cytogenetic markers demonstrating size-dependent chromosomal localization
in species with clearly fragmented genomes (birds and most reptiles) [54,55], as well as
making it possible to distinguish between paralogous chromosomes in the genomes of
paleopolyploid species [45,46].

Bird macro- and microchromosomes are very conserved in evolution and often syn-
tenic to turtle macro- and microchromosomes, as shown by comparative mapping of
protein-coding genes [56]. Using the example of birds and turtles, it was shown that mi-
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crochromosomes are enriched in GC-rich genes [57]. Comparative painting studies have
demonstrated that rearrangements between macro- and microchromosomes in birds oc-
curred very rarely [58,59]. Homogenization of the centromeric repetitive sequences did not
take place between macro- and microchromosomes owing to their structural differences [17].
These structural differences between macro- and microchromosomes are believed to have
been highly conserved during the evolution of the Archosauromorpha over 260 million
years since this lineage diverged from other diapsids (Lepidosauria) [60–63]. However,
in some birds the phenomenon of repetitive DNA homogenization between macro- and
microchromosomes has been detected [64].

Crocodilians lack genome compartmentalization depending on chromosome size,
which seems to be a consequence of multiple microchromosome fusions after crocodil-
ian divergence from their common ancestors with birds [20]. Analysis of centromeric
repeat sequences in the Siamese crocodile showed that the separation of centromeric repeat
sequences into macro- and microchromosome-specific, was lost in Crocodylia, and homog-
enization of centromeric repeat sequences between all chromosomes, except chromosome
2, took place [17].

Repeated sequences identified here in the Nile crocodile genome (Table 1), showed
significant differences in structure, genomic organization, and distribution on chromosomes
(Figure 4). Seven sequences (CNI-Sat-4, CNI-Sat-19, CNI-Sat-36, CNI-Sat-67, CNI-Sat-93,
CNI-Sat-96, and CNI-LTR-68) were located in the pericentromeric regions of the Nile
crocodile chromosomes (Figure 4). In view of the fact that constitutive heterochromatin is
composed mainly of repetitive elements, the chromosomal localization of the repeats was
perfectly correlated with the location of constitutive heterochromatin blocks revealed by
C-banding (Figures 1 and 4).
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The GC-rich CNI-Sat-4 repeat with a sequence length of 40 bp (Table 1), showing a
high degree of similarity to the CSI-HindIII family of sequences, was found in the Siamese
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crocodile genome [17]. These repeated sequences showed a roughly similar localization
pattern in the karyotypes of the two crocodilian species. Clone CSI-HindIII-S01 did not label
CSI2, and four small CSI chromosomes, and, similarly, clone CSI-HindIII-M02 did not label
CSI2 but labeled only one of the homologues of one small pair of CSI chromosomes [17],
CNI-Sat-4 did not produce a signal on CNI2 and 14 (Figure 4). Interestingly, CSI-HindIII
showed incomplete tandem arrays in the Siamese crocodile, with this family of repeats
conserved in three crocodilian families, Crocodylidae, Gavialidae, and Alligatoridae [17].
Our data showing the presence of CNI-Sat-4 in genome assemblies of the three crocodilian
families further supports a possible ancestral status of the CSI-HindIII family of sequences
in crocodilians (Table 2).

CNI-Sat-19 and CNI-Sat-67 have a similar consensus length (93 and 94 bp, respectively
(Table 1)), and they share a high degree of similarity with the CSI-DraI sequence family
identified in the C. siamensis genome [17]. However, in this case, the pattern of repeat
localization was very different. While the CSI-DraI repeated family was localized in the
pericentromeric regions of CSI2 and four small CSI chromosomes [17], CNI-Sat-19 was
localized in the pericentromeric regions of CNI1, 2, 3, and 16, and CNI-Sat-67 labeled all
CNI pairs except CNI4 (Figure 4). The CSI-DraI repeat has been shown to be organized
in long tandem arrays in the Siamese crocodile and categorized as a typical centromeric
satellite DNA, with this family of repeats being characteristic only of the genus Crocodylus
but not of higher-ranking taxa [17]. CNI-Sat-67 may be genus-specific as it is distributed
in two Crocodilus species, while the detection of CNI-Sat-19 in Gavialis gangeticus indicates
that the CSI-DraI repeated family is common for at least two crocodilian families (Table 2).

Clusters of three tandem repeats (CNI-Sat-36, CNI-Sat-93, and CNI-Sat-96) found in
the Nile crocodile chromosomes bear no homology with the previously described repeat
sequences from GenBank, but one of the satellites (CNI-Sat-58) was revealed in C. porosus
genome by RepBase [65]. Four repeats (CNI-Sat-36, CNI-Sat-93, CNI-Sat-96, and CNI-LTR-
68) were localized in the pericentromeric regions of the C. niloticus chromosomes, showing
chromosome-specific distribution. Like the CSI-HindIII and CSI-DraI repeat families, there
was no obvious attraction of a certain type of repeat to larger or smaller chromosomes in
the Nile crocodile karyotype (Figure 4).

Two clusters of repeats (CNI-LTR-48 and CNI-Sat-58) localized outside the centromeric
regions (Figure 4). In addition to separate blocks on chromosomes 1, 6, 9, and 11 of the
Nile crocodile, CNI-LTR-48 also gave dispersed signals mainly on large chromosomes
(Figure 3e). Despite the fact that CNI-Sat-96 gave weak signals in the subtelomeric regions
of chromosomes, we did not find homology of this repeat to telomeric sequences.

We noticed that some satellites co-localized on many chromosomes. Thus, CNI-Sat-4,
CNI-sat-36, and CNI-Sat-67 are located in pericentromeric regions of most Nile crocodile
chromosomes (CNI3, 5–16) (Figure 4). These three satellites together with CNI-Sat-93 were
found in the pericentromeric regions of CNI5, 7, 9, and 11–16 (Figure 4). Satellites CNI-Sat-
19, CNI-Sat-67, CNI-Sat-96, and CNI-LTR-68 were found in the two largest chromosomes
(CNI1 and 2) (Figure 4). This pattern of localization indicates the evolutionary processes
driving the linked spreading of satellites across different chromosomes.

Of the sequences identified in this work, CNI-Sat-4, 36, and 93 were GC-rich (Table 1).
These repeated sequences were not detected on chromosome pair 2 (Figures 3 and 4), which
is in excellent agreement with the results of CDAG-staining showing the enrichment of
AT-rich heterochromatin in the pericentromeric region of chromosome 2 (Figure 2a). The
GC-rich interstitial heterochromatic block on chromosome 11 corresponds to the ribosomal
gene cluster (Figure 2a,b).

CNI-Sat-93 seems to be the only species-specific satellite of C. niloticus. All other
tandem repeats, except genus-specific CNI-Sat-67, are shared between different crocodilian
families. Despite the 80–100 mya radiation [66] no significant divergence of tandemly
arranged repetitive elements is revealed, which indicates quite slow rates of molecular
evolution in the taxon.
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The presence of endogenous retroelements is an expected false-positive result of satel-
lite DNA identification using TAREAN due to the presence of direct terminal repeats [67].
Two LTR retrotransposons discovered here belong to the ERV1 class. It was well established
that ERVs represent less than 2% of crocodile genomes and many of the elements are
species-specific [68]. The high similarity to ERV elements from the turtle demonstrated here
is not surprising, as shared endogenous retroviruses have been found previously in the
same study. The dispersed nature of the retrotransposons was confirmed by FISH analysis
(Figure 3e,h). Some enrichment in fluorescent signal density was observed in pericen-
tromeric and subtelomeric regions, which indicates an uneven distribution of retroviruses
across the C. niloticus genome.

4. Materials and Methods
4.1. Cell Line Establishment and Karyotype Analysis

The C. niloticus cells were grown from embryonic tissues obtained from La Ferme
aux Crocodiles [16,69] and deposed in the Cambridge Resource Center for Comparative
Genomics, Department of Veterinary Medicine, UK. The cell culture was provided to the
Institute of Molecular and Cellular Biology, SB RAS, Russia for joint research. The cell
line of C. niloticus was deposited in the IMCB SB RAS cell bank (“The general collection
of cell cultures”, 0310-2016-0002). Chromosome suspensions from the cell culture were
obtained in the Laboratory of Animal Cytogenetics, IMCB SB RAS, Novosibirsk, Russia, as
described previously [70,71].

CBG-banding was made as described by Gladkikh et al. [72]. GTG-banding was
performed prior to FISH using the standard trypsin/Giemsa treatment procedure [73].
CDAG-banding was conducted as described before [38].

4.2. DNA Extraction, Library Preparation, and Whole-Genome DNA Sequencing

Whole-genome DNA of C. niloticus was extracted from cell culture using Thermo
Scientific GeneJET Genomic DNA Purification (Thermo Fisher Scientific Baltics, Vilnius,
Lithuania) according to the manufacturer’s protocol. Genomic DNA was fragmented in
microTUBE AFA Fiber Pre-Split tubes on a Covaris S2 device (Covaris, Woburn, MA, USA)
with a median fragment length of 400 bp according to the manufacturer’s protocol. Libraries
were prepared from fragmented DNA using the MGIEasy Universal DNA Library Prep Set
(MGI, Shenzhen, China) according to the manufacturer’s protocol. Library sequencing was
performed on an MGISEQ-2000 using the DNBSEQ-G400RS High-throughput Sequencing
Set (FCL PE100) in the SB RAS Genomics Core Facility (ICBFM SB RAS, Novosibirsk,
Russia). The data were deposited in the NCBI SRA database (PRJNA861923).

4.3. Repetitive DNA Identification and Characterization

Preprocessing of raw reads was carried out using fastp 0.23.2 [74]. A total of 4,321,634
pairs of high-quality reads with a length of 75 bp were randomly selected and 3,439,364
read pairs (39.1% of genome size [69]) used in the analysis with the TAREAN 2.3.7
tool [67], which identified clusters of the most abundant tandemly arranged repeats. NCBI
BLAST [75] and RepBase [65] databases were used to compare consensus tandem repeat
sequences with previously described sequences. Putative LTR retrotransposons were
analyzed using the Conserved Domain Database [76].

4.4. Fluorescence In Situ Hybridization (FISH) with Repeats

Primers for PCR amplification and labeling of nine probes (for repeats CNI-Sat-4,
19, 36, 58, 67, 93, 96, CNI-LTR-48, and CNI-LTR-68) were designed with Gene Runner
(version 6.5.52) (Table S1). In the case of CNI-LTR-48 and CNI-LTR-68, the primers were
matched to a region of the sequences of these putative LTR elements. PCR amplification
was performed as described earlier [45]. The telomeric DNA probe was generated by PCR
with oligonucleotides (TTAGGG)5 and (CCCTAA)5 [77]. Clones of human ribosomal DNA
(rDNA) containing a partial 18S ribosomal gene, the full 5.8S gene, a part of the 28S gene,
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and two internal transcribed spacers were obtained as described elsewhere [78]. Labeling
was performed using PCR by incorporation of biotin-dUTP and digoxigenin-dUTP (Sigma).
FISH was performed in accordance with previously published protocols [79]. Images
were captured using the VideoTest-FISH software (Imicrotec, New York, NY, USA) with a
JenOptic charge-coupled device (CCD) camera mounted on an Olympus BX53 microscope.
Hybridization signals were assigned to specific chromosome regions identified by means
of GTG-banding patterns photographed by the CCD camera. All images were processed in
Adobe PhotoShop 2021 (Adobe, San Jose, CA, USA).

5. Conclusions

Despite the important functional role in centromere organization, tandemly arranged
repetitive elements remain poorly studied and are mostly missing from genome assemblies.
Here we described the major repetitive DNAs of the Nile crocodile (C. niloticus) for the
first time and mapped the discovered elements to chromosomes. We confirmed four (CNI-
Sat-4, CNI-Sat-19, CNI-Sat-58, and CNI-Sat-67) previously described annotated tandemly
arranged elements and revealed three (CNI-Sat-36, CNI-Sat-93, and CNI-Sat-96) novel
tandem repeats. We demonstrated that almost all major clusters have centromeric and
pericentromeric localization, which may assume the role of some of them in centromere
assembly. All pericentromeric regions are characterized by a diverse set of repeated
sequences, except for chromosome pair 4, in which we found only one type of repeat. Very
low rates of molecular evolution of most discovered repetitive elements may suggest their
functional significance. The tandemly arranged repeated elements discovered here may be
involved in centromere organization, but additional experiments including chromatin anti-
CENP-B immunoprecipitation are necessary to resolve this issue. This work complements
available genome assemblies and opens new perspectives in repetitive DNA studies of
other crocodiles and reptiles in general.
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