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Abstract: Polydeoxyribonucleotide (PDRN) is an agonist of the A2A adenosine receptor derived
from salmon trout sperm. Selenium (Se) is a trace element normally present in the diet. We aimed to
investigate the long-term role of PDRN and Se, alone or in association, after ischemia-reperfusion
(I/R) in rats. The animals underwent 1 h testicular ischemia followed by 30 days of reperfusion
or a sham I/R and were treated with PDRN or Se alone or in association for 30 days. I/R signifi-
cantly increased hypoxia-inducible factor 1-α (HIF-1α) in Leydig cells, malondialdehyde (MDA),
phosphorylated extracellular signal-regulated kinases 1/2 (pErk 1/2), and apoptosis decreased testis
weight, glutathione (GSH), testosterone, nuclear factor erythroid 2-related factor 2 (Nrf2), induced
testicular structural changes, and eliminated HIF-1α spermatozoa positivity. The treatment with
either PDRN or Se significantly decreased MDA, apoptosis, and HIF-1α positivity of Leydig cells,
increased testis weight, GSH, testosterone, and Nrf2, and improved the structural organization of the
testes. PDRN and Se association showed a higher protective effect on all biochemical, structural, and
immunohistochemical parameters. Our data suggest that HIF-1α could play important roles in late
testis I/R and that this transcriptional factor could be modulated by PDRN and Se association, which,
together with surgery, could be considered a tool to improve varicocele-induced damages.

Keywords: testis; ischemia-reperfusion; rat; selenium; polydeoxyribonucleotide; hypoxia-inducible
factor 1-α; phosphorylated extracellular signal-regulated kinases 1/2; germinal epithelium; Leydig cells

1. Introduction

Testis torsion is one of the most common testicular lesions in the pediatric popula-
tion [1], with an estimated occurrence of 3.5 per 100,000 persons per year [2]. It causes
severe structural damage to the testes, thus leading to infertility [2]; therefore, it must be
treated promptly to avoid testicular dysfunction [3]. Events occurring during testicular
torsion and subsequent detorsion basically depend on the occurrence of ischemic events
and their extension [4] and are comparable to the ischemia-reperfusion (I/R) injury also
observed in other organs [5].

Experimentally, testis I/R can be obtained with different procedures. In fact, it can be
induced by torsion of the spermatic cord, followed by detorsion, both procedures lasting
different lengths of time [6,7]. Another procedure is the use of a small microvascular clump
placed on the spermatic cord in order to block the spermatic vessels; then, the clump is
removed, allowing the reperfusion of the testis [8,9]. Under these circumstances, testes are
damaged as a direct consequence of the increased production of reactive oxygen species
(ROS) responsible for oxidative stress, and of proinflammatory cytokines and transcription
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factors, changes in adhesion molecules, enhanced apoptosis, and hormonal unbalance, all
leading to germ cell death, aspermatogenesis, and testicular atrophy [10,11].

Even if the testicular environment requires low oxygen tension, an increased con-
centration of ROS causes peroxidation of lipids present in the sperm plasma membrane,
leading to the formation of many toxic by-products, such as malondialdehyde (MDA), able
to change the morphological and functional characteristics of cellular membranes [12]. As
a result, seminiferous epithelium undergoes irreversible damage [7]. As to the proinflam-
matory cytokines, they are physiologically produced in the testis [13], being involved in
the assemblage or disruption of the blood–testis barrier (BTB) [14]. However, the failure
in this steady environment typical of I/R could increase their production, in particular
of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and IL-1β [15–17]. The increased
levels of these cytokines are responsible for damage in spermatogenesis, causing claudin-11
deregulation [18]. I/R is also able to trigger the apoptosis cascade, inducing further de-
generation of the germinal epithelium [19]. Even if apoptosis normally occurs in mammal
spermatogenesis to warrant cell homeostasis [20], in I/R-challenged animals, an increase
in the number of TUNEL-positive cells and the expression of Bax, caspase-1, and -3 were
observed [15,21]. In experimental testis I/R, changes in the hormonal balance involved in
male gonad activity were observed. In fact, decreased serum testosterone, FSH, LH, and
inhibin levels were described [22,23], indicating a negative effect in controlling testicular
functions. I/R injury is also accompanied by changes in hypoxia-inducible factor-1α (HIF-
1α) levels. This transcription factor is present in both normoxic and ischemic testes [24],
but an evident increase in its expression in I/R-treated rats was demonstrated [16,17], thus
indicating a strong link between HIF-1α and I/R injury. However, its role has not yet been
completely elucidated.

In order to counteract I/R effects, numerous therapeutic approaches acting on the
different pathways have been tried, either with natural substances [25–27] or with nu-
traceuticals [28–30]. Among them, selenium (Se), a trace element able to lower oxidative
stress [31,32], reduced MDA levels and increased superoxide dismutase (SOD) activity
and ameliorated structural damages after testicular experimental I/R [33]. Kara et al. [34]
showed a protective effect of Se administration in I/R testis as indicated by lower lipid
peroxidation and apoptosis and by mitigated histopathological damages, thus suggesting
an anti-inflammatory and antiapoptotic role of this element in improving fertility. Poly-
deoxyribonucleotide (PDRN) is an agonist of the A2A adenosine receptor, whose role
in an experimental model of I/R testicular injury was evaluated [6]. Its administration
ameliorated the histological damages and increased vascular endothelial growth factor
(VEGF)-mRNA and VEGF expression in both operated and contralateral testes after 30
days of reperfusion. Additionally, it significantly increased VEGF-receptor 1 expression
in Leydig cells. It was suggested that the PDRN plays a role in inducing the synthesis of
VEGF, able to ameliorate local perfusion in testis [35].

In light of this background, we investigated I/R injury in a long-term experimental
model of testis torsion and detorsion to better understand the behavior of HIF-1α and the
possible protective role of Se and PDRN.

2. Results
2.1. Effects of PDRN, Se, and Their Association on Testis Weight

The weight of both testes of all the examined groups is shown in Table 1. No significant
differences were observed in all sham groups; therefore, for the sake of simplification, a
single value is provided as representative of the sham. I/R rats showed operated and
contralateral testes weight significantly lower than a sham, even if the contralateral testis
weight was greater than operated. In both I/R rats treated with PDRN or Se alone, both
operated and contralateral testes weight was significantly lower than sham rats. In I/R
rats treated with PDRN plus Se, the weight of both operated and contralateral testes was
improved and close to sham.
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Table 1. Effects on testis weight, testosterone, glutathione, and malondialdehyde levels induced by
PDRN and Se alone or in association in testes of I/R rats compared with ischemia-reperfusion and
sham rats. All values are expressed as mean ± SD; n = 7 animals/group.

Groups Testis Weight (g) Testosterone (ng/mL) GSH
(µmol/g Tissue)

MDA
(nmol/g Tissue)

Sham 1.71 ± 0.21 5.7 ± 0.4 344 ± 14 5.4 ± 0.3
I/R + vehicle 0.93 ± 0.32 a

2.5 ± 0.4 a 262 ± 15 a 11.8 ± 0.4 a

I/R CL + vehicle 1.38 ± 0.35 a 271 ± 13 a 9.8 ± 0.3 a

I/R + PDRN 1.40 ± 0.29 a,b
4.1 ± 0.3 a,b 294 ± 16 a 8.7 ± 0.5 a

I/R CL + PDRN 1.55 ± 0.27 a,b 305 ± 14 a,b 7.2 ± 0.3 a,b

I/R + Se 1.44 ± 0.33 a,b
4.4 ± 0.5 a,b 303 ± 13 a,b 8.1 ± 0.5 a,b

I/R CL + Se 1.59 ± 0.25 a,b 316 ± 15 a,b 6.8 ± 0.4 a,b

I/R + PDRN + Se 1.62 ± 0.27 b
5.3 ± 0.4 b 331 ± 15 b 5.9 ± 0.2 b

I/R CL + PDRN + Se 1.70 ± 0.26 b 337 ± 13 b 5.5 ± 0.2 b

a = p < 0.05 versus sham; b = p < 0.05 versus I/R + vehicle. I/R—ischemia-reperfusion; PDRN—
polydeoxyribonucleotide; Se—selenium; GSH—glutathione; MDA—malondialdehyde CL—contralateral testis.

2.2. Effects of PDRN, Se, and Their Association on Testosterone Levels

The levels of testosterone in all the examined groups are shown in Table 1. Testosterone
levels were normal in all sham groups; therefore, for the sake of simplification, a single
value is provided as representative of the sham. A sharp, significant decrease was observed
in I/R animals when compared with sham (−56%). PDRN or Se alone administration
caused an increase in testosterone levels when compared with I/R rats (+39% and +41%,
respectively), even if significantly lower than sham groups. Only in I/R + PDRN + Se rats
was testosterone level close to sham (+53% compared with I/R rats).

2.3. Effects of PDRN, Se, and Their Association on Oxidative Stress Parameters

In all sham groups, GSH levels showed basal values; therefore, for the sake of sim-
plification, a single value is provided as representative of the sham. In the I/R group, a
significant decrease was observed in both testes versus sham. In both I/R plus PDRN and
I/R plus Se groups, the treatment significantly increased GSH levels only in contralateral
testes. Only in I/R + PDRN + Se rats the GSH levels were close to normal in both operated
and contralateral testes (Table 1).

In all sham groups, MDA levels showed basal values; therefore, for the sake of
simplification, a single value is provided as representative of the sham. In contrast, in I/R
animals, MDA levels were significantly increased. The treatment with PDRN or Se alone
decreased MDA levels in operated testes, even if not significantly, while the decrease was
significant in contralateral testes. Only in I/R + PDRN + Se rats were MDA levels close to
normal in both operated and contralateral testes (Table 1).

2.4. Effects of PDRN, Se, and Their Association on Nrf2 and pErk 1/2 Expression

As to Nrf2 expression (Figure 1a), an evident expression was demonstrated in sham
animals, with no differences among groups: therefore, for the sake of simplification, a
single value is provided as representative of the sham. In contrast, a significant, dramatic
decrease (−65% and −60%, respectively) of Nrf2 expression was observed in operated
and contralateral testes of I/R rats. In I/R + PDRN group, Nrf2 expression significantly
increased versus the I/R group in both operated and contralateral testes (+50% and +52%,
respectively). Similarly, an increase in Nrf2 expression was observed in I/R + Se group,
higher in operated testes (+51%) and lower in contralateral testes (+45%). In I/R + PDRN +
Se rats, Nrf2 expression was comparable to sham.
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is provided as characteristic of all shams (Figure 2A,J,K). After 30 days of reperfusion, the 
operated I/R group testes showed evident tubular changes with few spermatogonia and 
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Figure 1. Representative Western blot analysis of Nrf2 (a) and pErk 1/2 (b) in testes of sham, I/R +
vehicle, I/R contralateral + vehicle, I/R + PDRN, I/R contralateral + PDRN, I/R + Se, I/R contralateral
+ Se; I/R + Se + PDRN; I/R contralateral + Se + PDRN rats. * p ≤ 0.05 versus sham; § p ≤ 0.05 versus
I/R. Bars represent the mean ± SD of seven experiments.

When pErk 1/2 expression was evaluated (Figure 1b), its intensity was low and
superimposable in all sham groups; therefore, for the sake of simplification, a single value
is provided as representative of the sham. In both operated and contralateral testes of the
I/R group, pErk 1/2 expression was significantly increased (+85% and +84 % versus sham,
respectively). In I/R + PDRN group, a significant decrease of pErk 1/2 expression was
observed (−38% and −47% versus the I/R group, respectively). In the testes of I/R + Se
rats, a further decrease of pErk 1/2 expression was found in the left and the right testes
(−49% and −64%, respectively) versus the corresponding I/R testes. In I/R + PDRN + Se
rats, pErk 1/2 expression was similar to sham.

2.5. Effects of PDRN, Se, and Their Association on Testis Structure

All the sham groups of rats showed seminiferous tubules and extratubular compart-
ments with normal morphology; therefore, for the clarity of images, a single micrograph is
provided as characteristic of all shams (Figure 2A,J,K). After 30 days of reperfusion, the
operated I/R group testes showed evident tubular changes with few spermatogonia and
much cellular debris, significantly reduced MSTD, and a very low Johnsen score. In the
extratubular compartment, evident interstitial edema was present (Figure 2B,J,K). In CL
testes of the same group, the germinal epithelium was formed by some spermatogonia
and isolated spermatocytes; the extratubular compartment was edematous (Figure 2C,J,K).
In I/R + PDRN alone-treated rats, the germinal epithelium was better preserved with
elongated spermatids, even if some intercellular clefts were present; in the extratubular
compartment, interstitial edema was still evident (Figure 2D,J,K). CL testes of the same
group showed a germinal epithelium with isolated, empty zones in the basal position
and a close-to-normal extratubular compartment. MSTD and Johnsen scores were signif-
icantly improved (Figure 2E,J,K). In I/R + Se alone-treated rats, tubules with peripheral
spermatogonia and few detached spermatocytes were present; MSTD and Johnsen scores
were significantly higher compared with the I/R group but lower compared with I/R plus
PDRN alone group; the extratubular compartment was dilated (Figure 2F,J,K). CL testes of
the same group had larger tubules, as indicated by MSTD, and round spermatids in their
lumen (Figure 2G,J,K). In I/R rats treated with the association Se and PDRN, only mild
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edema of the extratubular compartment was present (Figure 2H,J,K), while CL testes of the
same animal group showed a normal organization (Figure 2I–K).
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Figure 2. Histological findings in the seminiferous tubules of the different groups of rats (H&E stain).
(A) Sham rats show normal morphology. (B) In I/R + vehicle rats, degenerative changes in the
germinal cells (arrow) and edema of the extratubular compartment (*) are evident. (C) CL testes
of I/R + vehicle rats show a germinal epithelium with only spermatogonia, isolated spermatocytes
(arrow), and interstitial edema (*). (D) In the testes of I/R + PDRN rats, elongated spermatids are
present in the germinal epithelium, even if some intercellular clefts (arrow) are evident; mild edema
is demonstrated in the extratubular compartment (*). (E) The CL testes of the same group show a
close-to-normal extratubular compartment and a germinal epithelium with isolated, empty zones
in the basal position. (F) The testes of I/R + Se rats have tubules with peripheral spermatogonia
and detached spermatocytes; the extratubular compartment is dilated (*). (G) CL testes of the same
group show larger tubules, and their lumen is filled with round spermatids (arrowhead). (H,I) In
the testes of I/R + PDRN + Se rats and the CL testes of the same group, no evident morphological
changes are recognized in both the tubular and the extratubular compartments. (J) Histogram of
the mean seminiferous tubule diameter (MSTD) in the different groups of rats (mean ± standard
deviation). (K) Histogram of the Johnsen score in the different groups of rats (mean ± standard
deviation). * p ≤ 0.05 versus sham group; § p ≤ 0.05 versus I/R rats (Scale bar: 100 µm).

2.6. Effects of PDRN, Se, and Their Association on Apoptosis with TUNEL Assay

In the seminiferous tubules of all sham rats, no TUNEL-positive cells were present;
therefore, for the clarity of images, a single micrograph is provided as characteristic of
all groups (Figure 3A,J,K). In contrast, in the wall of the seminiferous tubules of I/R and
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CL testes of the same group, an evident positivity was observed (Figure 3B,C). In fact,
both TWAC and apoptotic index were significantly higher when compared with the sham
group (Figure 3J,K). In I/R rats treated with PDRN alone, an evident decrease in TUNEL-
positive cell number in TWAC and in the apoptotic index was observed (Figure 3D,J,K)
compared with I/R rats. CL testes of the same group showed a close to normal TWAC,
while the apoptotic index was still significantly higher (Figure 3E,J,K). In I/R and CL testes
of rats treated with Se alone, only isolated TUNEL-positive spermatogonia were present
(Figure 3F,G); TWAC and apoptotic index values were significantly reduced (Figure 3J,K).
In I/R rats treated with Se + PDRN, both operated and CL testes showed isolated TUNEL-
positive germ cells in the periphery of the seminiferous tubules (Figure 3H,I); TWAC and
apoptotic index were close to sham (Figure 3J,K).
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(arrow) were seen in the wall of the seminiferous tubules of I/R + vehicle rats and in CL testes of the 

Figure 3. Assessment of apoptosis in the different groups of rat testes with TUNEL stain. (A) In
the testes of all sham rats, no TUNEL-positive cells were present. (B,C) Many TUNEL-positive cells
(arrow) were seen in the wall of the seminiferous tubules of I/R + vehicle rats and in CL testes of
the same group. (D,E) In I/R + PDRN alone-treated rats and in the CL tests of the same group,
TUNEL-positive cells (arrow) were decreased when compared with I/R rats. (F,G) In I/R + Se-treated
rats and in CL testes of the same group, only isolated TUNEL-positive cells were present. (H,I) In
I/R rats treated with the association PDRN + Se, in both operated and CL testes, only rarely isolated
TUNEL-positive germ cells were observed. (J) Tubules with apoptotic cells (TWAC) (expressed
in %) in the different groups of rats. (K) Apoptotic index (apoptotic cells/tubule) in the different
groups of rats. * p ≤ 0.05 versus sham group; § p ≤ 0.05 versus I/R rats (scale bar: (A,D–I) = 100 µm;
(B,C) = 50 µm).
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2.7. Effects of PDRN, Se, and Their Association on HIF-1α Activity

In the seminiferous tubules of all sham groups, HIF-1α positive elongated spermatids
and spermatozoa were present, while in the interstitial spaces, HIF-1α positive Leydig
cells were observed; therefore, for the clarity of images, a single micrograph is provided
as characteristic of all shams (Figure 4A). In both operated and CL testes of I/R rats, no
HIF-1α positive cells were demonstrated in the highly damaged wall of the tubules, while
Leydig cells showed a higher expression when compared with sham rats (Figure 4B,C). In
the operated testes of I/R + PDRN-treated rats, a moderate positivity for HIF-1α of the
tails of spermatozoa and Leydig cells was present (Figure 4D), while in CL testes of the
same group, isolated HIF-1α positive spermatocytes and spermatids were demonstrated, in
addition to Leydig cells (Figure 4E). In both operated and CL testes of I/R + Se-treated rats,
no HIF-1α positive cell was present in the otherwise improved structure of seminiferous
tubules; in the interstitial spaces, the expression of Leydig cells was mildly reduced when
compared with I/R rats (Figure 4F,G). In the seminiferous tubules of both operated and CL
testes of I/R rats treated with Se + PDRN, diffuse positivity for HIF-1α of spermatozoa and
HIF-1α positive Leydig cells similar to sham was demonstrated (Figure 4H,I).
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Figure 4. Immunohistochemical expression of HIF-1α in the testes. (A) In sham groups, HIF-1α positive
elongated spermatids and spermatozoa (arrow) and Leydig cells (arrowhead) are present. (B,C) In both
operated and CL testes of I/R + vehicle rats, no HIF-1α positive cells are evident in the highly damaged
tubular wall; interstitial Leydig cells (arrowhead) show a higher expression versus sham rats. (D) In the
operated testes of I/R + PDRN-treated rats, a moderate positivity for HIF-1α of the tails of spermatozoa
(arrow) and Leydig cells (arrowhead) is evident. (E) In CL testes of I/R + PDRN-treated rats, isolated
HIF-1α positive spermatocytes and spermatids (asterisk) are present in the seminiferous epithelium, in
addition to Leydig cells (arrowhead). (F,G) In both operated and CL testes of I/R + Se-treated rats,
no HIF-1α positive cells are present in the otherwise improved structure of seminiferous tubules; the
expression of Leydig cells (arrowhead) is reduced when compared with I/R rats. (H,I) In the seminiferous
tubules of both operated and CL testes of I/R + PDRN + Se-treated rats, an evident positivity for HIF-1α
of the tails of spermatozoa (arrow) and Leydig cells (arrowhead) similar to sham is present. (Scale bar:
(A,D–I) = 100 µm; (B,C) = 50 µm).
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3. Discussion

Among pediatric emergencies, the torsion of the spermatic cord needs immediate
surgical treatment to restore the testicular vascular supply; if not treated, testis damages
occur, leading to infertility [36]. However, the reperfusion of ischemic tissues is responsible
for further structural and functional damage of all components of the gonad; in fact, it
was considered superimposable to the I/R damages demonstrated in other organs, such as
heart, kidney, liver, and gastrointestinal apparatus [37,38].

Many studies examining the effects of different substances in counteracting the dif-
ferent mechanisms involved in testicular I/R damage were performed, testing the role of
vitamin C [39], the melanocortin analog [Nle(4),D-Phe(7)]α-melanocyte-stimulating hor-
mone [40], α-lipoic acid [41], ghrelin [42], melatonin [43], astaxanthin [7], and relaxin [44].

Additionally, Se, a trace element, was able to reduce oxidative stress [31,32], apop-
tosis [34], and to improve structural damages [33] after experimental I/R in testis, thus
suggesting an anti-inflammatory and antiapoptotic role of this element in improving fertility.

The role of PDRN, an agonist of the A2A adenosine receptor, in an experimental model
of I/R testicular injury was evaluated, and it was suggested that it induced the synthesis of
VEGF [6], able to ameliorate local perfusion in testis [35].

It has been shown that the original factor in male infertility is oxidative damage. In the
body, cells produce ROS during their normal metabolic activity, and there is an increasing
evidence that they are beneficial even under certain pathological conditions [45]. In the
testis, MDA as a lipid peroxidation marker and GSH as an antioxidant, are able to modulate
oxidative stress, but I/R injury causes excessive production of ROS [46]. Our data indicate
that both PDRN and Se, alone and in association, were able to interact significantly with the
oxidative stress induced by experimental I/R, normalizing MDA and GSH levels in testes.
Indeed, Se has a direct well-defined antioxidant activity through different pathways due
to its incorporation in selenoproteins, which are involved in the regulation of antioxidant
activities. In particular, in the testis Se-dependent glutathione peroxidase detoxifies cellular
peroxides that protect against ROS [47,48]. On the contrary, PDRN could have an indirect
effect on the oxidative stress induced by ROS. Probably, the antioxidant activity of PDRN
could be related either to its effect on inflammation and its related oxidative stress, or could
be due to a synergic effect with Se [6,49]. Accordingly, our present experimental data sug-
gest that the co-administration of PDRN and Se, further improved the overall antioxidant
activity of treatment in comparison with single administration of both molecules.

In addition, the amplified production of ROS in testis I/R stimulates the MAPK family
and triggers the inflammatory cascade and the apoptosis machinery. In fact, increased
concentrations of TNF-α and IL-1β were demonstrated [50], thus confirming a negative
function of inflammation during testicular I/R. In our study, we demonstrated an evident
increase in pErk 1/2 levels, whose role in the molecular mechanism of the inflammatory
response has been assessed [51]. Both PDRN and Se, alone and in association, significantly
reduced pErk 1/2 levels, indicating a positive role in reducing inflammation in I/R testes.

Furthermore, I/R triggers different programs of cell death, such as necrosis and
apoptosis. While necrosis induces swelling and breakup of cells and organelles, stimulating
the inflammatory process and cytokine production, apoptosis is characterized by shrinkage
of cells and nuclei but by plasma membrane integrity [52]. In I/R rats, a large number of
TUNEL-positive germ cells was demonstrated mainly in the basal layer of the seminiferous
tubules, suggesting that apoptosis is highly increased in operated and contralateral testes.
From our data, it was possible to show that both PDRN and Se, alone and in association,
were able to improve significantly apoptosis induced by experimental I/R.

Lastly, we confirmed that I/R rats showed dramatic changes in the seminiferous
epithelium and a very low Johnsen score. The administration of PDRN and Se, alone or in
association, significantly ameliorated spermatogenesis, as demonstrated by histological
micrographs, improved Johnsen score, and MSTD.

Particular attention was paid to the behavior of HIF-1α in rats with I/R testicular
injury treated with PDRN and Se, alone or in association.
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The increased expression of HIF-1α observed in I/R rats could be related to the
corresponding elevated levels of pErk 1/2 observed with WB analysis. In fact, an interaction
between HIF-1α and pErk 1/2 was demonstrated [53], indicating cooperation between
hypoxic and growth factor signals that finally led to the surge in HIF-1-mediated gene
expression.

As to the tubular compartment, the seminiferous epithelium of sham rats showed an
evident HIF-1α expression of elongated spermatids and spermatozoa. According to the cur-
rent literature, HIF-1α positivity in the abluminal compartment of the seminiferous tubules
was present in the flagellum of spermatozoa of mice testes under normoxic conditions [54]
and in elongated spermatids of adult mice [55]. It was suggested that HIF-1α might play a
protective role for haploid male germ cells located in the luminal part of the seminiferous
tubules. In these regions, owing to the greater distance from blood vessels, O2 tension is
lower than that of the interstitial region or basal regions, where spermatogonia undergo a
self-renewal process [56]. Therefore, the luminal regions are particularly hypoxic, and the
basal expression of HIF-1α indicates a response to the lower access to O2 [54]. The other
cells of the seminiferous epithelium were instead HIF-1α negative, differently from the data
of Takahashi et al. [55] obtained from mice testes. In I/R rats, owing to the dramatic struc-
tural changes of the seminiferous tubules induced by the experimental procedure [16,17],
HIF-1α positivity was absent. The treatment with Se and PDRN, alone or in association,
was able to restore the structural organization of the seminiferous tubules so that in I/R
rats treated with both PDRN and Se, diffuse positivity for HIF-1α of spermatozoa was
demonstrated.

As to the extratubular compartment, we confirmed an evident positivity for HIF-1α
of Leydig cells in sham rats [10]. The constitutive expression of HIF-1α, even in normoxic
conditions, could be related to the low, similar to hypoxia [10,24], physiological O2 tension
in the interstitial tissue of the rat testis, compared with other organs [50]. However, in our
study, differently from previous data and probably related to the time of reperfusion [10],
I/R rats HIF-1α showed an increased expression in Leydig cells. The basal positivity
to HIF-1α and its increase after 30 days of I/R can induce another important effect in
Leydig cells.

The latter could be related to the absence of apoptosis in these cells [57], related to the
expression, even in normoxic conditions, of HIF-1α [10]. In fact, it was proposed that HIF-1,
in particular HIF-1α as the predominant HIF-1 expressed in the rat testis [10], may induce
the activation of antiapoptotic genes able to shield Leydig cells from apoptosis either in
sham or in I/R testes.

Another important consequence of the increased expression of HIF-1α in I/R rats is
the decrease in testosterone levels. Testosterone reduction in I/R animals was previously
related to oxidative stress, able to inhibit androgenesis in Leydig cells [23,58]. However,
a key role of HIF-1 in testosterone synthesis was recently demonstrated under hypoxia
conditions. In fact, after 28-day treatment of intermittent hypoxia, a significant decrease
in serum testosterone was observed in mice [59]. Therefore, the increased expression of
HIF-1α in Leydig cells during I/R could justify the reduced levels of testosterone in serum
observed in our animals, which was significantly reversed after the treatment with PDRN
and Se alone or in association, parallel to the reduction in HIF-1α expression.

This finding is of particular interest; in fact, it is possible to speculate that the HIF-1α
pathway could represent another mechanism for the development of late complications
related to testicular torsion. However, further studies are necessary to better understand
the role of this transcriptional factor in testis I/R.

4. Materials and Methods
4.1. Ethical Approval

The standards for the care and use of animal subjects, as stated in the ARRIVE (Animal
Research: Reporting In Vivo Experiments) guidelines [60], were followed in the present
work. All procedures were approved by the Italian Ministry of Health (authorization
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number 112/2017-PR) and by the Institutional Animal Care and Use Committee of the
University Hospital of Messina, Messina, Italy.

4.2. Experimental Protocol

Male Sprague Dawley rats (250–300 g) were housed and maintained under specific
pathogen-free conditions at the animal facility of the School of Medicine at the University of
Messina, Messina, Italy. Rats were provided a standard diet ad libitum with free access to
tap water and were maintained on a 12-h light/dark cycle. The animals (total number = 56)
were divided into 8 groups of 7 animals each. Four groups (sham rats) were anesthetized
and operated on, but no testicular torsion and consequent ischemia were performed. These
animals were divided into the following groups: one group treated with vehicle (0.9%
NaCl), one group treated daily with PDRN (8 mg/kg) alone, one group treated daily
with Se (3 mg/kg) alone, and one group treated daily with both Se (3 mg/kg) and PDRN
(8 mg/kg). The animals of the other four groups were anesthetized, and the torsion of the
left testis and spermatic cord was performed for 1 h, as previously described [61]. Then the
testis was detorted. These animals were divided into the following groups, all treated for
30 days after the detorsion: one group (I/R + vehicle), one group (I/R + PDRN) treated
daily with PDRN (8 mg/kg) alone, one group (I/R + Se) treated daily with Se (3 mg/kg)
alone, and one group (I/R + Se + PDRN) treated daily both Se (3 mg/kg) and PDRN
(8 mg/kg). The doses of both PDRN and Se were selected on the basis of the results of
previous works [52,62]. The animals of each group were sacrificed after 30 days from the
surgical treatment with an overdose of ketamine and xylazine, and bilateral orchidectomies
were performed. The limit of 30 days of administration of PDRN and selenium was chosen
on the basis of the previous works which showed that at that time structural and functional
damages were particularly evident and typical of detorsion [6,40,42,63,64]. The testes were
collected, weighed, and treated for the following experimental procedures.

4.3. Isolation of Soluble Proteins

Isolation of soluble proteins from testis samples (about 30 mg) of the different groups
was performed in 1 mL of lysis buffer [25 mM Tris/HCL, pH 7.4, 1.0 mM EGTA, 1.0 mM
EDTA, 0.5 mM phenyl methylsulfonyl fluoride, aprotinin, leupeptin, pepstatin A (10 ug/mL
each) and Na3VO4 100 mM] and homogenized with a Dounce homogenizer [65]. The ho-
mogenate was centrifuged at 15,000 g for 15 min, and the supernatant was collected and
used for total protein determination with the Bio-Rad protein assay kit (Bio-Rad, Richmond,
CA, USA).

4.4. Determination of GSH and MDA Levels

GSH level was determined in the testes of all groups using Ellman’s reagent, and the
results were expressed as µmol/g tissue [66]. MDA level was obtained from products of
lipid peroxidation, and the results were expressed as nmol/g tissue [66].

4.5. Determination of Testosterone Levels

An ELISA kit was used for testosterone levels in serum, according to the protocol
suggested by the manufacturer. In brief, blood was obtained from cardiac puncture, and
serum was achieved by centrifugation for 10 min at 1000 g. An HRP conjugate and the
specific antibody were added, followed by substrates and a stop solution. The mean
absorbance was calculated using a microplate reader at 450 nm and correlated with those
from standard curves. Data were expressed in ng/mL.

4.6. Determination of Nrf2 and pErk 1/2 by Western Blot Analysis

Total proteins (30 µg) were denatured with reducing buffer [62 mMTris (pH 6.8), 10%
glycerol, 2% sodium dodecyl sulfate, 5% β-mercaptoethanol, and 0.003% bromophenol
blue], separated by electrophoresis and then transferred onto a polyvinylidene difluoride
(PVDF) membrane using a transfer buffer [39 mM glycine, 48 mM Tris (pH 8.3)] at 200 mA
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for 1 h. In order to block membrane proteins, 5% nonfat dry milk in TBS-0.1% Tween for 1 h
at room temperature was used, followed by three washes with TBS-0.1% Tween for 10 min
each, then incubated with a primary antibody for Nrf2 (Abcam, Cambridge, UK) and pErk
1/2 (Cell Signaling, Beverly, MA, USA), diluted 1:1000 in TBS-0.1% Tween overnight at
4 ◦C. The membranes were washed three times for 10 min each with TBS-0.1% Tween
to eliminate nonspecific bindings and incubated with a specific peroxidase-conjugated
secondary antibody (Genetex, Irvine, CA, USA), diluted 1:5000, for 1 h at room temperature.
After three washes, the membranes were analyzed by the enhanced chemiluminescence
system according to the manufacturer’s protocol (Amersham Biosciences, Amersham, UK).
Equal loading of proteins was assessed on stripped blots by immunodetection of β-actin
with a rabbit monoclonal antibody (Cell Signaling, Beverly, MA, USA) diluted 1:1000 and
peroxidase-conjugated antirabbit IgG (Genetex, Irvine, CA, USA) diluted 1:5000. The
results from each experimental group were obtained from 7 samples of each experimental
group. The results were normalized versus β-actin and expressed as relative integrated
intensity compared with those of sham rats measured with the same batch. All the target
proteins were run on the same membrane after stripping the primary antibody with a
glycine solution. β-actin was used as a control on the same stripped blot.

4.7. Histological Evaluation

The testes were fixed in Bouin, dehydrated in ethanol, cleared in xylene, and embedded
in paraffin (Paraplast, SPI Supplies, West Chester, PA, USA). Sections of 5 µm thickness
were mounted on glass silanized slides and stained with hematoxylin and eosin (H&E).
Photomicrographs were taken with a Nikon Ci-L (Nikon Instruments, Tokyo, Japan) light
microscope, using a digital camera Nikon DS-Ri2. Images, saved as Tagged Image Format
Files (TIFF), were printed at the same final magnification and blindly assessed by two
trained observers without knowledge of the previous treatment. Five microscopic fields, all
including two entire seminiferous tubules from ten not serial sections of each group, were
considered.

The mean seminiferous tubule diameter (MSTD) was calculated by measuring the
diameters of 100 separate seminiferous tubules, all showing a circular profile. A Peak Scale
Loupe 7× (GWJ Company, Hacienda Heights, CA, USA) micrometer was used as a scale
calibration standard to calculate the mean diameters expressed in micrometers (µm). Fur-
thermore, from the same tubules, the germinal epithelium was evaluated using the Johnsen
scoring system [67], as modified by Erdemir et al. [68]. In brief, each tubule was scored from
10 to 1 according to the germinal epithelium organization: 10 = whole spermatogenesis
and normal tubules; 9 = many spermatozoa and disorganized spermatogenesis; 8 = only a
few spermatozoa; 7 = no spermatozoa but many spermatids; 6 = only a few spermatids;
5 = no spermatozoa or spermatids but many spermatocytes; 4 = only a few spermatocytes;
3 = only spermatogonia; 2 = no germ cells but only Sertoli cells; 1 = no germ cells and no
Sertoli cells.

4.8. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay
for Apoptosis

A kit for the assay of apoptosis (In situ Apoptosis Detection kit, Abcam, Cambridge,
UK) was used, and 5 µm sections were obtained from the same samples used for morpho-
logical evaluation. After clearing in xylene and rehydration in ethanol, permeabilization
with proteinase K was performed, followed by endogenous peroxidase blocking with
3% H2O2 in methanol. Sections were treated with terminal deoxynucleotidyl transferase,
biotin-labeled deoxynucleotides, streptavidin–horseradish peroxidase conjugate, and then
with diaminobenzidine as chromogen. Micrographs were taken with a Nikon Ci-L light
microscope using a digital camera Nikon Ds-Ri2. One hundred seminiferous tubules per
group were blindly evaluated by two trained observers to determine the percentage of
tubules with apoptotic cells (%TWAC) and the mean number of TUNEL-positive cells per
tubule (apoptotic index) [55].
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4.9. Immunohistochemistry for HIF-1α

From the same blocks used for histological evaluation, paraffin-embedded 5 µm
sections were mounted on Polysine slides (Thermo Fisher Scientific, Waltham, MA, USA),
cleared in xylene, and rehydrated in ethanol. Antigen retrieval was performed with
pH 6.0 buffer citrate and endogenous peroxidase blocking with 0.3% H2O2 in methanol.
The primary antibody (HIF-1α, 1:100, Orizor Scientific, Messina, Italy) was incubated
overnight at 4 ◦C in a moisturized chamber, and the day after, the secondary antibody
(Pierce anti-mouse, Cambridge, UK) was added. The reaction was visualized with 3,3′-
Diaminobenzidine (DAB) (Sigma-Aldrich, Milan, Italy). Counterstaining was performed in
Mayer’s haematoxylin. Slides were photographed with a Nikon Ci-L (Nikon Instruments,
Tokyo, Japan) light microscope.

4.10. Drugs

Mastelli srl, Sanremo, Italy, kindly provided PDRN. PDRN is extracted and purified at
high temperature, so to regain a >95% pure active constituent with inactivated proteins
and peptides. It contains polydeoxyribonucleotide, NaCl and water. Se was used as a
powder, purity 99.99% with <150.0 ppm metal traces, −100 mesh and was purchased from
Sigma Aldrich, Milan, Italy. All the chemicals and reagents were commercially available
reagent grades.

4.11. Statistical Analysis

The different experimental groups were analyzed by the Student’s t-test and one-
way ANOVA with Tukey’s post-test for intergroup comparisons. Values are expressed as
mean ± standard deviation (SD). A p value of≤0.05 was considered statistically significant.
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22. Yurtçu, M.; Abasiyanik, A.; Avunduk, M.C.; Muhtaroğlu, S. Effects of melatonin on spermatogenesis and testicular ischemia-
reperfusion injury after unilateral testicular torsion-detorsion. J. Pediatr. Surg. 2008, 43, 1873–1878. [CrossRef] [PubMed]

23. Gholami, M.; Abbaszadeh, A.; Khayat, Z.K.; Anbari, K.; Baharvand, P.; Gharravi, A.M. Honey improves spermatogenesis and
hormone secretion in testicular ischaemia-reperfusion-induced injury in rats. Andrologia 2018, 50, e12804. [CrossRef] [PubMed]

24. Palladino, M.A.; Shah, A.; Tyson, R.; Horvath, J.; Dugan, C.; Karpodinis, M. Myeloid cell leukemia-1 (Mc1-1) is a candidate target
gene of hypoxia-inducible factor-1 (HIF-1) in the testis. Reprod. Biol. Endocrinol. 2012, 10, 104. [CrossRef] [PubMed]
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