Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover
Abstract
:1. Introduction
2. Results
2.1. Pretreatment Process Optimization Combining DA and ASS for High-Efficiency Separating Xylose and Lignin and Improving Enzymatic Digestibility of Corn Stover
2.1.1. Effect of DA Pretreatment
2.1.2. Effect of ASS Pretreatment
2.2. Effect of Ammonium Sulfite (AS) Pretreatment on Lignin Removal and Enzymatic Digestibility of Corn Stover
2.3. Fed-Batch S-SSF of Pretreated Corn Stover for Ethanol Production
2.3.1. Fed-Batch S-SSF of DA-ASS-Pretreated Corn Stover
2.3.2. Fed-Batch S-SSF of AS-Pretreated Corn Stover
3. Discussion
4. Materials and Methods
4.1. Materials and Strains
4.2. Pretreatment of Corn Stover
4.3. Enzymatic Hydrolysis
4.4. Fed-Batch Semi-Simultaneous Saccharification and Fermentation (Fed-Batch S-SSF)
4.5. Analytical Methods and Calculations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghaei, S.; Karimi Alavijeh, M.; Shafiei, M.; Karimi, K. A Comprehensive Review on Bioethanol Production from Corn Stover: Worldwide Potential, Environmental Importance, and Perspectives. Biomass Bioenergy 2022, 161, 106447. [Google Scholar] [CrossRef]
- Tusher, T.R.; Chang, J.J.; Saunivalu, M.I.; Wakasa, S.; Li, W.H.; Huang, C.C.; Inoue, C.; Chien, M.F. Second-Generation Bioethanol Production from Phytomass after Phytoremediation Using Recombinant Bacteria-Yeast Co-Culture. Fuel 2022, 326, 124975. [Google Scholar] [CrossRef]
- Gandam, P.K.; Chinta, M.L.; Pabbathi, N.P.P.; Baadhe, R.R.; Sharma, M.; Thakur, V.K.; Sharma, G.D.; Ranjitha, J.; Gupta, V.K. Second-Generation Bioethanol Production from Corncob – A Comprehensive Review on Pretreatment and Bioconversion Strategies, Including Techno-Economic and Lifecycle Perspective. Ind. Crops Prod. 2022, 186, 115245. [Google Scholar] [CrossRef]
- Aboagye, D.; Banadda, N.; Kambugu, R.; Seay, J.; Kiggundu, N.; Zziwa, A.; Kabenge, I. Glucose Recovery from Different Corn Stover Fractions Using Dilute Acid and Alkaline Pretreatment Techniques. J. Ecol. Environ. 2017, 41, 26. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Huang, F. Pretreatment Methods for Bioethanol Production. Appl. Biochem. Biotechnol. 2014, 174, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Naresh Kumar, M.; Ravikumar, R.; Thenmozhi, S.; Ranjith Kumar, M.; Kirupa Shankar, M. Choice of Pretreatment Technology for Sustainable Production of Bioethanol from Lignocellulosic Biomass: Bottle Necks and Recommendations. Waste Biomass Valorization 2018, 10, 1693–1709. [Google Scholar] [CrossRef]
- Grisales Díaz, V.H.; Willis, M.J. On the Economic Optimisation of Ethanol Production Using Corn Stover Feedstock: A New Kinetic Model, a Green Recovery System and a de-Acetylation Step. Energy Convers. Manag. 2019, 202, 112200. [Google Scholar] [CrossRef]
- Molaverdi, M.; Karimi, K.; Mirmohamadsadeghi, S.; Galbe, M. High Efficient Ethanol Production from Corn Stover by Modified Mild Alkaline Pretreatment. Renew. Energy 2021, 170, 714–723. [Google Scholar] [CrossRef]
- Yuan, W.; Gong, Z.; Wang, G.; Zhou, W.; Liu, Y.; Wang, X.; Zhao, M. Alkaline Organosolv Pretreatment of Corn Stover for Enhancing the Enzymatic Digestibility. Bioresour. Technol. 2018, 265, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Maurya, D.P.; Singla, A.; Negi, S. An Overview of Key Pretreatment Processes for Biological Conversion of Lignocellulosic Biomass to Bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef]
- Liu, C.G.; Xiao, Y.; Xia, X.X.; Zhao, X.Q.; Peng, L.; Srinophakun, P.; Bai, F.W. Cellulosic Ethanol Production: Progress, Challenges and Strategies for Solutions. Biotechnol. Adv. 2019, 37, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, C.; Lin, W.; Bian, B.; Lai, C.; Ling, Z.; Yong, Q. A Structure–Activity Understanding of the Interaction between Lignin and Various Cellulase Domains. Bioresour. Technol. 2022, 351, 127042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wan, G.; Li, M.; Jiang, H.; Wang, S.; Min, D. Impact of Bagasse Lignin-Carbohydrate Complexes Structural Changes on Cellulase Adsorption Behavior. Int. J. Biol. Macromol. 2020, 162, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.; Verma, P. An Overview of Key Pretreatment Processes Employed for Bioconversion of Lignocellulosic Biomass into Biofuels and Value Added Products. 3 Biotech 2013, 3, 415–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.F.S.; Akbar, M.; Xu, Z.; Wang, H. A Review on the Role of Pretreatment Technologies in the Hydrolysis of Lignocellulosic Biomass of Corn Stover. Biomass Bioenergy 2021, 155, 106276. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, L.; Wu, Y.; Cheng, C.; Chen, L.; Chen, H.; Xue, C. Hybrid Dilute Sulfuric Acid and Aqueous Ammonia Pretreatment for Improving Butanol Production from Corn Stover with Reduced Wastewater Generation. Bioresour. Technol. 2019, 278, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Lavenson, D.M.; Tozzi, E.J.; McCarthy, M.J.; Jeoh, T. The Effects of Water Interactions in Cellulose Suspensions on Mass Transfer and Saccharification Efficiency at High Solids Loadings. Cellulose 2011, 18, 759–773. [Google Scholar] [CrossRef]
- Jeong, T.S.; Um, B.H.; Kim, J.S.; Oh, K.K. Optimizing Dilute-Acid Pretreatment of Rapeseed Straw for Extraction of Hemicellulose. Appl. Biochem. Biotechnol. 2010, 161, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Deshavath, N.N.; Mohan, M.; Veeranki, V.D.; Goud, V.V.; Pinnamaneni, S.R.; Benarjee, T. Dilute Acid Pretreatment of Sorghum Biomass to Maximize the Hemicellulose Hydrolysis with Minimized Levels of Fermentative Inhibitors for Bioethanol Production. 3 Biotech 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avci, A.; Saha, B.C.; Dien, B.S.; Kennedy, G.J.; Cotta, M.A. Response Surface Optimization of Corn Stover Pretreatment Using Dilute Phosphoric Acid for Enzymatic Hydrolysis and Ethanol Production. Bioresour. Technol. 2013, 130, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Sievers, D.A.; Kuhn, E.M.; Tucker, M.P.; McMillan, J.D. Effects of Dilute-Acid Pretreatment Conditions on Filtration Performance of Corn Stover Hydrolyzate. Bioresour. Technol. 2017, 243, 474–480. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, J.Y.; Jang, H.M.; Lee, M.W.; Park, J.M. Sequential Dilute Acid and Alkali Pretreatment of Corn Stover: Sugar Recovery Efficiency and Structural Characterization. Bioresour. Technol. 2015, 182, 296–301. [Google Scholar] [CrossRef]
- Lyu, Q.; Chen, X.; Li, W.; Zhang, Y.; Xiao, A.; Chen, J.; Han, L.; Zhou, C.; Xiao, W. A Multi-Product Strategy for the Fractionation of Corn Stover Based on Peracetic Acid and Maleic Acid Processing. J. Environ. Chem. Eng. 2022, 10, 108764. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, L.; Lu, X.; Zhang, S. Pretreatment of Corn Stover with Diluted Acetic Acid for Enhancement of Acidogenic Fermentation. Bioresour. Technol. 2014, 158, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jiang, B.; Wu, W.; Wu, S.; Yang, Y.; Song, J.; Ahmad, M.; Jin, Y. Current Understanding and Optimization Strategies for Efficient Lignin-Enzyme Interaction: A Review. Int. J. Biol. Macromol. 2022, 195, 274–286. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, D.; Li, Y.; Zhang, H.; Zhang, Z.; Jing, Y.; Lu, C.; Zhang, Y.; Xia, C.; Zhang, Q. Lignin Removal, Reducing Sugar Yield and Photo-Fermentative Biohydrogen Production Capability of Corn Stover: Effects of Different Pretreatments. Bioresour. Technol. 2022, 346, 126437. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, Y.; Tang, B.; Zeng, M.; Liang, Z.; Jiang, C.; Lin, J.; Xiao, W.; Liu, Z. Enhanced Saccharification of Sugarcane Bagasse by the Optimization of Low Concentration of NaOH and Ammonia Pretreatment. Ind. Crops Prod. 2021, 172, 114016. [Google Scholar] [CrossRef]
- Li, M.F.; Yang, S.; Sun, R.C. Recent Advances in Alcohol and Organic Acid Fractionation of Lignocellulosic Biomass. Bioresour. Technol. 2016, 200, 971–980. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, L.; Cheng, Y.; Lu, J.; Lv, Y.; Yan, J.; Wang, H. Improving Enzymatic Hydrolysis Efficiency of Corncob Residue through Sodium Sulfite Pretreatment. Appl. Microbiol. Biotechnol. 2019, 103, 7795–7804. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, L.; Chen, H. Effect of Novel Pretreatment of Steam Explosion Associated with Ammonium Sulfite Process on Enzymatic Hydrolysis of Corn Straw. Appl. Biochem. Biotechnol. 2019, 189, 485–497. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Li, Z. Effects of Reduced Severity of Ammonium Sulfite Pretreatment on Bamboo for High Cellulose Recovery. RSC Adv. 2019, 9, 30489–30495. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Sun, W.; Li, X.; Zhao, J.; Qu, Y.; Choo, Y.M.; Loh, S.K. Bisulfite Pretreatment Changes the Structure and Properties of Oil Palm Empty Fruit Bunch to Improve Enzymatic Hydrolysis and Bioethanol Production. Biotechnol. J. 2015, 10, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhu, J.; Yang, X. Evaluation of an Adapted Inhibitor-Tolerant Yeast Strain for Ethanol Production from Combined Hydrolysate of Softwood. Appl. Energy 2011, 88, 1792–1796. [Google Scholar] [CrossRef]
- Tan, L.; Yu, Y.; Li, X.; Zhao, J.; Qu, Y.; Choo, Y.M.; Loh, S.K. Pretreatment of Empty Fruit Bunch from Oil Palm for Fuel Ethanol Production and Proposed Biorefinery Process. Bioresour. Technol. 2013, 135, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.S.; Yang, Q.; Zhu, J.Y.; Pan, X.J. Sulfite (SPORL) Pretreatment of Switchgrass for Enzymatic Saccharification. Bioresour. Technol. 2013, 129, 127–134. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Chandra, M.S.; Gu, F.; Gleisner, R.; Reiner, R.; Sessions, J.; Marrs, G.; Gao, J.; Anderson, D. Using Sulfite Chemistry for Robust Bioconversion of Douglas-Fir Forest Residue to Bioethanol at High Titer and Lignosulfonate: A Pilot-Scale Evaluation. Bioresour. Technol. 2015, 179, 390–397. [Google Scholar] [CrossRef]
- Liu, H.; Pang, B.; Wang, H.; Li, H.; Lu, J.; Niu, M. Optimization of Alkaline Sulfite Pretreatment and Comparative Study with Sodium Hydroxide Pretreatment for Improving Enzymatic Digestibility of Corn Stover. J. Agric. Food Chem. 2015, 63, 3229–3234. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.; Wang, H.; Li, B.; Liu, C.; Yu, G.; Mu, X. Comparison of Different Alkali-Based Pretreatments of Corn Stover for Improving Enzymatic Saccharification. Bioresour. Technol. 2012, 125, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Huang, D.; Wang, J.; Shen, Y.; Gao, X. Enhanced Butanol Production from Ammonium Sulfite Pretreated Wheat Straw by Separate Hydrolysis and Fermentation and Simultaneous Saccharification and Fermentation. Sustain. Energy Technol. Assess. 2019, 36, 100549. [Google Scholar] [CrossRef]
- Yu, G.; Liu, S.; Feng, X.; Zhang, Y.; Liu, C.; Liu, Y.J.; Li, B.; Cui, Q.; Peng, H. Impact of Ammonium Sulfite-Based Sequential Pretreatment Combinations on Two Distinct Saccharifications of Wheat Straw. RSC Adv. 2020, 10, 17129–17142. [Google Scholar] [CrossRef]
- Khaire, K.C.; Moholkar, V.S.; Goyal, A. A Biorefinery Approach for Sequential Extraction of Commercial Grade Xylan and Alkali Lignin from Alkali Pretreated Sugarcane Tops Hydrolysate. Ind. Crops Prod. 2022, 187, 115545. [Google Scholar] [CrossRef]
- Yan, X.; Cheng, J.R.; Wang, Y.T.; Zhu, M.J. Enhanced Lignin Removal and Enzymolysis Efficiency of Grass Waste by Hydrogen Peroxide Synergized Dilute Alkali Pretreatment. Bioresour. Technol. 2020, 301, 122756. [Google Scholar] [CrossRef]
- Li, H.; Shen, Y.; Wu, M.; Hou, J.; Jiao, C.; Li, Z.; Liu, X.; Bao, X. Engineering a Wild-Type Diploid Saccharomyces Cerevisiae Strain for Second-Generation Bioethanol Production. Bioresour. Bioprocess. 2016, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Modenbach, A.A.; Nokes, S.E. Enzymatic Hydrolysis of Biomass at High-Solids Loadings—A Review. Biomass Bioenergy 2013, 56, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, M.; Pu, Y.; Ragauskas, A.J.; Klett, A.S.; Thies, M.; Zheng, Y. Inhibitory Effects of Lignin on Enzymatic Hydrolysis: The Role of Lignin Chemistry and Molecular Weight. Renew. Energy 2018, 123, 664–674. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Pan, X.J.; Wang, G.S.; Gleisner, R. Sulfite Pretreatment (SPORL) for Robust Enzymatic Saccharification of Spruce and Red Pine. Bioresour. Technol. 2009, 100, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Beltrán, J.U.; Hernández-Escoto, H. Enzymatic Hydrolysis of Biomass at High-Solids Loadings through Fed-Batch Operation. Biomass Bioenergy 2018, 119, 191–197. [Google Scholar] [CrossRef]
- Chen, H.Z.; Liu, Z.H. Enzymatic Hydrolysis of Lignocellulosic Biomass from Low to High Solids Loading. Eng. Life Sci. 2017, 17, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Wang, F.; Su, R.X.; Qi, W.; He, Z.M. Ethanol Production from High Dry Matter Corncob Using Fed-Batch Simultaneous Saccharification and Fermentation after Combined Pretreatment. Bioresour. Technol. 2010, 101, 4959–4964. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Park, H.M.; Kim, D.H.; Yang, J.; Kim, K.H. Fed-Batch Enzymatic Saccharification of High Solids Pretreated Lignocellulose for Obtaining High Titers and High Yields of Glucose. Appl. Biochem. Biotechnol. 2017, 182, 1108–1120. [Google Scholar] [CrossRef]
- Modenbach, A.A.; Nokes, S.E. The Use of High-Solids Loadings in Biomass Pretreatment-a Review. Biotechnol. Bioeng. 2012, 109, 1430–1442. [Google Scholar] [CrossRef] [Green Version]
- Reis, C.E.R.; Libardi Junior, N.; Bento, H.B.S.; Carvalho, A.K.F.d.; Vandenberghe, L.P.d.S.; Soccol, C.R.; Aminabhavi, T.M.; Chandel, A.K. Process Strategies to Reduce Cellulase Enzyme Loading for Renewable Sugar Production in Biorefineries. Chem. Eng. J. 2022, 451, 138690. [Google Scholar] [CrossRef]
- Tan, L.; Wang, M.; Li, X.; Li, H.; Zhao, J.; Qu, Y.; Choo, Y.M.; Loh, S.K. Fractionation of Oil Palm Empty Fruit Bunch by Bisulfite Pretreatment for the Production of Bioethanol and High Value Products. Bioresour. Technol. 2016, 200, 572–578. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.; Yang, R.; Zhao, J.; Liu, Y.; Qu, Y. Liquefaction of Fermentation Residue of Reed- and Corn Stover-Pretreated with Liquid Hot Water in the Presence of Ethanol with Aluminum Chloride as the Catalyst. Chem. Eng. J. 2014, 247, 142–151. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); Technical Report NREL/TP-510-42619; National Renewable Energy Laboratory: Golden, CO, USA, January 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass (LAP); Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, April 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Technical Report NREL/TP-510-42623; National Renewable Energy Laboratory: Golden, CO, USA, January 2008. [Google Scholar]
- Sasaki, K.; Tsuge, Y.; Sasaki, D.; Teramura, H.; Inokuma, K.; Hasunuma, T.; Ogino, C.; Kondo, A. Mechanical Milling and Membrane Separation for Increased Ethanol Production during Simultaneous Saccharification and Co-Fermentation of Rice Straw by Xylose-Fermenting Saccharomyces Cerevisiae. Bioresour. Technol. 2015, 185, 263–268. [Google Scholar] [CrossRef] [PubMed]
Temperature (°C) | Solid-to-Liquid Ratio | Acid Concentration (%) | Pretreated Solid | Pretreatment Liquid | Glucan Conversion of Enzymatic Hydrolysis (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Glucan (%) | Xylan (%) | Lignin (%) | Xylan Recovery (%) | Furfural (g/L) | HMF (g/L) | ||||
Raw material | 31.2 ± 0.6 | 21.4 ± 0.3 | 18.9 ± 0.7 | 24.2 ± 1.0 | |||||
140 | 1:8 | 1.0 | 46.0 ± 1.0 | 9.0 ± 0.4 | 30.1 ± 0.3 | 53.6 | 0.010 | 0.043 | 64.6 ± 0.8 |
1:10 | 0.8 | 47.6 ± 0.8 | 5.5 ± 0.1 | 30.5 ± 0.5 | 85.4 | 0.015 | 0.051 | 66.2 ± 3.4 | |
1.0 | 46.9 ± 0.4 | 5.0 ± 0.6 | 32.0 ± 0.7 | 85.0 | 0.016 | 0.056 | 68.7 ± 0.7 | ||
1.2 | 46.6 ± 0.5 | 3.5 ± 0.3 | 34.9 ± 1.0 | 84.8 | 0.024 | 0.077 | 72.4 ± 0.7 | ||
150 | 1:8 | 1.0 | 48.2 ± 1.1 | 5.6 ± 0.5 | 32.3 ± 0.7 | 76.8 | 0.034 | 0.168 | 73.9 ± 2.1 |
1:10 | 0.8 | 47.2 ± 0.3 | 3.0 ± 0.8 | 33.5 ± 0.1 | 93.0 | 0.026 | 0.134 | 71.6 ± 1.9 | |
1.0 | 47.7 ± 0.5 | 2.9 ± 0.4 | 31.5 ± 1.2 | 88.1 | 0.036 | 0.174 | 72.6 ± 0.7 | ||
1.2 | 46.7 ± 0.9 | 3.1 ± 0.6 | 34.7 ± 0.2 | 77.2 | 0.039 | 0.203 | 76.7 ± 2.2 |
(NH4)2SO3 (%) | Solid-to-Liquid Ratio | Glucan (%) | Xylan (%) | Lignin (%) | Lignin Removal (%) | Glucan Conversion * (%) | Xylan Conversion * (%) |
---|---|---|---|---|---|---|---|
Raw material | 36.6 ± 0.3 | 21.2 ± 0.6 | 14.6 ± 0.8 | 34.6 ± 2.0 | 38.8 ± 2.6 | ||
8 | 1:6 | 49.5 ± 0.8 | 12.3 ± 0.7 | 10.6 ± 0.6 | 49.9 | 73.9 ± 1.3 | 93.5 ± 5.1 |
10 | 1:6 | 49.0 ± 0.5 | 12.4 ± 0.9 | 8.7 ± 0.3 | 60.9 | 88.0 ± 2.6 | 99.8 ± 0.9 |
12 | 1:6 | 50.4 ± 0.4 | 13.2 ± 0.2 | 6.7 ± 0.9 | 69.0 | 86.6 ± 1.3 | 99.2 ± 2.3 |
14 | 1:6 | 53.5 ± 1.2 | 13.5 ± 0.5 | 3.7 ± 0.5 | 83.8 | 87.4 ± 0.1 | 99.9 ± 4.1 |
14 | 1:2 | 46.7 ± 0.6 | 11.2 ± 0.4 | 8.4 ± 1.0 | 55.8 | 70.3 ± 1.5 | 95.9 ± 2.3 |
14 | 1:4 | 52.1 ± 0.8 | 12.0 ± 0.9 | 4.7 ± 0.7 | 80.0 | 78.5 ± 0.0 | 95.0 ± 3.0 |
14 | 1:8 | 54.7 ± 0.9 | 12.4 ± 1.0 | 4.0 ± 0.6 | 83.6 | 75.7 ± 1.2 | 95.9 ± 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Li, X.; Zhao, J.; Qin, Y. Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover. Int. J. Mol. Sci. 2022, 23, 13163. https://doi.org/10.3390/ijms232113163
Sun W, Li X, Zhao J, Qin Y. Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover. International Journal of Molecular Sciences. 2022; 23(21):13163. https://doi.org/10.3390/ijms232113163
Chicago/Turabian StyleSun, Wan, Xuezhi Li, Jian Zhao, and Yuqi Qin. 2022. "Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover" International Journal of Molecular Sciences 23, no. 21: 13163. https://doi.org/10.3390/ijms232113163
APA StyleSun, W., Li, X., Zhao, J., & Qin, Y. (2022). Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover. International Journal of Molecular Sciences, 23(21), 13163. https://doi.org/10.3390/ijms232113163