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Abstract: Cardiac lymphatic vessel (LyV) remodeling as a contributor to heart failure has not been
extensively evaluated in metabolic syndrome (MetS). Our studies have shown structural changes in
cardiac LyV in MetS that contribute to the development of edema and lead to myocardial fibrosis.
Tissue macrophages may affect LyV via secretion of various substances, including noncoding RNAs.
The aim of the study was to evaluate the influence of macrophages modified by miR-31-5p, a molecule
that regulates fibrosis and lymphangiogenesis, on lymphatic endothelial cells (LECs) in vitro. The
experiments were carried out on the RAW 264.7 macrophage cell line and primary dermal lymphatic
endothelial cells. RAW 264.7 macrophages were transfected with miR-31-5p and supernatant from
this culture was used for LEC stimulation. mRNA expression levels for genes associated with
lymphangiogenesis and fibrosis were measured with qRT-PCR. Selected results were confirmed with
ELISA or Western blotting. miR-31-5p-modified RAW 264.7 macrophages secreted increased amounts
of VEGF-C and TGF-β and a decreased amount of IGF-1. The supernatant from miR-31-5p-modified
RAW 264.7 downregulated the mRNA expression for genes regulating endothelial-to-mesenchymal
transition (EndoMT) and fibrosis in LECs. Our results suggest that macrophages under the influence
of miR-31-5p show the potential to inhibit LEC-dependent fibrosis. However, more studies are needed
to confirm this effect in vivo.
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1. Introduction

The role of lymphatic vessels (LyVs) is to maintain tissue fluid homeostasis by re-
turning extravasated fluid with electrolytes, waste, and proteins to the blood circulation.
Moreover, lymphatic vessels are involved in immune cell trafficking and lipid absorption
and transport [1]. There are sparse reports on the ability of lymphatic endothelial cells
(LECs) to produce extracellular matrix (ECM), including collagen. Endothelial cells of LyVs
are known to produce ECM molecules [2]. It has been demonstrated that LECs express
mRNAs for genes coding various molecules, including those that are involved in collagen
deposition and processing. These mRNAs are elevated in some pathological settings such
as hypoxia, high glucose concentration, and others [2,3]. LyV endothelium is also able to
transdifferentiate into the mesenchymal phenotype in vitro resulting in the formation of
collagen-producing fibroblasts via endothelial–mesenchymal transition (EndoMT). This
process is stimulated by TGF-β [4–6]. Dysfunction of lymphatic vessels and insufficient
lymphangiogenesis, which are observed, e.g., in cardiovascular disease, lead to the de-
velopment of edema and impaired inflammatory cell uptake, subsequently resulting in
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ECM remodeling and interstitial fibrosis augmentation [7]. In this latter scenario, fibrosis
has been reported to be accelerated by activated fibroblasts/myofibroblasts that deposit
collagen. The cells that are believed to mediate these processes may be macrophages, con-
sidered to be highly plastic cells. Macrophages influence fibroblasts, LECs, and other cell
types through the release of various mediators, such as cytokines and growth factors [8,9].
Macrophages have been suggested to regulate functions of the surrounding cells by the
secretion of microRNAs (miRNAs) in microvesicles [10,11].

miRNAs, endogenous RNAs of about 23 nucleotides in length, perform an important
function in negative gene regulation by targeting specific mRNAs for translation repression
or degradation [12]. The expression of miRNAs determines many physiological pro-
cesses, including LEC development and LEC and macrophage functions [13–15]. Moreover,
changes in miRNA regulation modulate the phenotypes and activities of these cells [16].

Studies involving the impact of miRNAs on tissue homeostasis are limited due to the
complexity of interactions between cells and their surrounding environment. Moreover,
miRNAs can act differently, depending on the tissue microenvironment and cell type. In
our previous paper we demonstrate that miR-31-5p is upregulated in cardiac macrophages
isolated from db/db mouse hearts [17]. Db/db mice are used as an animal model of
metabolic syndrome (MetS) and exhibit symptoms of heart failure [18]. The myocardium
of db/db mice shows a reduced number of lymphatic and blood microvessels, increased
fibrosis, and mild inflammation [17]. The molecular mechanisms underlying these changes
are not well understood.

Research describing the influence of miRNAs on cardiac tissue homeostasis and
pathophysiology is limited; thus, in this study we attempted to evaluate the involvement
of miR-31-5p in macrophage–LEC interactions in vitro. We assessed the effect of miR-31-5p
on the changes in the gene expression profile of murine macrophage cell line RAW 264.7
and the secretion of factors essential in lymphangiogenesis and fibrosis. The influence of
miR-31-5p on the LEC phenotype was investigated directly, by miRNA transfection, as
well as indirectly, by culturing C57BL/6 mouse primary dermal LECs with supernatants
from miR-31-5p-modified macrophages. Our results show that miR-31-5p modifies the
macrophage phenotype in vitro and may exert a protective effect on LECs to maintain their
endothelial phenotype and prevent fibrosis.

2. Results
2.1. mRNA Expression Profile Differs between Db/Db and Control Mouse Myocardium

Experiments comparing mRNA expression profile in the myocardium of db/db and
control mice showed that mRNAs for Igf1, Vegfc, Col1a1, Fn1, and Emilin1 were downreg-
ulated, and there were no statistically significant differences in levels of mRNA expression
for Tgfb1, Smad2, Smad4, Snail1, Snail2, Zeb1, Zeb2, and Cdh2 (Figure 1A). There were
no statistically significant differences in the amount of N-cadherin protein (product of
Cdh2 gene) between the myocardium of control and db/db mice, assessed by Western
blotting. However, there was an upward trend for N-cadherin in the db/db group relative
to control (Figure 1B,C).
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Figure 1. (A) Expression of mRNA for selected genes in the myocardium of db/db and control mice. 
Gene expression was measured via relative quantification (RQ) with the comparative CT method. 
The results shown are obtained from tissue samples from six animals (n = 6) with technical 
duplicates. For the statistical analysis of the results, the Student’s t-test (* p ≤ 0.05; ** p < 0.01) was 
used. (B) Assessment of the amount of N-cadherin protein in the myocardium of control and db/db 
mice with Western blotting. (C) The WB results obtained from tissue samples from three animals (n 
= 3) are shown as the ratio of the optical density of N-cadherin to the optical density of GAPDH. 
The Student’s t-test was used for the statistical analysis of the results. 

Figure 1. (A) Expression of mRNA for selected genes in the myocardium of db/db and control
mice. Gene expression was measured via relative quantification (RQ) with the comparative CT
method. The results shown are obtained from tissue samples from six animals (n = 6) with technical
duplicates. For the statistical analysis of the results, the Student’s t-test (* p ≤ 0.05; ** p < 0.01) was
used. (B) Assessment of the amount of N-cadherin protein in the myocardium of control and db/db
mice with Western blotting. (C) The WB results obtained from tissue samples from three animals
(n = 3) are shown as the ratio of the optical density of N-cadherin to the optical density of GAPDH.
The Student’s t-test was used for the statistical analysis of the results.

2.2. miR-31-5p Modulates the Phenotype of RAW 264.7 Macrophages

Expression of miR-31-5p in RAW 264.7 macrophages was barely detectable after
24 and 48 h of culture in Dulbecco’s modified medium supplemented with 1% FCS (data
not shown); thus, only miR-31-5p mimic was used for macrophage transfection, and
miR-31-5p inhibitor was unnecessary. The cells were successfully transfected with miR-
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31-5p mimic, which was also confirmed with miR mimic positive control that silences
the expression of Twf1 gene (data not shown). After 48 h of culture, no morphological
changes in RAW 264.7 macrophages were observed under a light microscope (data not
shown), but qRT-PCR analysis showed statistically significant downregulation of mRNA
expression for Igf1 and upregulation of mRNA expression for Vegfc and Tgfb1 compared
with that in both untransfected control and mock transfected cells (Figure 2A). The results
were confirmed with enzyme-linked immunosorbent assay (ELISA) by the measurement of
selected protein concentrations in the supernatants from miR-31-5p-modified and control
RAW 264.7 macrophages (Figure 2B).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. (A) Assessment of mRNA expression for selected genes in RAW 264.7 macrophages 
transfected with miR-31-5p. Gene expression was measured via relative quantification (RQ) with a 
comparative CT method. The results shown are obtained from five independent experiments (n = 5) 
with technical duplicates. For the statistical analysis of the results, the Student’s t-test was used (* p 
≤ 0.05; ). (B) Concentrations of selected proteins in the supernatant of RAW 264.7 macrophage 
culture. The results obtained from five independent experiments (n = 5) with technical duplicates 
are presented as mean ± SEM. The Student’s t-test was used for statistical analysis (* p ≤ 0.05; **** p 
< 0.0001). 
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Figure 2. (A) Assessment of mRNA expression for selected genes in RAW 264.7 macrophages trans-
fected with miR-31-5p. Gene expression was measured via relative quantification (RQ) with a com-
parative CT method. The results shown are obtained from five independent experiments (n = 5) with
technical duplicates. For the statistical analysis of the results, the Student’s t-test was used (* p ≤ 0.05).
(B) Concentrations of selected proteins in the supernatant of RAW 264.7 macrophage culture. The
results obtained from five independent experiments (n = 5) with technical duplicates are presented as
mean ± SEM. The Student’s t-test was used for statistical analysis (* p ≤ 0.05; **** p < 0.0001).

2.3. miR-31-5p-Modified RAW 264.7 Macrophages Downregulate Factors Related to Endomt,
Fibrosis, and ECM Deposition

Supernatants from miR-31-5p-modified RAW 264.7 macrophages were used to stimu-
late LEC cultures, and supernatants from untransfected macrophages were used in controls.
Incubation with supernatants at a 1:4 ratio with Endothelial Cell Medium for 48 h did not
affect cell morphology (data not shown) but changed mRNA expression profile in LECs.
mRNA expression levels for Cdh2, Smad2, Smad4, Snail1, Snail2, Zeb1, Col1a1, Fn1, and
Emilin1 were decreased compared to LECs incubated with supernatant from unmodified
RAW 264.7. However, there was no difference for Zeb2 (Figure 3A). There was a downward
trend in the amount of N-cadherin protein between the control and stimulated LEC protein
extracts as assessed by Western blotting, but there was no statistical significance when
optical density was measured (Figure 3B,C).
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Figure 3. (A) Expression of mRNA of selected genes in LECs after incubation with modified RAW
264.7 macrophage supernatant. Gene expression was measured via relative quantification (RQ) with
a comparative CT method. The results shown are obtained from five independent experiments
(n = 5) with technical duplicates. For the statistical analysis of the results (n = 6), the Student’s t-test
(* p ≤ 0.05; ** p < 0.01; **** p < 0.0001) was used. (B) Assessment of the amount of N-cadherin protein
in cultured LECs detected with Western blotting. (C) The WB results obtained from three independent
experiments (n = 3) are shown as the ratio of the optical density of N-cadherin to the optical density
of GAPDH. The Student’s t-test was used for the statistical analysis of the results.

Since miRNA can be transferred directly from cell to cell, or some miRNA molecules
could be present in the supernatants, we also evaluated the direct impact of miR-31-5p
on LECs. No significant morphological changes were observed under a light microscope
48 h after transfection (data not shown), and modification of LECs with miR-31-5p did not
change the expression of mRNA for Snail1, Snail2, Zeb1, Zeb2, Col1a1, Fn1, and Emilin1
but downregulated mRNA expression for Cdh2 and upregulated mRNA for Smad2 and
Smad4 (Figure 4).
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Figure 4. mRNA expression of selected genes in LECs transfected with miR-31-5p. Gene expression
was measured via relative quantification (RQ) with a comparative CT method. The results shown are
obtained from five independent experiments (n = 5) with technical duplicates. The Student’s t-test
(* p ≤ 0.05) was used for the statistical analysis of the results.

3. Discussion

In our previous studies we focused on myocardial remodeling, which can be caused by
MetS and leads to diabetic cardiomyopathy and heart failure. Pathological changes within
the heart include remodeling of blood and lymphatic vessels, perivascular and interstitial
fibrosis, as well as mild inflammation [7,17]. The molecular mechanisms underlying
these morphological changes are largely unknown and orchestrated by a great number
of resident and infiltrating cells, including macrophages [19]. Lymphatic endothelial
cells might be a source of fibroblasts via the EndoMT pathway leading to mesenchymal-
fibroblastic differentiation under the influence of TGF-β [6] or constitute a direct source of
collagen and other ECM molecules under normoxic and hypoxic conditions, as has been
recently reported [2].

In our previously published paper, we show that macrophage populations isolated
from the myocardium of diabetic db/db mouse exhibit different profile of miRNA ex-
pression compared to control [17]. At least some of the affected miRNAs can be involved
in angiogenesis, lymphangiogenesis, and fibrosis, and thus their altered levels may be
responsible for the morphological changes of the myocardium. On the basis of our results
and a thorough literature search, we selected miR-31-5p as a potential candidate for further
in vitro studies.
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Since the discovery of miRNAs, interest in these molecules as potential diagnostic
and therapeutic tools has grown [20]. There is plentiful evidence suggesting that miRNAs
regulate cardiac homeostasis and thus may serve as a diagnostic tool and/or therapeutic
target [21]. Several miRNAs targeting mRNA-encoding proteins involved in cardiac fibrosis
are currently being assessed for their potential use as therapeutic targets, but these ap-
proaches are still at an early stage [22]. Therefore, more information is needed to decipher
the complicated interactions between miRNAs and the local environment. The function of
miR-31 is recognized as potentially important in the progression of cardiovascular diseases.
In human atrial fibrillation, the increased level of miR-31 causes arrhythmia [23], and after
myocardial infarction it induces detrimental cardiac remodeling [24]. Tincr-miR-31-5p axis
targets PRKCE, which is involved in cardiomyocyte hypertrophy [25]. miR-31-5p/155
are upregulated in endothelial cells by inflammatory cytokines and inhibit the eNOS/NO
axis, resulting in disruption of vascular homeostasis [26]. In addition, miR-31 takes part
in angiogenesis and lymphangiogenesis [27,28]. The miR-31 level is elevated in serum
of patients with diabetic microvascular complications [29]. Interestingly, miR-31 inhibits
lymphangiogenesis and venous sprouting in embryonic development by targeting PROX1,
a major transcription factor responsible for maintaining the phenotype of LECs [28]. It
is also suggested that miR-31 could regulate processes related to fibrosis, e.g., miR-31
negatively regulates the fibrogenic pathway of epithelial-to-mesenchymal transition (EMT)
by targeting Islet-1 and is a positive regulator of EndoMT [30–32].

There are very few studies describing the influence of miR-31 on macrophages. It
is known, for example, that miR-31-5p modulates inflammation and oxidative stress in
alveolar macrophages in vitro [33] and has an anti-apoptotic effect on macrophages [34].
miR-31 expression is elevated during fibrosis and is stimulated by TGFβ, considered
the main signaling molecule involved in this process as demonstrated in the liver [31].
Our previous results showed that miR-31-5p expression was significantly upregulated
in macrophages isolated from db/db mouse cardiac tissue, but not in the whole tissue,
strongly suggesting that miR-31-5p may be of macrophage origin. Additionally, since
miRNAs may alter the metabolism of the cell that produces them, we hypothesized that
miR-31-5p may modify the secretome of macrophages and thus has an indirect impact on
the cardiac environment, including lymphatic endothelial cells [16].

The lymphatic vessel number in cardiac muscle affected by MetS is decreased, which
may result in decreased absorption of interstitial fluid and edema. It is well described that
fluid accumulation may, in turn, lead to pathological remodeling of extracellular matrix
and fibrosis [7,35]. Morphological changes of the myocardium may be a consequence
of the impaired expression of proteins involved in regulation of fibrosis. Therefore, we
investigated the mRNA levels for some genes encoding proteins in the whole cardiac tissue
and we observed that mRNA for Vegfc, Col1a1, Emilin1, Fn1, and Igf1 were downregulated,
but the main regulators of fibrosis and/or EMT–-Smad2, Smad4, Zeb1, Zeb2, Snail1, Snail2,
Cdh2, and Tgfb1 [36]–-were unaffected. Since we were evaluating animals at an age of
21 weeks, i.e., at an advanced stage of disease development, these results may be due to
the dynamic changes in mRNA expression within cardiac tissue during the progression of
disease or a limited number of cells expressing the above factors. Perhaps db/db mice at
21 weeks of age employ a compensatory mechanism that is expected to reduce collagen
deposition. As there is an upward trend in N-cadherin at the mRNA and protein levels
in the myocardium of db/db mice (despite not being statistically significant), it cannot be
ruled out that EMT or EndoMT mechanisms are initiated by a Smad-independent signaling
pathway or were activated earlier on in the life of these animals. Nevertheless, downregu-
lation of Vegfc and Igf1 mRNA may be responsible for a decreased number of lymphatic
vessels in the myocardium [37,38]. Moreover, downregulation of mRNA expression for
Emilin1 may contribute to pathological changes in the myocardium, particularly lymphatic
vessels [39,40], as Emilin 1 takes part in anchoring LECs to the ECM and, therefore, is
responsible for the integrity of lymphatics [41,42].
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To evaluate the effect of miR-31-5p-transfected macrophages on the LEC phenotype,
we transfected RAW264.7 macrophages and assessed the impact of their secretome on
LECs in vitro. In this study we demonstrate that miR-31-5p alters RAW264.7 macrophage
phenotype and their secretome, lowering IGF-1 and increasing VEGF-C and TGF-β1, which
was confirmed at the mRNA and protein levels. Moreover, the secretome from miR-31-
5p-modified macrophages downregulates mRNA and protein for factors associated with
fibrotic pathways, such as Smad2, Smad4, Snail1, Snail2, Zeb1, Col1, fibronectin 1, emilin 1,
and N-cadherin in LECs.

IGF-1 plays an important role both in homeostasis and cardiovascular disease [43]. IGF-
1 facilitates endothelial cell migration, proliferation, survival, and tube formation [44,45].
Although many studies have shown that IGF-1 may reduce fibrosis, e.g., in the heart [46,47],
in certain conditions IGF-1 has an adverse, profibrotic effect [48]. In this paper we show that
supernatant from miR-31-5p-modified macrophages, containing reduced IGF-1 concentra-
tion, contributes to downregulation of mRNA expression for Smad2, Smad4, Snail1, Snail2,
and Zeb1 in LECs. These genes are involved in fibrotic pathways, e.g., the regulation of En-
doMT [49–52], and may influence cardiac remodeling [53,54]. IGF-1 signaling may regulate
expression of some of the above genes. In diabetic kidney disease, elevated levels of IGF-1
result in Snail1 upregulation and profibrotic effects. Blockade of IGF-1/IGF-1R normalizes
Snail1 expression and attenuates fibrogenesis [55]. Moreover, IGF-1 promotes EMT by
increasing the level of expression of Snail1, Snail2, Twist1, N-cadherin, and vimentin [56].
In prostate cancer cells, IGF-1 upregulates expression of transcriptional factor ZEB1 and
also increases expression of fibronectin and N-cadherin [57]. Corneal epithelial cells re-
lease IGF-1, affecting corneal fibroblasts in a similar way, and RNA-interference-mediated
depletion of IGF-1 prevents this effect [58]. The connection between IGF-1 and ZEB2 was
shown in gastric cancer cells, where IGF-1 induced EMT by activation of the PI3K/Akt-
GSK-3β-ZEB2 signaling pathway [59]. However, no difference for Zeb2 was detected in our
experimental model. IGF-1 may induce αSMA expression and deposition of collagen which
is one of the major components of extracellular matrix [60,61]. Interestingly, the blocking
of the IGF-1 receptor inhibits collagen deposition [60]. Our experiments demonstrated
downregulation of mRNA expression for collagen type I in LECs modified by supernatant
from miR-31-5p-transfected macrophages. Furthermore, the level of mRNA for fibronectin
1 was reduced. Inhibition of fibronectin attenuates adverse left ventricular remodeling and
fibrosis, preserving cardiac function in a mouse model of heart failure [62]. However, in
human lens epithelial cells, IGF-1 prevents TGF-β-mediated fibronectin accumulation [63].
Evaluated collectively, the results suggest that IGF-1 signaling plays an important role in
the activation of factors related to fibrosis, and thus inhibition of IGF-1 secretion has an
anti-fibrotic potential.

It is known that defective or insufficient lymphangiogenesis contributes to tissue
edema and fibrosis [7]; therefore, looking for methods to improve lymphatic vessel function
is necessary. Currently, many studies focus on lymphangiogenic therapy by adminis-
tration of VEGF-C, which is a major prolymphangiogenic mediator [64] and local ECM
modulator [65] often released by macrophages [66,67]. Promising results show that treat-
ment with VEGF-C reduces inflammation, tissue edema, improves cardiac and lymphatic
functions, and ameliorates hypertension, e.g., after ischemia and reperfusion injury [68],
myocardial infarction [69,70], and angiotensin II infusion-induced chronic cardiac dys-
function [71]. Moreover, overexpression of VEGF-C promotes cardiac lymphangiogenesis,
reduces macrophage infiltration, and diminishes myocardial fibrosis, thus preserving left
ventricular function in hypertensive rats [72]. In our experiments, miR-31-5p-trasfected
RAW 264.7 macrophages exhibit an increased secretion of VEGF-C, which in turn reduces
mRNA expression of the genes associated with fibrosis in LECs. This supports our hypoth-
esis that miR-31-5p may act protectively in the cardiac environment.

MiR-31-5p also increased production of TGF-β by macrophages in our experiment.
TGF-β is a crucial profibrotic cytokine that induces myofibroblast activation and stim-
ulates deposition of ECM proteins [73–75]. TGF-β-containing exosomes from cardiac
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endothelial cells of diabetic mice (streptozotocin-treated) activate fibroblasts for collagen
production and aggravate fibrosis, both interstitial and perivascular [76]. Moreover, TGF-β
may prompt fibrosis-related lymphangiogenesis through VEGF-C [77,78] and negatively
regulates lymphatic regeneration during wound repair [79]. Interestingly, despite increased
concentration of TGF-β in the supernatant from macrophages transfected with miR-31-5p,
mRNA expression levels for genes encoding proteins involved in fibrosis in LECs decreased.
It may suggest that the profibrotic activity of TGF-β is counteracted by IGF-1 and VEGF-C
in these cells.

Our findings indicate that the changes in LEC phenotype were caused by modified
macrophage supernatant, not by the direct action of miR-31-5p. Only N-cadherin was
downregulated after both culturing LECs with the supernatant from miR-31-5p-modified
macrophages and miR-31-5p transfection to LECs. N-cadherin is associated with adherens
junctions in cells of mesenchymal phenotype, provides cellular interaction, and maintains
the structural integrity of tissue [80]. Increased expression of the precursor form of N-
cadherin on the surface of myofibroblasts and its abnormal location in damaged tissue of
the heart, liver, and lungs may serve as a marker of fibrosis in these organs [81]. There
are no studies suggesting that miR-31-5p acts on N-cadherin directly. Therefore, the
downregulation of N-cadherin in LECs treated with miR-31-5p in our experimental model
is probably an indirect effect.

Our research has some limitations. The mRNA expression of genes from the entire
myocardium does not fully reflect the changes occurring locally, i.e., within the cells of
the lymphatic vessels of the heart. In addition, the cell culture conditions do not reflect
the metabolic syndrome environment but only shed light on the possible effect of miR-31-
5p- modified macrophages on LECs. We did not find a target gene for miR-31-5p in this
experimental model, and it is uncertain whether all potential factors from the miR-31-5p-
modified macrophage supernatant that could alter the phenotype of LECs were identified.
However, we have shown for the first time that miR-31-5p may have an influence on the
macrophage secretome and therefore may act indirectly on lymphatic endothelial cells,
changing their expression profile. Moreover, miR-31-5p may act protectively on LECs,
inhibiting, directly and indirectly, N-cadherin expression, which is the main indicator of
EMT and EndoMT. More research is needed to evaluate the possible role of miR-31-5p in
the pathogenesis of heart failure and its involvement in the regulation of fibrosis.

4. Materials and Methods
4.1. Animals

The study was performed on male BKS.Cg-Dock7m+/+Leprdb/J mice (db/db); the
C57BL/6J strain was used as control. All animal experiments were approved by the
First Local Bioethics Committee of the University of Warsaw, Poland and carried out in
accordance with EU Directive 2010/63/EU for animal experiments (application accepted
16 November 2016, no. of decision 140/2016). Nine-week-old mice were purchased
from Charles River Laboratories (Sant’Angelo Lodigiano, Italy) and kept under specific
pathogen-free conditions, with unlimited access to LabDiet® 5K52 (6% fat) chow (Charles
River Laboratories, Sant’Angelo Lodigiano, Italy). The animals were sacrificed at the age of
21 weeks by CO2 asphyxiation, and their hearts were isolated for further experiments.

4.2. Cell Culture

The murine macrophage cell line RAW 264.7 (American Type Culture Collection—ATCC,
Manassas, VA, USA) was maintained in Dulbecco’s modified medium (Gibco, ThermoFisher
Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FCS, HyClone,
South Logan, UT, USA) and 1% antibiotic/antimycotic solution (Gibco, ThermoFisher
Scientific, Waltham, MA, USA) at 37 ◦C, 5% CO2. The cells below the 10th passage were
used for transfection.

C57BL/6 Mouse Primary Dermal Lymphatic Endothelial Cells (Cell Biologics Inc.,
Chicago, IL, USA) were cultured in Complete Mouse Endothelial Cell Medium
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(Cell Biologics Inc., Chicago, IL, USA) with 5% FCS and 1% antibiotic/antimycotic so-
lution in 25 cm3 bottles coated with gelatin solution (Cell Biologics Inc., Chicago, IL, USA).
For all experiments Primary Dermal Lymphatic Endothelial Cells at the 4th passage were
cultured on type I collagen-coated (STEMCELL Technologies, Vancouver, Kanada) plates
(1.5 mg/mL acid-soluble type I collagen, buffered with Complete Mouse Endothelial
Cell Medium and neutralized with sterile NaOH) at a density of 50,000 cells per well in
24-well plates.

4.3. Transfection and Stimulation with Supernatants

For transfection RAW 264.7 macrophages were seeded at a density of 50,000 cells per
well in 24-well plates in 500 µL of Dulbecco’s modified medium with 1% FCS. C57BL/6
Mouse primary dermal LECs at the 4th passage were seeded at a density of 50,000 cells
per well in 24-well plates onto previously prepared collagen coating in 500 µL of Complete
Mouse Endothelial Cell Medium with 1% FCS.

mmu-miR-31-5p mimic (AGGCAAGAUGCUGGCAUAGCUG), miR-1 Positive Con-
trol, and miRNA Mimic Negative Control were purchased from mirVanaTM (Invitrogen,
Carlsbad, CA, USA). miR-31-5p mimic and control miRNAs were transfected into RAW
264.7 cells and LECs using LipofectamineTMRNAiMAX Transfection reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s instruction. In brief, for one well, a
mixture of 10 pmol of miRNA mimic or control, 1.5 µL of Lipofectamine RNAiMAX, and
50 µL of Optimem (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) was prepared and
added into 500 µL of culture medium. After 24 h, the medium with miRNA was carefully
removed and replaced with 500 µL of fresh culture medium. After 48 h, the transfected
cells and supernatants were collected separately for further analysis. During culture, the
cells were also observed under inverted light microscope (Zeiss PrimoVert Inverted Phase
Contrast Microscope, Carl Zeiss, Dresden, Germany), and photos were taken.

C57BL/6 Mouse Primary Dermal Lymphatic Endothelial Cells were also cultured with
the supernatant from transfected RAW 264.7 macrophages in Complete Mouse Endothelial
Cell Medium with 1% FCS at a 1:4 ratio at 37 ◦C, 5% CO2. After 48 h, photos of the culture
were taken, and the cells were collected for further analysis.

4.4. Total RNA Isolation, Reverse Transcription (RT) and Realtime PCR

Thirty-milligram tissue samples taken from the mouse myocardia were transferred
to Lysis Buffer and homogenized. Cultured cells were washed with ice cold PBS and sus-
pended in Lysis Buffer. Total RNA was isolated with NucleoSpin ®RNA II kit (Macherey-
Nagel, Düren, Nordrhein-Westfalen, Germany) according to the manufacturer’s protocol.
The concentration and purity of RNA were estimated with a NanoDrop spectrophotometer,
and 500 ng of total RNA was reverse transcribed with the High-Capacity RNA-to-cDNA kit
(Applied Biosystems, ThermoFisher Scientific, Waltham, MA, USA), according to the man-
ufacturer’s protocol. cDNA was stored at −20 ◦C for further experiments. Gene expression
was measured via relative quantificationRQ) with a comparative CT method. Real-time
PCR was performed with Abi Prism 7500 (Applied Biosystems, ThermoFisher Scientific,
Waltham, MA, USA) in 96-well optical plates. Each sample was run in triplicate, mouse
Gapdh (Mm99999915_g1) was used as an endogenous control. Twf1 (Mm01598982_g1) was
a gene silenced by miR-1 Positive Control. TaqMan Gene Expression Assays (Thermo Fisher
Scientific, Waltham, MA, USA) were used to measure mRNA for selected genes in RAW
264.7 macrophages, LECs transfected with miR-31-5p, LECs modified by macrophage super-
natants and in the myocardium of db/db and control mice: Cdh2: Mm00483208_m1; Col1a1:
Mm00801666_g1; Emilin1: Mm00467244_m1; Fn1: Mm01256744_m1; Igf1: Mm00439560_m1;
Smad2: Mm00487530_m1; Smad4: Mm03023996_m1; Snail1: Mm00441533_g1; Snail2:
Mm00441531_m1; Tgfb1: Mm01178820_m1; Vegfc: Mm00437310_m1; Zeb1: Mm00495564_m1;
Zeb2: Mm00497196_m1.

The reactions were run with TaqMan Universal Master Mix (Applied Biosystems,
ThermoFisher Scientific, Waltham, MA, USA), primer sets, an MGB probe, and cDNA
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template (5 ng per reaction) in universal thermal conditions: 10 min at 95 ◦C and 40 cycles
of 15s at 95 ◦C and 1 min at 60 ◦C). The data was analyzed with sequence detection software
version 1.4 (Applied Biosystems, ThermoFisher Scientific, Waltham, MA, USA).

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

IGF1, VEGF-C, and TGF-β1 concentrations were measured in supernatants from
transfected RAW 264.7 macrophages with Mouse Insulin-Like Growth Factor 1 (IGF1)
ELISA Kit (MyBioSource, San Diego, CA, USA, cat. No. MBS450396), Mouse Vascular En-
dothelial Growth Factor C (VEGFC) ELISA Kit (MyBioSource, San Diego, CA, USA, cat. no
MBS2701385), and TGFB1 ELISA Kit (Mouse) (Aviva Systems Biology, San Diego, CA, USA,
cat. No. OKBB00255) according to manufacturers’ protocols. Measurements were taken
with FLUOstar Omega Microplate Reader (BMG Labtech, Ortenberg, Germany).

4.6. Western Blotting

For protein detection the cells or tissue samples were lysed in RIPA buffer (50 mM
TRIS-HCl (pH 7.4), 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, and 0.1% SDS
with 1% Triton X-100, all from Sigma Aldrich, Saint Louis, MO, USA), containing protease
inhibitors (Roche, Basel, Switzerland). Additionally, cells cultured on collagen matrices
before lysis were washed with ice-cold PBS and incubated with 0.1% collagenase type I
(Sigma Aldrich, Saint Louis, MO, USA) solution in FCS-free EMC medium at 37 ◦C for 1 h,
washed with PBS, and suspended in RIPA buffer. Protein concentrations were determined
with a BCA™ protein assay kit (Pierce, Thermo Fisher Scientific, Waltham, MA, USA), ac-
cording to the manufacturer’s protocol; 20 µg of total protein was mixed with 2× Laemmli
Sample Buffer (4% SDS; 20% glycerol; 0.004% bromphenol blue; 0.125M Tris-Cl, pH 6.8; 10%
2-mercaptoethanol, all from Sigma Aldrich, Saint Louis, MO, USA), boiled, and separated
by 10% SDS-PAGE in running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, all from
Sigma Aldrich, Saint Louis, MO, USA) at 90 V. Afterwards proteins were transferred to
polyvinylidene difluoride (PVDF) membrane with the semidry TransBlot cell (Bio-Rad,
Hercules, CA, USA) in transfer buffer (39 mM glycine, 48 mM Tris base, 20% Methanol,
all from Sigma Aldrich). After transfer and prior to antibody application, the membrane
was blocked with a 5% semi-skimmed milk solution (Bio-Rad, Hercules, CA, USA) in TBS
buffer in RT for 1 h and washed carefully with TBS and TTBS. For detection of N-cadherin,
the membrane was incubated overnight at 4 ◦C with mouse monoclonal anti-N-cadherin
and anti-GAPDH antibodies (Thermo Fisher Scientific, Waltham, MA, USA, AM4300 and
Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA, MA1-91128, respectively) diluted
in TBST at a ratio of 1:250. For signal detection a BM Chemiluminescence Western Blotting
Kit (Roche, Basel, Switzerland) was used, according to the manufacturer’s protocol. Mem-
branes were scanned with Syngene G:BOX Chemi Imaging System (Syngene, Cambridge,
UK) immediately after the substrate was added.

4.7. Statistical Analysis

RT-PCR and ELISA test data were analyzed with GraphPad Prism 9 (GraphPad
Software, San Diego, CA, USA). The normality of the distribution was assessed by the
Shapiro–Wilk test. The t-test or Mann–Whitney test were used, depending on data distri-
bution. Results were considered statistically significant at a p-value ≤ 0.05.
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