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Abstract: The most frequently used biomarkers to support the diagnosis of Alzheimer’s Disease
(AD) are Aβ42, total-Tau, and phospho-tau protein levels in CSF. Moreover, magnetic resonance
imaging is used to assess hippocampal atrophy, 18F-FDG PET to identify abnormal brain metabolism,
and PET imaging for amyloid deposition. These tests are rather complex and invasive and not
easily applicable to clinical practice. Circulating non-coding RNAs, which are inherently stable and
easy to manage, have been reported as promising biomarkers for central nervous system condi-
tions. Recently, circular RNAs (circRNAs) as a novel class of ncRNAs have gained attention. We
carried out a pilot study on five participants with AD and five healthy controls (HC) investigating
circRNAs by Arraystar Human Circular RNA Microarray V2.0. Among them, 26 circRNAs were
differentially expressed (FC ≥ 1.5, p < 0.05) in participants with AD compared to HC. From a top
10 of differentially expressed circRNAs, a validation study was carried out on four up-regulated
(hsa_circRNA_050263, hsa_circRNA_403959, hsa_circRNA_003022, hsa_circRNA_100837) and two
down-regulated (hsa_circRNA_102049, hsa_circRNA_102619) circRNAs in a larger population. More-
over, five subjects with mild cognitive impairment (MCI) were investigated. The analysis confirmed
the upregulation of hsa_circRNA_050263, hsa_circRNA_403959, and hsa_circRNA_003022 both in
subjects with AD and in MCI compared to HCs. We also investigated all microRNAs potentially
interacting with the studied circRNAs. The GO enrichment analysis shows they are involved in
the development of the nervous system, and in the cellular response to nerve growth factor stimuli,
protein phosphorylation, apoptotic processes, and inflammation pathways, all of which are processes
related to the pathology of AD.

Keywords: circular RNA; circRNA; Alzheimer Disease; AD; mild cognitive impairment; MCI;
biomarkers; microarray Real-Time PCR

1. Introduction

Alzheimer’s disease is currently diagnosed by clinical evaluation with the support
of magnetic resonance imaging [1], 18F-FDG PET [2], and Amyloid PET, which evaluates
neurodegeneration, brain metabolism, and Amyloid deposition [3,4]. In addition, cere-
brospinal fluid (CSF) biomarkers analysis, such as Aβ42, total-tau, and phospho-tau [5]
are also used. These tests are rather complex and, above all, invasive, so the associated
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procedures are not easily applicable to clinical practice. In this context, there is therefore a
need to identify new non-invasive and easy-to-monitor biomarkers.

Numerous studies are currently focused on blood, plasma, and serum biomarkers,
such as microRNAs (miRNAs). They are linear small protein-associated non-coding RNAs,
which are easy and cheap to detect thanks specifically RNA purification techniques. Nev-
ertheless, the main methods of RNA detection were built on the separation of only linear
RNA molecules, often based on polyadenylated (poly-A) tails recognition, hiding for a long
time all those RNA species without poly-A ends. Among these, circular RNAs appeared to
be particularly interesting, abundant, and widespread.

Circular RNAs (circRNAs) are a class of non-coding RNAs, about 100–1000 nucleotides
long, characterized by a single-strand covalently closed circular structure, without cap
and poly-A tail. Some RNA polymerase II-derived transcripts, independent or linear
RNA-linked, might undergo back-splicing events that produce endogenous non-coding
circRNAs [6]. Their main function is to regulate miRNA expression levels and activities. In
particular, they act as sponges that capture miRNAs preventing their post-transcriptional
repressive effects on messenger RNA (mRNAs) targets, consequently regulating the expres-
sion of the same mRNAs [6,7]. Recent studies described circRNAs as molecules implicated
in the AD pathological process, suggesting a potential role in the pathogenesis of this
disease [8].

CircRNAs are very abundant in plasma, sometimes even 10 times more than mRNA,
because their circular structure can escape the RNases-mediated degradation. In fact, the
RNases are able to recognize linear RNA ends that are not a characteristic of circRNAs [9].
The process by which they are released into the extracellular space is still unknown, but
their presence in the blood is easy to detect with quantitative real-time polymerase chain
reaction (qRT-PCR), microarray, or deep sequencing. Moreover, they have great tissue and
cellular stage specificities, reflecting their role in physiological or pathological development.
A large portion of plasmatic circRNAs is derived from the central nervous system (CNS).
Theoretically, available technologies could even allow identifying the specific cerebral area
they are derived from [10]. In addition, their high conservation between species allows a
relative comparison between the circRNAs from animal and human models [6]. On this
basis, circRNAs have a high potential to become possible diagnostic biomarkers.

In this study, we focused on circRNAs in plasma samples of people with AD and
healthy controls (HC) to investigate their possible utility as biomarkers. We profiled
differentially expressed circRNAs using circRNA microarrays. The validation with qRT-
PCR on a larger population confirmed our results. Our analysis was extended to a small
cohort of MCI subjects as a promising preliminary study. We investigated all microRNAs
potentially interacting with the selected circRNAs and performed Gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.

2. Results
2.1. CircRNAs Profile by Microarray

We hypothesized that circRNAs could be differentially expressed among people with
AD and healthy controls. To verify our hypothesis, we performed a pilot study on a small
population (Table 1): plasma samples from five participants with AD (mean age 74.4 ± 2.3,
two males and three females) and five healthy controls (mean age 73.8 ± 2.3, two males
and three females) were analyzed by microarrays to identify all differentially expressed
circRNAs. All samples were quality checked, and they passed the test. Thus, they were
prepared according to manufacturer protocol and hybridized on Arraystar Human circRNA
Array V2 (8×15K, Arraystar). The used microarrays were able to investigate the presence
of 13,617 different circRNAs. CircRNAs were divided into five groups: 1. “Exonic”, from
the exons of the linear transcripts; 2. “Intronic”, from introns of the linear transcripts;
3. “Antisense”, with gene loci overlapping with linear RNAs, but transcribed from opposite
strands; 4. “Sense overlapping”, transcribed from the same gene loci as linear transcripts,
but not classified as “exonic” or “intronic”; 4. “Intergenic”, located outside known gene loci.
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Table 1. Population characterization. All values are expressed as mean ± standard deviation. HC:
healthy controls; AD: Alzheimer’s disease; MCI: Mild Cognitive Impairment. MMSE: Mini-Mental
State Examination; NA: not available; p: p-value; n.s.: non-significant.

Pilot Study Validation Study

HC AD HC AD MCI

N. 5 5 24 21 5

Sex (M/F) 2/3 2/3 p = n.s. 10/14 9/12 3/2 p = n.s.

Age at the evaluation 73.8 ± 4.3 74.4 ± 2.3 p = n.s. 69.9 ± 6.6 74.4 ± 6.1 70.0 ± 7.3 p = n.s.

Age at onset - 66.40 ± 6.5 - 70.6 ± 6.8 66.4 ± 6.5

MMSE - 21.4 ± 1.4 - 21.1 ± 1.7 25.6 ± 0.9

Aβ42/Aβ40 NA 0.04 ± 0.007 0.05 ± 0.001

Total-tau NA 2.31± 1.9 2.98 ± 0.6

p-tau NA 2.78 ± 0.5 2.37 ± 0.6

Out of the 13,617 interrogated types of probes, 10,147 circRNAs (74.52%) were detected
by the microarray signals as significantly above the background in the samples of at least
one of the groups. The differentially expressed circRNAs (p < 0.05) were 26: 3 downreg-
ulated and 23 upregulated, as shown in Table 2. Among them, the ones with higher fold
change (FC ≥ 2.0) and lower p-values were selected for further analyses.

Table 2. Up and down regulated circRNAs in AD vs HC. Fold Change cut off: 2.0; p-value cut
off: 0.05.

CircRNA p-Value FC (abs) Regulation Chrom. Strand circRNA_Type Gene Symbol

hsa_circRNA_100837 0.0037 2.40 up chr11 − exonic STX5
hsa_circRNA_100760 0.0042 2.23 up chr11 − exonic DENND5A
hsa_circRNA_403959 0.0051 2.23 up chr7 − exonic BRAF
hsa_circRNA_001131 0.0122 2.55 up chr2 − intronic TLR5
hsa_circRNA_405788 0.0104 2.38 up chr19 − Exonic CADM4
hsa_circRNA_050263 0.0155 2.19 up chr19 − exonic ATP13A1
hsa_circRNA_003022 0.0180 2.14 up chr10 − exonic PITRM1
hsa_circRNA_407191 0.0126 2.00 up chr9 + Sense overlapping AL161626.1
hsa_circRNA_102750 0.0425 1.55 up chr2 + exonic MEIS1
hsa_circRNA_105042 0.0128 1.90 up chrX − exonic GAB3
hsa_circRNA_090183 0.0114 1.74 up chrX + exonic PRRG1
hsa_circRNA_401844 0.0111 1.92 up chr17 − exonic TUBD1
hsa_circRNA_080099 0.0073 1.66 up chr7 − exonic MYO1G
hsa_circRNA_004907 0.0316 1.60 up chr10 + exonic ZEB1
hsa_circRNA_101222 0.0343 1.57 up chr13 − exonic TPTE2
hsa_circRNA_002165 0.0340 1.60 up chr6 − exonic SRPK1
hsa_circRNA_003022 0.0380 2.14 up chr10 − exonic PITRM1
hsa_circRNA_003574 0.0104 1.88 up chr20 + exonic GID8
hsa_circRNA_102885 0.0273 1.77 up chr2 − exonic SATB2
hsa_circRNA_104671 0.0283 1.82 up chr8 − exonic UBR5
hsa_circRNA_103618 0.0255 1.78 up chr4 − exonic ARAP2
hsa_circRNA_104220 0.0109 1.67 up chr6 + exonic PCMT1
hsa_circRNA_101752 0.0181 1.56 up chr16 − exonic LOC100271836
hsa_circRNA_100759 0.0206 1.72 up chr11 − exonic DENND5A
hsa_circRNA_102049 0.0279 2.11 down chr17 + exonic TADA2A
hsa_circRNA_102619 0.0036 2.00 down chr2 − exonic NOL10
hsa_circRNA_102645 0.0454 1.62 down chr2 − exonic HADHA

The circRNA expression values were normalized and graphed (Figure S1A) in a scatter
plot, while the volcano plot shows a significant difference between the two different groups
(Figure S1B). Additionally, a box plot view was used to compare the distribution of the
dataset from the samples after normalization (Figure S1C).

Moreover, cluster analysis arranged samples into groups, allowing us to hypothesize
about the relationship among samples. The hierarchical cluster was performed on the
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differentially expressed circRNAs (Figure S1D). This clustering plot shows that the circRNA
expression pattern can classify individuals according to their status, except for one healthy
control, who is grouped with Alzheimer’s Disease.

2.2. Validation of Candidate circRNAs by qRT-PCR

For the validation, we extended our study to a larger population of 24 HC (mean age
70.0 ± 6.6, 10 males and 14 females) and 21 participants with AD (mean age 74.4 ± 6.1,
mean age at onset 70.6 ± 6.8, 9 males and 12 females). We also investigated five subjects
with MCI (mean age 70.0 ± 7.3, three males and two females) following the same protocol,
as reported in Table 1. The CSF biomarkers for AD and MCI subjects did not available,
thus we performed the innovative Simoa assay to assess Total Tau, phosphorylated in 181
Tau, Amyloid beta 40, and Amyloid beta 42 peptides in plasma samples. We evaluated
a possible correlation between these biomarkers and circRNAs, but we did not find any
significant result (data not shown).

We selected 10 dysregulated circRNAs, out of which eight were upregulated
(hsa_circRNA_100760, hsa_circRNA_001131, hsa_circRNA_405788, hsa_circRNA_407191,
hsa_circRNA_050263, hsa_circRNA_403959, hsa_circRNA_003022, hsa_circRNA_100837),
and two were downregulated (hsa_circRNA_102049, hsa_circRNA_102619), based on their
p values, fold changes and signal intensities. The expression levels of hsa_circRNA_100760,
hsa_circRNA_001131, hsa_circRNA_405788, and hsa_circRNA_407191 were not detectable
in plasma samples through qRT-PCR. However, we obtained data for the remaining six
circRNAs (Table 1). Five of them were significantly differentially expressed (Figure 1). Con-
sistent with microarray data, in patients with AD the expression of hsa_circRNA_050263,
hsa_circRNA_403959, hsa_circRNA_003022 was significantly higher, while the expres-
sion of hsa_circRNA_102049, hsa_circRNA_102619 was significantly lower compared
to HCs. When we adjusted for sex and age, the statistical significance remained, ex-
cept for hsa_circRNA_003022 (p = 0.094). No significant differences in the expression of
hsa_circRNA_100837 were observed, even if their p reached a value near to significance
when it was adjusted for sex and age (p = 0.072)
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Figure 1. Graphic representation and Scatter plots of circRNAs levels between AD patients and HCs.
* p < 0.05, ** p < 0.01, *** p < 0.001.

When stratifying all subjects by gender, we noted significant differences in the levels
of circRNAs between AD and HCs both in males and in females in circRNA_102049 and
circRNA_050263. On the contrary, circRNA_102619 and circRNA_403959 were differen-
tially expressed only in females, while circRNA_03022 was upregulated only in males
(Figure 2). Interestingly, statistically significant overexpression of circRNA_100837 was
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observed in female participants with AD compared to HCs, with non-significant data in
the whole population.
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In the validation study, we added a small population of subjects with MCI, and we
found upregulated levels similar to AD for hsa_circRNA_050263, hsa_circRNA_403959,
hsa_circRNA_003022 relative to HCs (Figure 3). When we adjusted for sex and age, the
statistical significance remained, and for circRNA_100837 the p reached a value near
significance (p = 0.055). Table 3 summarizes the circRNAs results of the validation study.
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Table 3. Mean ∆Ct values and the respective standard errors of each circRNA, for HCs, AD, and
MCI participants. In the last columns, p-values and p-values adjusted for sex and age-related to each
comparison are reported.

circRNA Mean Value (∆Ct) Standard Error p_Values p Values Adjusted

Hsa_circRNA_102049
HC 0.000737 0.000048 HC/AD <0.001 <0.001
AD 0.000404 0.000056 HC/MCI 0.355 0.474
MCI 0.000549 0.000077 AD/MCI 0.687 0.687

Hsa_circRNA_050263
HC 0.000750 0.000093 HC/AD <0.001 <0.001
AD 0.002293 0.000120 HC/MCI <0.001 <0.001
MCI 0.001945 0.000179 AD/MCI 0.494 0.668

Hsa_circRNA_102619
HC 0.001418 0.000215 HC/AD 0.003 0.006
AD 0.000585 0.000082 HC/MCI 0.430 0.548
MCI 0.000839 0.000228 AD/MCI 0.217 1.000

Hsa_circRNA_403959
HC 0.001136 0.000114 HC/AD 0.013 0.026
AD 0.001559 0.000116 HC/MCI <0.001 <0.001
MCI 0.006260 0.003491 AD/MCI 0.001 0.001

Hsa_circRNA_003022
HC 0.000295 0.000085 HC/AD 0.015 0.094
AD 0.000695 0.000106 HC/MCI 0.015 0.016
MCI 0.000954 0.000227 AD/MCI 0.777 0.451

Hsa_circRNA_100837
HC 0.000364 0.000039 HC/AD 0.389 0.072
AD 0.001407 0.000555 HC/MCI 0.070 0.055
MCI 0.002972 0.002349 AD/MCI 0.513 1.000

2.3. ROC Showed Good Diagnostic Accuracy for All Six miRNAs Analyzed

To determine the diagnostic accuracy of the six circRNAs as possible biomarkers,
we performed ROC curve analyses. We observed that hsa_circRNA_050263 could distin-
guish healthy controls from AD patients with an excellent diagnostic accuracy (AUC: 0.98,
p < 0.0001), hsa_circRNA_102619 (AUC: 0.817, p = 0.0003), hsa_circRNA_102049 (AUC:
0.829, p = 0.0002) and hsa_circRNA_10083749 (AUC: 0.855, p < 0.0001) with a good accuracy,
and hsa_circRNA_003022 (AUC: 0.710, p = 0.0159) and hsa_circRNA_403959 (AUC: 0.714,
p = 0.014) with a fair accuracy (Figure 4).
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2.4. CircRNA/miRNA Network

The six differentially expressed circRNAs under investigation were further analyzed to
predict their potential miRNA targets using the TargetScan [11] and miRanda [12] software.
A total of 331 miRNAs were identified as potential target of the six circRNAs (Table S1).
Only 15 miRNAs were found to be the targets of more than one circRNA (hsa-miR-18b-5p,
hsa-miR-149-5p, hsa-miR-30e-5p, hsa-miR-18a-5p, hsa-miR-197-5p, hsa-miR-6871-5p, hsa-
miR-6751-5p, hsa-miR-194-3p, hsa-miR-6803-5p, hsa-miR-622, hsa-miR-21-3p, hsa-miR-592,
hsa-miR-516a-3p, hsa-miR-516b-3p, hsa-miR-4441). Each circRNA essentially appears to
have specific miRNAs, not shared with other circRNAs, as evidenced by the representation
of the circRNA-miRNA network in Figure 5. In particular, hsa_circRNA_403959 and
hsa_circRNA_100837 were disconnected nodes of the network, and both of them collected
a few potential target miRNAs. Therefore, the following analyses focused on characterizing
the potential functional roles of the other four circRNAs, which appear to have a greater
weight within the circRNA-miRNA-mRNA regulatory network.
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To infer a possible biological function of each circRNA, a list of all experimentally
validated protein targets of the corresponding microRNAs was initially collected. The
number of target proteins in the mirTarBase database [8] for each circRNA (after removing
redundancies) ranged from a few dozen (90 for has_circRNA_100837) to a few thousand
(3433 for hsa_circRNA_003022). Results were summarized in a Venn diagram in Figure
S2. A series of biological annotations were then investigated for each list of the target
proteins corresponding to each circRNA. Results from the enrichment statistical analysis
focused on the tissue expression of the proteins (as annotated in the Uniprot database),
on the associated Biological Processes (as described in the Gene Ontology) or pathways
(from the KEGG and Reactome databases) are reported in Figures 6 and 7. We observed
that the target proteins (via the intermediate role of microRNAs) of all four investigated
circRNAs were prevalent and statistically enriched in the brain. In particular, the targets of
hsa_circRNA_003022 resulted significantly over-represented in the amygdala (188 proteins,
p-adjusted < 0.05), while the targets of hsa_circRNA_102619 were overrepresented in the
hippocampus (83 proteins, p-adjusted < 0.05), which are both brain tissues affected by
AD (Figure 7). Moreover, the target proteins of the four differentially expressed circRNAs
are involved in a variety of pathological processes related to Alzheimer’s disease. These
included the development of the nervous system (GO: 0007399), the cellular response to
nerve growth factor stimuli (GO: 1990090), protein phosphorylation (GO: 0006468), the
negative regulation of apoptosis (GO: 0043066), TGF-beta signaling (GO: GO:0007179), the
cytokine-mediated signaling pathway (GO:0019221) (Figure 8).
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significant results.

Besides, pathways (KEGG and Reactome) enrichment analysis revealed that dysregu-
lated circRNAs were involved (via the intermediate roles of microRNAs and corresponding
target proteins) in AD-related pathways (e.g., neurotrophin signaling pathway, dopamin-
ergic synapse, apoptosis, mTOR, AMPK, and MAPK signaling pathway). The 50 most
interesting pathways are shown in Figure 8. The complete lists of all 189 functional terms
resulting from the pathways’ enrichment analysis, together with corresponding p-values,
are available in Table S2.
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Moreover, we carried out a further analysis targeting the main genes involved in
Alzheimer’s Disease [13]. We found that has_circRNA_102619 target proteins (via the
circRNA-miRNA-mRNA regulatory network) were significantly enriched (Fisher’s exact
test, genes = 16, p-value = 0.06) in the collection of AD-associated genes. In particular, the
16 genes involved were: “ADAM10”, “ADAMTS4”, “CD2AP”, “CDC42SE2”, “CELF1”,
“CRY2”, “F5”, “GALNT7”, “IL6R”, “MAPT”, “MINK1”, “NFIC”, “PLEKHA1”, “SCIMP”,
“SLC24A4”, “TP53INP1” (Figure 8).
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3. Discussion

The interest in the role of circRNAs in the physiology and pathology of CNS has been
steadily increasing in the last few years [10,14]. Some studies reported that circRNAs could
play an important role in AD [8,15], even as possible biomarkers [8]. However, to our
knowledge, only one paper was published investigating a profile of plasmatic circRNAs
in AD [16], while no studies are available on subjects with MCI. The study reported that
15 circRNAs were significantly higher in participants with AD compared to HCs from
two different populations (GSE161199 and PRJNA574438). This lack of data prompted
us to assess the profile of plasma circRNAs expression in people with AD and HCs, and
explore it in a small population of MCI subjects. Our microarray analysis of 13,617 different
probes identified some differentially expressed circRNAs, 10 of which showed a good level
(p < 0.05) of significance and a high fold change and raw intensity. Clustering analysis
showed a different circRNAs expression profile between people with AD and controls. In
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this analysis, only one HC had results differing from the remaining HC group and similar
to people with AD.

We reanalyzed the six dysregulated circRNAs out of the profiled circRNAs, using
qRT-PCR, in a larger population of AD and HC, including also five subjects with MCI. The
analysis confirmed the upregulation of hsa_circRNA_050263, hsa_circRNA_403959, and
hsa_circRNA_003022 both in participants with AD and MCI compared to HCs, and the
downregulation of hsa_circRNA_102049 and hsa_circRNA_102619 only in participants
with AD. Interestingly, hsa_circRNA_403959 was significantly overexpressed in MCI than
in both AD and HC subjects. Further studies on these differentially expressed circRNAs
could lead to identifying novel biomarkers for the early diagnosis of Alzheimer’s disease
and the prediction of conversion from MCI to dementia.

These five circRNAs are localized within the ATP13A1, BRAF, PITRM1, TADA2A,
and NOL10 gene loci, respectively. ATP13A1, encoding for a lysosomal ATPase was corre-
lated with Parkinson’s Disease [17,18]. BRAF mutations represent a diagnostic criterion
for melanoma [19], but recently it was associated with AD [20]. PITRM1 has a role in
mitochondrial dysfunction and neurodegeneration. Mitochondria of the temporal lobe
showed a PITRM1 reduced activity in patients with AD [21]. Although TADA2A- derived
circRNAs have different roles in tumors [22,23], the TADA2A protein seems to interact with
the A53T variant of α-synuclein that was preferentially retained in the cellular nucleus. The
complex modulates acetylation levels on H3 and H4 histones [24]. Then, these genes are
associated with neurological disorders in literature, except for NOL10

We also investigated all microRNAs potentially interacting with the studied circRNAs.
In particular, some of them resulted in being targeted by more than one circRNA. Specifi-
cally, hsa-miR-18a-5p, hsa-miR-18b-5p, hsa-miR-149-5p and hsa-miR-30e-5p could be regu-
lated by either circRNA_102619 and circRNA_003022; hsa-miR-197-5p by circRNA_102619
and circRNA_102049; hsa-miR-6871-5p, hsa-miR-6751-5p, hsa-miR-6803-5p and hsa-miR-
194-3p could be regulated by circR-NA_102049 and circRNA_003022; circRNA_050263 and
circRNA_003022 could target hsa-miR-622, hsa-miR-21-3p; hsa-miR-592, hsa-miR-516a-3p,
hsa-miR-516b-3p and hsa-miR-4441. Neither circRNA_100837 nor circRNA_403959 show
any common interactors (Figure 5).

Therefore, the four circRNAs associated with the most target miRNA-target were
chosen to perform further analysis to investigate the biological function associated with
the corresponding gene targets. The GO enrichment analysis showed that the investigated
circRNAs are involved in the development of the nervous system, and in the cellular
response to nerve growth factor stimuli, protein phosphorylation, apoptotic processes,
and inflammation pathways, all of which are processes related to the pathology of AD.
Moreover, the KEGG pathway analysis reported that the differentially expressed circRNAs
were strongly associated with the regulation of gene pathways that participate in the
neurotrophin signaling pathway, and the dopaminergic synapse, apoptosis, mTOR, AMPK,
and MAPK signaling pathways, all involved in AD.

An interesting analysis of a restricted number of genes known to be related to AD [13]
showed that hsa_circRNA_102619 enriched with its target proteins in this specific AD-
associated collection of genes. Among these potential targets, we found ADAM10 and
MAPT (Figure 8). The proteolytic processing of APP by ADAM10 produces the sAPPα
secreted fragment that has neuroprotective and neurotrophic properties so that an increase
in ADAM10 activity could be potentially therapeutic for AD. MAPT encodes for Tau,
one of the main proteins involved in AD. Interestingly, hsa_circRNA_102619 was the
main circRNA associated with the hippocampus, as shown by tissue expression analysis
(Figure 8).

Several of the circRNA-associated miRNAs are expressed in the brain, with rela-
tively defined roles in brain development (miR-18a, miR-18b [25,26], miR-30 [27,28], miR-
592 [29,30]) or adult brain (miR-18a [31,32], miR-149 [33–35], miR-30 [36,37], miR-21 [28,38],
miR-592 [39]. Some of these were investigated in the field of dementias and neurodegener-
ative diseases. MiR-18a seems to regulate the BARHL1-ER1 axis, involved in neural death
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and apoptosis, cerebral development, behavior, and sensorial perceptions [40]. Addition-
ally, miR-18a may have a role in abnormal gene expression detected in the senescence-
accelerated mouse-prone 8 (SAMP8) model of sporadic AD [41]. MiR-149-5p may regulate
Aβ1-42 deposition and have neuroprotective effects by directly targeting BACE1 [42]. MiR-
149-5p also has a role in Parkinson’s disease, particularly in the prevention of cellular death
and rupture of the blood-brain barrier [43]. MiR-30a was upregulated in PSEN1 mutation
carriers affected by AD respect to healthy PSEN1 mutation carriers, in the same Chinese
family [44].

Among studies investigating the roles and the importance of non-coding RNA in
neurodegenerative diseases, Dube and colleagues [45] reported data on cortical circRNAs
expression observing an association between circRNA levels and AD, and its clinical and
neuropathological severity.

One of the first circRNAs to be characterized was CDR1as associated with ubiquitin-
protein ligase A (UBE2A) having a relevant role in clearing amyloid peptides, and it was
found depleted in the brain of subjects with AD [10]. Moreover, circAβ-a was also identified,
which is a circRNA derived from the coding region of the APP gene. It may be translated,
within the brain, into the newly discovered Aβ175 polypeptide, suggesting a new Aβ

pathway [15,46]. However, research on circRNAs in AD is still scarce [8].
CircRNAs are highly stable molecules for their resistance to exonucleases. They are

found in extracellular vesicles and plasma samples [6,45]. For these reasons, they have
potential for diagnostic purposes. A recent study observed that changes in circRNAs
expression precede substantial symptom onset. This finding, combined with the stability of
these molecules in plasma and enrichment in extracellular vesicles, supports the utility of
circRNAs as peripheral biomarkers of pre-symptomatic and symptomatic AD.

Our data also showed some interesting differences in the expression of some circR-
NAs between males and females. Some sex-specific biomarkers of dementia have been
investigated in the last years [47,48], and recent studies have suggested that microRNA
could be included among them [49], probably along with circRNAs. Shortly, considering
the gender of the study participants will allow for the identification of further information
on diagnosis, disease progression, and response to possible treatment approaches tailored
to individual patients. In this context, sex-specific circRNAs could be useful in identifying
patient subgroups. This study has an important limitation. We investigated a small sample
of the population. In particular, results from the preliminary study on MCI were obtained
from only five participants. Further studies should be carried out to characterize the ex-
pression profile and function of circulating circRNAs, in particular exosomal circRNAs, to
explore the development of novel biomarkers of preclinical and clinical AD.

4. Materials and Methods
4.1. Recruited Population

A total of 26 patients with AD, 29 HC, and five subjects with MCI (see Table 1) were
consecutively recruited from CCDDs of Sapienza University in Rome and IRCCS Neuromed
in Pozzilli, from 10 September 2019 to 12 December 2020. The ethics committees of both
institutes approved the study, and informed consent was signed by all participants.

Alzheimer’s disease was defined according to the DSM-IV and NINCDS-ADRDA
criteria [50]. Controls were enrolled among healthy volunteers, including spouses and non-
blood-related relatives, who underwent a neurological assessment of both their cognitive
and functional status. Inclusion criteria: male and female participants aged 50–85 years.
Exclusion criteria: mixed dementia, secondary dementias with a history of stroke or other
severe cardiovascular diseases, neuroimaging evidence of other potential causes of cog-
nitive decline, Parkinson’s disease, or Parkinsonism. All patients underwent laboratory
tests to rule out other dementias, and brain imaging (magnetic resonance or computed
tomography). Participants with MCI were diagnosed using the criteria described by Pe-
tersen [51]. Healthy controls were enrolled among family members or caregivers unrelated
to the patients.
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All participants underwent clinical and neurological assessment, including the admin-
istration of the Mini-Mental State Examination (MMSE).

4.2. Sample Preparation

The plasma was obtained from whole blood collected in EDTA tubes, by centrifugation
at 2500 rpm for 15 min at 4 ◦C, taking care not to shake the buffy coat. After aliquoting,
the tubes were stored in a −80 ◦C freezer. Total plasma RNA, including small RNAs, was
isolated from miRNeasy Mini kit (QIAGEN, Hilden, German). The concentrations of the
RNA samples were measured by NanoDrop ND-1000 (Thermo Fisher Scientific, Waltham,
MA, USA).

4.3. SIMOA analysis

Human Simoa Neurology 3-Plex A (N3PA) Advantage kit was carried out to evaluate
levels of total-tau, amyloid-β40, and amyloid-β42, while Simoa p-tau181 Advantage kit
was used to measure p-tau181 (Quanterix, Billerica, MA, USA). Each sample was measured
in duplicate and two control samples added to each plate were used for each analyte. All
measurements were performed at Quanterix on a single molecule assay (Simoa) biomarkers
detection system.

4.4. Microarray Analysis

Sample labeling and array hybridization were performed according to the manufac-
turer’s protocol (Arraystar Inc., Rockville, MD, USA). Total RNAs were digested with Rnase
R (Epicentre, Inc., Madison, WI, USA) to remove linear RNAs and enrich circRNAs. Then,
the samples were amplified and transcribed into fluorescent cRNA by random priming
(Arraystar Inc.). The labeled cRNAs were purified by RNeasy Mini Kit (QIAGEN) and
their concentration and specific activity (pmol Cy3/µg cRNA) was measured by NanoDrop
ND-1000 (Thermo Fisher Scientific) Then, 1 µg of each labeled cRNA was fragmented by
heating 60 ◦C for 30 min after the addition of 5 µL of 10 × Blocking Agent and 1 µL of
25 × Fragmentation Buffer. To complete sample preparation for microarrays, 25 µL of
2 × Hybridization buffer was added to the labeled cRNA. Thus, 50 µL of sample mixture
was dispensed into the gasket slide and assembled to the circRNA expression Arraystar
Human circRNA Array V2 (8×15K, Arraystar Inc.) microarray slide. The slides were
incubated for 17 h at 65 ◦C in an Agilent Hybridization Oven. The hybridized arrays were
washed, fixed, and scanned using the Agilent Scanner G2505C (Agilent Technologies, USA).
The normalization of circRNA microarray data followed the quantile method.

4.5. Quantitative Real-Time PCR Analysis

RNA was retro-transcribed using First Strand cDNA Synthesis (Thermo Fisher Scien-
tific) according to the manufacturer’s protocol. After dilution of cDNA, samples were quan-
tified in triplicates by using specific primers (Arraystar Inc.) described in Table 4 for amplify
hsa_circRNA_100837, hsa_circRNA_403959, hsa_circRNA_102619, hsa_circRNA_003022,
hsa_circRNA_050263, hsa_circRNA_102049. β-actin was used as endogenous control, as
previously described [11,12]. qRT-PCR reactions were performed using Arraystar PCR mas-
ter mix in an ABI PRISM7500 Real-Time PCR Detection System (Thermo Fisher Scientific).
The PCR reaction was obtained with 2 µL of the diluted cDNA template, 5 µL of SYBR®

Green master mix, and 1 µL of PCR primer mix. The Real-Time PCR cycles were 95 ◦C for
10 min, followed by 40 amplification cycles of 95 ◦C 10 s and 60 ◦C 1 min. Raw Ct values
were normalized through the ∆Ct method using as a reference the endogenous control.
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Table 4. PCR primers set (Arraystar Inc.) used for qRT-PCR validation.

Gene Name Sequence (5′ to 3′) Tm (◦C) Length of Product (bp)

hsa_circRNA_100837 Forward:5′ AAGCAGTGGAAATTGAAGAGC3′

Reverse:5′ GCTGGCTTATTTGTCTGGATT3′ 60 67

hsa_circRNA_403959 Forward:5′ AGAAGACAGGAATCGAATGGACT3′

Reverse:5′ CAGGTAATGAGGCAGGGGG3′ 60 96

hsa_circRNA_102619 Forward:5′ GGGCATCTATTACATTCCATTCT3′

Reverse:5′ ATTATTCTCCGCAGCATCAGT3′ 60 95

hsa_circRNA_003022 Forward:5′ GATGAAGGGAGCGTTTACAGA3′

Reverse:5′ GGGAACAGATGTCACCTAGCA3′ 60 192

hsa_circRNA_050263 Forward:5′ CAAGCTCTCATCCATCCAGTG3′

Reverse:5′ ATGGGCGTACTCTCGTCCTC3′ 60 73

hsa_circRNA_102049 Forward:5′ CACAGCCATTCCATTTCACTACT3′

Reverse:5′ CAAAGCCACAGTCCATCACAG3′ 60 105

β-actin Forward:5′ GTGGCCGAGGACTTTGATTG3′

Reverse:5′ CCTGTAACAACGCATCTCATATT3′ 60 73

4.6. CircRNA-microRNA-mRNA Network

Bioinformatics analyses were performed to identify potential microRNA targets on
each differentially expressed circRNA. Two different prediction tools were applied: Tar-
getScan [52] and miRanda [53] software. The list of putative circRNA-associated microR-
NAs was compiled for each circRNA under examination (Table S1). For each microRNA,
all experimentally validated target genes in the miRTarBase database (release 8.0) [54] were
collected using the miRWalk platform [55] and considered for further analysis.

After, a Functional Enrichment Analysis was performed. The biological functions
of each circRNA were inferred by analyzing the protein-coding genes resulting as poten-
tial final targets in the regulatory network of circRNA-miRNA-mRNA. Over-represented
biological terms (which have more genes than expected by chance) were identified by
using the DAVID web server [56] with the entire human proteome as a reference and
querying the following categories: Gene Ontology (GO) Biological Processes (BP) [57];
pathways collected in KEGG [58] and Reactome [59] databases; and UniProt [60] Keyword
protein annotations related to Tissue Expression. Only biological categories with Benjamini-
Hochberg adjusted p-value ≤ 5 × 10−2 were considered statistically enriched [61]. Re-
sults for each investigated group are shown as heat maps, produced using the ggplot2
R-package: https://ggplot2.tidyverse.org (accessed on 22 February 2022) with the color
scale representing the corrected p-values. Cytoscape v3.9.0 [62] has been utilized to visual-
ize circRNA-miRNA-mRNA networks.

4.7. Statistical Analysis

Continuous data were summarized by mean and standard error or standard devi-
ation. Categorical variables were described by frequency and percentage distributions.
Comparisons between experimental groups were assessed by the one-way ANCOVA test
adjusted for sex and age. t-Test or Mann–Whitney test for continuous variables, Fisher’s
exact probability test, and Pearson’s chi-square test for categorical variables were also used.
Correlation analyses were performed by Pearson’s index test. The level of significance
was 0.05 and Bonferroni’s correction was adopted to control for type I error in multiple
comparisons. All statistical analyses were carried out by the software SPSS (version 28.0).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113232/s1.

https://ggplot2.tidyverse.org
https://www.mdpi.com/article/10.3390/ijms232113232/s1
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