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Abstract: Signal peptide (SP) mutations are an infrequent cause of inherited retinal diseases (IRDs).
We report the genes currently associated with an IRD that possess an SP sequence and assess the
prevalence of these variants in a multi-institutional retrospective review of clinical genetic testing
records. The online databases, RetNet and UniProt, were used to determine which IRD genes possess
a SP. A multicenter retrospective review was performed to retrieve cases of patients with a confirmed
diagnosis of an IRD and a concurrent SP variant. In silico evaluations were performed with MutPred,
MutationTaster, and the signal peptide prediction tool, SignalP 6.0. SignalP 6.0 was further used to
determine the locations of the three SP regions in each gene: the N-terminal region, hydrophobic core,
and C-terminal region. Fifty-six (56) genes currently associated with an IRD possess a SP sequence.
Based on the records review, a total of 505 variants were present in the 56 SP-possessing genes.
Six (1.18%) of these variants were within the SP sequence and likely associated with the patients’
disease based on in silico predictions and clinical correlation. These six SP variants were in the CRB1
(early-onset retinal dystrophy), NDP (familial exudative vitreoretinopathy) (FEVR), FZD4 (FEVR),
EYS (retinitis pigmentosa), and RS1 (X-linked juvenile retinoschisis) genes. It is important to be
aware of SP mutations as an exceedingly rare cause of IRDs. Future studies will help refine our
understanding of their role in each disease process and assess therapeutic approaches.

Keywords: signal peptides; inherited retinal dystrophies; in silico prediction

1. Introduction

Signal peptides (SP) are N-terminal extensions of newly synthesized polypeptide
chains whose primary function is to target secretory or membrane-bound proteins to and
across the endoplasmic reticulum (ER) membrane [1]. Roughly 18% of human proteins in
the UniProt (Universal Protein Service) database contain an SP sequence [2]. Characteris-
tically, SP sequences consist of 16 to 30 amino acids (AA) grouped into three chemically
well-defined regions: a hydrophilic N-region, a hydrophobic core, and a polar C-region
(Figure 1) [1,3]. Each one fulfills an essential role in preprotein processing, including initial
interaction with the ER membrane receptors, SP cleavage, and exit from the ER membrane
to the cell membrane. SP sequences also contain a cleavage site where the SP is removed
from the mature protein once processing is complete. Mutations in the SP sequence can alter
the biochemical properties of SPs and result in defects in the co-translational processing
of newly synthesized proteins. SP mutations have been found in association with human
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diseases. In a systematic review, Jarjanzani, et al. identified 26 SP sequence mutations in
21 different genes associated with various human genetic disorders [3].
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in Appendix A. The variants, affected genes, and related IRDs are shown in Table 1.  
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is composed of 1–5 residues, the hydrophobic core of 7–15 residues, and the uncharged C-region,
which contains 3–7 residues. The cleavage site borders the C-region and the pro region.

Inherited retinal dystrophies (IRDs) comprise a heterogenic group of genetically inher-
ited disorders that result in progressive retinal degeneration leading to partial or complete
vision loss [4]. The estimated prevalence of IRDs is approximately 1 in 2000 individuals,
affecting more than two million individuals worldwide [5]. They commonly display sig-
nificant variability in genotype, phenotype, and mode of inheritance [4]. The prevalence
of SP signal mutations in IRDs is likely very small as there are only a few descriptions of
IRD-associated SP mutations in the scientific literature. In one study, Hiroaka, et al. identi-
fied a heterozygous 3-bp insertion in the CTG repeat region of exon 1 of the LRP5 gene in a
patient with advanced retinopathy of prematurity (ROP) [6]. Vijayasarathy, et al. analyzed
the biochemical consequences of several RS1 SP variants caused by missense mutations in
four different subjects with X-linked juvenile retinoschisis (XLRS), and concluded that the
mutations affected protein biosynthesis, and resulted in a null RS1 phenotype [7].

In this study, we herein identify which genes currently implicated in IRDs contain
an SP sequence. We then perform a multi-institutional review of genetic testing results
to investigate the occurrence of SP variants. We also describe a series of patients with
an IRD in whom genetic testing revealed at least one SP sequence variant that was likely
contributing to their disease.

2. Results

Fifty-six (21%) of the 271 genes currently implicated in IRDs on RetNet possessed an
SP sequence (Supplementary Table S1). A total of 505 variants were present in the 56 SP-
possessing genes, of which six (1.19%) were located within the SP coding sequence and
considered disease causing based on our criteria. The SP sequences of the CRB1 (early-onset
retinal dystrophy), NDP (familial exudative vitreoretinopathy) (FEVR), FZD4 (FEVR), EYS
(RP), and RS1 (XLRS) genes were affected. Based on SignalP 6.0, one mutation was located
within the N-terminal region, three within the hydrophobic core, and two affecting the
C-terminal region. Clinical summaries of these six patients are provided in Appendix A.
The variants, affected genes, and related IRDs are shown in Table 1.
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Table 1. Disease-causing SP Variants in Our Patient Population.

Case Gene NM Signal Peptide
Mutation

Non-SP
Allele

Mutation
Diagnosis Inheritance

Pattern
Affected SP

Region
Likelihood

Change (%) a
Cleavage
Site Loss MutPred ˆ MutationTaster Mutation

References

Sp
Allele

Non-SP
Allele

SP
Allele

Non-SP
Allele

1 CRB1 201,253.3 c.2T>C
(p.Met1*)

c.2056C>T
(p.R686C)

retinitis
pigmentosa AR N-terminal N/A * N/A * 0.793 0.465 Disease

causing Polymorphism Hosono et al.
[8]

2 NDP _000266 c.37_57del21
(p.L13_M19del) N/A

familial
exudative

vitreoretinopa-
thy

XL H-core 0.991→ 0
(−100%) Yes 0.619 N/A Disease

causing N/A Novel

3 FZD4 _012193.4 c.23deIC
(p.P8Rfs*53) None

familial
exudative

vitreoretinopa-
thy

AD H-core 0.999→ 0
(−100%) Yes 0.557 N/A Disease

causing N/A Novel

4 EYS _198283.2 c.32dupT
(p. M12Dfs*14)

c.95G>T
(p.W32L)

retinitis
pigmentosa AR H-core 0.999→ 0

(−100%) Yes Not
performed †

0.872 Disease
causing Polymorphism

Glockle et al.
[9]

McGuian et al.
[10]

5 RS1 _000330.4 c.52+1 G>C N/A
X-linked
juvenile

retinoschisis
XL C-terminal 0.998→ 0.998

(0%) No
Not

performed
±

N/A Disease
causing N/A Vijayasarathy

et al. [7]

6 RS1 _000330.4
c.(52+1_53-

1)_(78+1_79-
1),del

(p.A18Pfs*108)
N/A

X-linked
juvenile

retinoschisis
XL C-terminal 0.998→ 0.114

(−88.50%) Yes 0.529 N/A Disease
causing N/A Stone et al.

[11]

N/A: Not applicable ˆ > 0.70 indicate pathogenicity for missense mutations and >0.50 indicate pathogenicity for both in-frame insertion/deletion and frameshift mutations. * Effects of
start codon mutations are not assessed by SignalP 6.0. † MutPred sequence minimum is 30 amino acids. ±MutPred does not assess intronic mutations. a SignalP 6.0 offers a likelihood
score (0–1) of whether an input nucleotide sequence contains an SP based on the biological and structural properties of the amino acid sequence. Differences in likelihood score between
the wild-type sequences retrieved from UniProt and variant amino acid sequences of the identified genes with SP mutations in our patient population were expressed as a percentage
(%) change.
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The SignalP 6.0 likelihood score, MutationTaster, MutPred, and in silico pathogenicity
prediction scores are shown in Table 1. MutationTaster and MutPred classified all six
variants as deleterious or pathogenic, respectively. The two exceptions were the EYS
variant, which could not be evaluated by MutPred because the resulting peptide sequence
was shorter than the required 30 residues, and the RS1 c.52+1 variant, as MutPred cannot
evaluate intronic mutations. All six variants had a population frequency of <0.01% in the
GnomAD database.

The three frameshift mutations in EYS, FZD4, and RS1 resulted in a SignalP 6.0
likelihood score of 0, reduced from 0.998 in the respective WT sequence. The 21-basepair
deletion in the H-region of the NDP gene SP sequence also reduced the predicted SP
likelihood from 0.991 to zero. The CRB1 SP variant was not evaluated by SignalP due to
the program not being able to readily assess the effects of start codon mutations. The RS1
c. 52+1 G>C splice site mutation, although classified as deleterious by MutationTaster,
did not cause a change in SP likelihood, as it did not result in a peptide sequence change,
and the program may not be able to assess the effects of splice site mutations. Cleavage
site prediction was lost in all four of the evaluated variants. The EYS p.W32L mutation in
the non-SP allele obtained a pathogenic score from one predictor, and a likely harmless
from the second predictor, while the CRB1 p.R686C non-SP variant did not achieve disease
causing scores from neither predictor.

3. Discussion

Signal peptide mutations are an exceedingly uncommon cause of IRDs. There is a
paucity of reports of IRDs caused by SP variants. In this study, we identified the 56 genes
associated with IRDs that possess an SP sequence and presented six cases of patients with
an SP variant implicated in their disease. The unfavorable effects of SP variants depend on
the affected region, and the resulting effects on the processing of proteins destined for the
secretory pathway.

The N-region is responsible for the initial interaction with the signal recognition parti-
cle (SRP) in the ER membrane and plays a role in SP orientation, favoring or preventing
translocation across membranes [12]. Positively charged residues, such as lysine and argi-
nine, give this region its characteristically hydrophilic and ionic properties [13]. Missense
mutations in these highly conserved positively charged residues can significantly impair
the targeting/translocation process to varying degrees due to dysfunctional recognition
of the SP sequence by ER membrane receptors [14]. It has also been reported that when
the SRP fails to interact with an anomalous SP sequence, the mutated protein is targeted
for degradation via activation of the ribosome-associated protein quality control (RAPP)
pathway [15,16]. In our study, two compound heterozygous missense mutations in the
CRB1 gene, p.Met1* and p.Arg686Cys, were present in a patient with early-onset retinal
dystrophy (EORD). The p.Arg686Cys variant has been previously reported in a compound
heterozygous patient with RP [17]. The c.2T>C p.Met1* variant has been previously re-
ported in a Japanese patient with LCA and results in a substitution of the initial methionine
residue for threonine [8]. In most cases, mutations affecting the start codon (AUG) are dele-
terious and result in a null allele [15]. However, translation can rarely initiate in alternate
start codons such as those that code for leucine (CUG), although studies show they typically
perform at a markedly reduced efficiency compared to AUG codons [16]. In rare cases,
downstream AUG codons can also be used for translation initiation. However, this can
result in the SP possessing protein accumulating intracellularly, which has been reported
as disease causing [18]. A similar RS1 p.Met1Leu mutation was reported in a patient with
XLRS. Cells transfected with mutant cDNA failed to express a mutated RS1 protein due to
a blocked translation initiation at the mutant start codon [7]. Although the mutation affects
the SP, the role of this variant in our patient’s disease is likely secondary to a near-complete
loss of protein production from the affected allele, rather than a loss of SP function alone.

The hydrophobic region is integral to proper SP function as it is involved in conforma-
tion and orientation toward the cell membrane, SP cleavage, rate and efficiency of protein
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translocation, secretion pathway function, and protein processing [19]. We present a 21 base
pair deletion in the NDP gene, which removed seven amino acids within the hydrophobic
core of the SP in a patient with FEVR. SignalP 6.0 likelihood and cleavage site prediction
scores for this variant decreased to 0. A similar 18-base-pair deletion eliminating six leucine
residues within the LRP5 SP hydrophobic core was reported in a patient with Osteoporosis-
Pseudoglioma Syndrome (OPPG) [20]. Functional assays suggested that the mutant LRP5
polypeptide had impaired ER entry and post-translational processing [20]. Mutations that
cause changes in SP hydrophobicity have been shown to reduce protein expression up
to 70–90% due to defective targeting to the endoplasmic reticulum, and failed protein
translocation [21–23]. H-region mutations have also been reported in association with IRDs.
Vijasajarthy, et al. evaluated two RS1 mutations, p.Leu12His and p.Leu13Pro, found in
two patients with XLRS in vitro. Both histidine and proline have hydrophilic properties,
which may disrupt the hydrophobic properties of the SP’s hydrophobic core [24]. In their
study, the level of RS1 protein was nondetectable in the cellular and secreted fractions [7].
However, the study also found that a mutation exchanging one hydrophobic residue for
another did not impair SP function. A cell line transfected with an RS1 p.Leu13Phe plasmid
expressed the same RS1 levels in the culture medium as WT cells [7]. We can postulate
that our patient’s disease process involved similar mechanisms of impaired protein ER
entry and post-translational processing due to loss of the hydrophobic core region. We also
describe two EYS p.Met12Aspfs*14 and FZD4 p.Pro8Argfs*53 frameshift variants found in
patients with RP and FEVR, respectively. Although the SP function is likely completely lost,
which is supported by the complete loss of SP likelihood prediction in both cases, the entire
peptide sequence of the protein is likely affected. Thus, it is more likely that the deleterious
effects of the mutation are primarily due to the frameshift mutation. Furthermore, the SP
mutations result in truncated EYS and FZD4 proteins, which can also be targeted for rapid
degradation by the nonsense-mediated decay (NMD) pathway [25].

Additionally, we found two mutations in the RS1 gene located within the 5′ donor
splice site of intron 1, affecting the SP’s hydrophobic core and C-terminal region. The
c.53-859_78+276 variant in case three results in the deletion of exon 2, which contains the
AA for the C-terminal region of the SP, leading to a frameshift mutation with a premature
stop codon at position 108 (submitted elsewhere as a case report). There was a complete
loss of SP likelihood in this variant. As in the EYS and FZD4 mutants, the truncated protein
may also undergo degradation via the NMD pathway. RS1 frameshift mutations that result
in truncated proteins have been reported in multiple patients with XLRS [7]. In case five,
RS1 c.52+1 G>C was predicted to be deleterious by one of the in silico predictors. The
SignalP 6.0 likelihood score of this variant was unaffected, as the program evaluates the
biochemical properties of the entered amino acid sequences, which does not reflect the
possible effects of intronic splice site mutations. A similar mutation, c.52+1 G>A, was
identified in a Chinese family with XLRS [7]. In vitro analysis of this variant showed an
absolute lack of RS1 protein in transfected cells. This mutation resulted in skipping exon
2, leading to a frameshift at the resulting exon 1 and exon 3 junction and a premature
stop codon [7], which may similarly occur in our patient. Deletion of exon 2 removes the
C-terminal region, which is responsible for the final cleavage of the SP sequence from the
mature protein. Small nonpolar amino acids at positions −1 and −3 from the cleavage site
conferred this region an extended beta conformation that provided the peptidase binding
site [4,23]. Loss or substitutions of these amino acids are thought to cause failed recognition
or cleavage by the signal peptidase. This lead to mutant chains remaining anchored to
the microsomal membranes, with eventual removal from the ER by retrograde transloca-
tion and degradation, through the endoplasmic-reticulum-associated protein degradation
(ERAD) and proteasome pathways [26]. Accumulation of unfolded proteins in the ER can
also lead to activation of the unfolded protein response (UPR), which in the presence of
continued ER stress can shift from a protective to a proapoptotic pathway, thus causing
disease [27,28]. The role of ER stress in IRDs has also been previously established [29,30].
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Currently, there are no therapeutic approaches designed specifically for SP sequence
mutations. One proposed mechanism is the use of chemical chaperones, which are
molecules that bind to the active site of the mutant protein and stabilize or destabilize the
folding transition state to compensate for the mutation [31]. In vitro studies have shown
that chemical chaperones could potentially correct the abnormal intracellular accumulation
of proteins caused by SP mutations, as evidenced by improved clearance of intracellularly
trapped hormones, alleviation of ER stress, and reduced cell death [31]. In vitro studies
evaluating this approach have shown promising results in diseases such as RP and Fabry
disease [26,32,33]. In the absence of a dominant-negative effect caused by an SP variant,
where the mutant protein interacts with the WT inside the ER and prevents proper folding
and translocation, a gene augmentation approach in which the WT gene is introduced into
the cell, or gene editing, could also confer a therapeutic benefit [7].

There are some limitations to our study. Functional in vitro studies were not per-
formed, and the study is retrospective in nature. Therefore, protein processing, secretion,
and function could not be assessed. These tests will be helpful in future studies to elucidate
the disease mechanisms. Additionally, genetic testing technology has drastically improved
over the past decade [34]. Consequently, the development of genomic databases and other
resources that are publicly accessible revolutionized our ability to interpret genetic testing
data. Therefore, signal peptide mutations may not have been identified in individuals
who received testing several years ago due to limitations in technology and reporting.
Regarding Signal 6.0, it does not provide a cut-off score for its SP likelihood prediction,
which could be helpful in the future in cases where there is a milder loss of likelihood
probability. Although SignalP 6.0 can be a useful tool to evaluate SP variants, it may not
be able to assess certain types of mutations such as start codon or splice-site mutations, as
seen in two of our cases.

4. Materials and Methods
4.1. Identification of Signal Peptide Possessing Genes and Cases of Interest

This study was approved by the Wills Eye Hospital (IRB #2021-74) IRB and ethics
committee in accordance with the tenants of the Declaration of Helsinki. Genes implicated
in IRDs were retrieved from the hereditary retinal disease online database RetNet (https:
//sph.uth.edu/retnet/ (accessed on 15 April 2021)). The protein sequence database UniProt
(https://www.uniprot.org/ (accessed on 16 April 2021)) was then queried to determine
which IRD-associated genes contain SP sequences and to identify the positions of the amino
acids composing the SP sequences. The most likely locations of the three SP regions (N-
terminal, hydrophobic core, and C-terminal) and the cleavage site were then identified using
the online signal peptide analysis tool, Signal 6.0 (https://services.healthtech.predcitortu.
dk/service.php?SignalP-6.0 (accessed on 20 April 2021)).

Patient genetic results databases from three separate institutions, Wills Eye Hospital,
Children’s Hospital of Los Angeles, and Casey Eye Institute, were reviewed to identify
cases of patients with both a confirmed IRD diagnosis and a variant located within the SP
sequence from June 2011–August 2021.

4.2. In Silico Bioinformatic Evaluation of Signal Peptide Variants

In silico analyses of SP variants were performed using SignalP 6.0, MutationTaster,
and MutPred. These freely available online software packages assess the structural and
functional biochemical consequences of genetic mutations on proteins.

The SignalP 6.0 (https://services.healthtech.predcitortu.dk/service.php?SignalP-6.0
(accessed on 20 April 2021)) server uses protein language models containing an extensive
list of proteins to predict the presence of SP sequences across all organisms [35]. SignalP
6.0 offers a likelihood score (0–1) of whether an input nucleotide sequence contains an
SP based on the biological and structural properties of the amino acid sequence. A 0-
likelihood score indicates a 0% chance likelihood that the input sequence contains an SP,
whereas a 1-likelihood score indicates a 100% chance of the presence of an SP. Wildtype

https://sph.uth.edu/retnet/
https://sph.uth.edu/retnet/
https://www.uniprot.org/
https://services.healthtech.predcitortu.dk/service.php?SignalP-6.0
https://services.healthtech.predcitortu.dk/service.php?SignalP-6.0
https://services.healthtech.predcitortu.dk/service.php?SignalP-6.0
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(WT) sequence retrieved from UniProt and variant amino acid sequences of the identified
genes with SP mutations in our patient population were input to SignalP 6.0. Differences in
their likelihood scores were expressed as a percentage (%) change.

MutationTaster (https://www.mutationtaster.org/ (accessed on 1 August 2021)) uses
a Random Forest method to predict the disease potential of a mutation and classifies it
as either disease-causing or polymorphism. The MutPred suite (http://mutpred.mutdb.
org/ (accessed on 1 August 2021)) encompasses a group of web-based tools including
MutPred2, MutPred INDEL, and MutPred-Loss of Function. These are sequence-based
machine learning models that integrate genetic and molecular information to predict
the pathogenicity of amino acid substitutions [36]. All three tools generate a continuous
pathogenicity prediction value of 0–1 for a given mutation. Values above 0.70 indicate
pathogenicity for missense mutations and values above 0.50 indicate pathogenicity for both
in-frame insertion/deletion and frameshift mutations.

The SP variants that were considered as contributing to the disease burden of IRDs
in this patient population were those that met all of the following criteria: they were
(1) identified in the SP coding sequence, (2) present in genes that have previously been
associated with an IRD, (3) present in IRD patients with genetic testing and a clinical
phenotype consistent with mutations in the specific gene containing the SP mutation
(genotype-phenotype correlation), (4) present in patients without genetic evidence of
further mutational burden in the SP-mutated gene in cis outside of the SP region, (5)
present in patients without genetic evidence that their IRD may be caused by mutations
in other genes, and (6) considered pathogenic or deleterious by at least one of the in
silico algorithms.

5. Conclusions

In conclusion, we have described several cases of distinct IRDs associated with muta-
tions in the SP of the affected proteins. Previous reports have demonstrated how mutations
in the different regions of the SP will impact protein processing and secretion, leading to
disease. We hope this information will further expand the awareness of these extremely
rare types of genetic mutations and help lay further groundwork for research into the preva-
lence and role of SP mutations in hereditary ophthalmic diseases and the development of
possible therapies for these patients.
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Appendix A. Clinical Summaries of Cases in Our Patient Cohort

Case 1

A 5-year-old male was evaluated due to nyctalopia, which started at 2 years of age.
Past medical history and review of systems were otherwise unremarkable. On exam,
visual acuity was 20/200 OU. Intraocular pressure (IOP) and slit-lamp examination (SLE)
were unremarkable in both eyes. Fundus autofluorescence revealed no abnormal findings.
OCT of the macula was remarkable for cystoid macular edema. ERG demonstrated an
essentially absent scotopic response OU. Photopic responses were severely attenuated OU.
OCT showed stable cystoid macular edema. These findings were consistent with early
childhood-onset retinal dystrophy (EORD). Genetic testing performed via Blueprint Retinal
Dystrophy panel identified two disease-causing or pathogenic, genetic variants in the CRB1
gene, c.2T>C (p.Met1*) and c.2056C>T (p.R686C). Segregation analysis revealed the father
was a carrier of the c.2T>C variant, who was not affected.

Case 2

A 2-month-old male was evaluated due to concern for familial exudative vitreo-
retinopathy (FEVR). The patient had a history of iris contact against the posterior cornea
with the lens directly behind the iris almost in contact with the cornea and a fibrotic pos-
terior plaque of dysplastic retina was noted in contact with the back of the lens in both
eyes confirmed by ultrasound biomicroscopy. No clear blood vessels were seen at the
posterior lens in either eye. Upon fundus examination, no clear persistent vasculature stalk
was appreciated although there was a retina attached to the optic nerve in both eyes. A
brain MRI revealed bilateral retinal detachments which were determined to be posterior
persistent hyperplastic primary vitreous. Visual evoked potentials were performed and
showed no reproducible evoked potentials with monocular stimulation in either eye. The
Blueprint Vitreoretinopathy gene panel was ordered for molecular diagnosis and revealed
a hemizygous likely pathogenic variant, c.37_57del21 (p.L13_M19del), in the NDP gene.
Subsequent segregation analysis revealed that the mother and sister were both carriers of
the variant. Due to the absence of systemic symptoms or developmental delay associated
with Norrie disease, a diagnosis of isolated FEVR was made.

Case 3

An 11-year-old male patient was first evaluated at 2 years old. The most recent
clinical examination was remarkable for visual acuity of CF OD and 20/60 OS. The patient
had a spherical equivalent error of approximately -5D OU. Upon fundus examination,
inferotemporal traction with retinal fold OD and temporal traction with dragged macula
OS. No laser therapy was performed given minimal avascular retina and no active neo-
vascularization. There is no pertinent family history, and segregation analysis was not
performed. Genetic testing found an FZD4 c.23delC (p.P8Rfs*53) variant resulting in a
frameshift and a premature stop codon at position 53.

Case 4

A 64-year-old male presented at age 48 with nyctalopia, visual field defects, photo-
phobia, and dyschromatopsia. ERG showed moderate to severe decreases in both rod and
cone-driven responses consistent with a mixed rod/cone dystrophy. He was diagnosed
with RP. Genetic testing was positive for two heterozygous EYS c.32_33insT (p. M12Dfs*14)
and c.9036delT (p.W32L) variants. Although segregation analysis was not performed, an
autosomal inheritance pattern is suspected. Both variants have been previously reported in
different patients with autosomal recessive RP (39,40).

Case 5

A male patient was diagnosed with XLRS at the age of 11. Multiple surgeries had
been performed on his right eye, and the fundus could not be viewed with fundoscopy
or tested by ERG. His left eye has retinoschisis with inner retinal holes inferiorly and
temporally, and scarring medially; the vessels were attenuated, and a cataract was present.
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ERG of the left eye showed abnormal amplitudes and implicit time of rod and cone-
dependent responses. Consistent with the clinical phenotype, a hemizygous frameshift c.53-
859_78+276 (p.A18Pfs*108) deletion was detected in the RS1 gene. This mutation removes
the entire exon 2 of the RS1 gene (This case is submitted elsewhere as a case report).

Case 6

A 12-year-old was referred for ophthalmology evaluation due to problems with vision
in low light settings. VA was 20/40 OD and 20/50 OS. IOP was within normal limits
and SLE was unremarkable. Dilated fundus exam was remarkable for radial stria of
his perifoveal in the superficial retina and small intraretinal cystoid spaces. OCT of the
macula showed inner retinoschisis with septa with a normal photoreceptor layer and no
surface gliosis. No vitreoretinal attraction. Goldmann visual fields were normal. Fundus
autofluorescence was normal except for abnormally placed fluorescence in the perifovea
with a stellate pattern. Full-field ERG was normal with borderline cone responses. Multi-
focal ERG showed depression centrally more than peripherally and no electronegative
B waves. IV fluorescein angiography has abnormal fluorescence in the perifovea but no
leakage, thus ruling out cystoid macular edema. Based on findings, the patient was sent for
genetic testing, which was positive for a hemizygous RS1 c.52+1 G>C mutation which was
also present in his mother and sister.
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