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Abstract: Breast cancer (BC) is a heterogeneous malignancy that still represents the second cause
of cancer-related death among women worldwide. Due to the heterogeneity of BC, the correct
identification of valuable biomarkers able to predict tumor biology and the best treatment approaches
are still far from clear. Although molecular imaging with positron emission tomography/computed
tomography (PET/CT) has improved the characterization of BC, these methods are not free from
drawbacks. In recent years, radiomics and artificial intelligence (AI) have been playing an important
role in the detection of several features normally unseen by the human eye in medical images. The
present review provides a summary of the current status of radiomics and AI in different clinical
settings of BC. A systematic search of PubMed, Web of Science and Scopus was conducted, including
all articles published in English that explored radiomics and AI analyses of PET/CT images in
BC. Several studies have demonstrated the potential role of such new features for the staging and
prognosis as well as the assessment of biological characteristics. Radiomics and AI features appear
to be promising in different clinical settings of BC, although larger prospective trials are needed to
confirm and to standardize this evidence.

Keywords: radiomics; artificial intelligence; AI; machine-learning; deep-learning; breast cancer;
positron emission tomography; PET/CT

1. Introduction

Breast cancer (BC) represents the most common malignancy in terms of prevalence and
the second cause of cancer-related death among women globally, with increasing incidence
over the last decade [1]. BC is a heterogeneous tumor in terms of expression of several
different receptors and genomic mutations. In particular, the receptor status classifies BC
into four categories, i.e., Luminal A, Luminal B, Human epidermal growth factor receptor 2
(HER-2)+, and triple negative (TNBC), and also influences the choice of treatment options
and the prediction of survival [2,3]. Nevertheless, tumor biology characterization is reliant
on invasive procedures, such as biopsy sampling of a single lesion, which do not necessarily
represent the whole tumor heterogeneity [4,5].

Hybrid imaging by [18F]F-Fluorodeoxyglucose positron emission tomography/
computed tomography (FDG PET/CT), combining metabolic and morphological features,
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is now widely used for diagnosis, staging, assessment of treatment response and sur-
vival prediction of several malignancies, including BC [6–8]. Indeed, glucose metabolism
reflects the biology of malignant cells and metabolic parameters, such as the maximum
standardized uptake value (SUVmax), the mean standardized uptake value (SUVmean), the
metabolic tumor volume (MTV) and the total lesion glycolysis (TLG), have been found to
be associated with hormone receptors status and molecular subtypes in some studies [9–12].
Nonetheless, also semi-quantitative parameters derived from FDG PET/CT images have
their own disadvantages; for example, SUVmax represents only the single hottest pixel,
whereas MTV depends on the threshold-based method, and therefore, is not able to fully
capture BC heterogeneity [13].

In the context of increasingly personalized medicine, the identification of reliable and
non-invasive biomarkers able to predict tumor heterogeneity is fundamental for a patient’s
treatment. Radiomics, defined as the process of identifying mineable variables hidden
in the pixels of images and routinely not visualized by the human eye, is currently an
emerging technique in the field of medical image analysis. Radiomics consists of high-
throughput extraction, automated or not, of a large number of quantitative parameters
from medical images, based on the hypothesis that such extracted features could be linked
to genotypic and molecular characteristics of the tumor lesions. Its non-invasive nature
and the possibility to study and to follow all lesions’ distributions over time, avoiding the
requirement for repeated biopsies, are the undoubted advantages of radiomics [14–16].
In the setting of BC, radiomics data are available from several studies conducted with
different medical images, such as ultrasound, mammography, magnetic resonance imaging
(MRI), and PET/CT [17–20].

Artificial intelligence (AI) is a branch of computer sciences [21], which includes ma-
chine learning (ML) and deep learning (DL) [22]. ML models are based on a training dataset
that is first provided to develop their own logic for answering future questions. DL is the
newest class of ML and has been found to be advantageous to other forms of ML [23]. The
development of computer science algorithms, tools and applications relevant to medical
imaging has rapidly increased in the last years [24,25]. Aktolun [26] in 2019 describes the
potential and challenges of radiomics and AI in nuclear medicine.

The aim of our systematic review is to summarize the current role of PET radiomics in
BC, and to describe its potential application in clinical practice to assist physicians improve
patient management.

2. Results

The literature search identified a total of 239 studies, reduced to 81 after excluding
duplicates, non-original articles, and papers relevant to other topics. The number of
studies that met the inclusion criteria was 53. Figure 1 illustrates the PRISMA flowchart
of the articles included in our systematic review. Among these, 43 (81.1%) studies were
retrospective and 10 (18.9%) prospective. Radiomic data were extracted from PET/CT in 43
(81.1%) papers, PET/MRI in 4 (7.6%) and dedicated breast PET (dbPET) in 6 (11.3%) papers.
The majority of the studies were performed using [18F]-fluorodeoxyglusoce ([18F]-FDG)
(50 studies, 94.3%), but few experiences were reported using [18F]F-Fluorestradiol (18F-FES,
1 study, 1.9%) and [18F]F-Fluorothymidine (18F-FLT, 2 studies, 3.8%).

The papers were divided into six categories according to the clinical context ex-
plored and/or the type of study: diagnosis and biological characterization, neoadjuvant
chemotherapy (NAC), staging and restaging, prognosis, dbPET, and technical papers.
The number of papers included in each category is shown in Table 1. Some papers were
included in more than one category, based on the discussed aim.

Overall, 47 out of 53 papers (88.7%) performed texture analysis, using several software
packages, mostly open source (n = 26; 49.1%). Data mining was performed in 24 papers
(45.3%) using ML and DL in 18 and 6 cases, respectively. In 20 out of 24 (83.3%) studies
performing data mining, validation was also performed.



Int. J. Mol. Sci. 2022, 23, 13409 3 of 23

Figure 1. PRISMA Flowchart of study selection and inclusion in the systematic review.

Table 1. Summary of general characteristics of studies.

Author Year Design Clinical Context/Type
of Study Aim RP Scanner N. Pts.

Liu et al. [27] 2021 R Diagnosis and biological
characterization

To predict molecular
subtype classification of

BC
FDG PET/CT 273

Krajnc et al. [28] 2021 P Diagnosis and biological
characterization To characterize BC FDG PET/CT 170

Ou et al. [29] 2020 R Diagnosis and biological
characterization

To differentiate BC from
breast lymphoma FDG PET/CT 44

Ou et al. [30] 2019 R Diagnosis and biological
characterization

To differentiate BC from
breast lymphoma FDG PET/CT 44

Acar et al. [31] 2019 R Diagnosis and biological
characterization

To predict
immunochemistry and

prognosis in BC
FDG PET/CT 72

Antunovic L
et al. [12] 2017 R Diagnosis and biological

characterization

To predict
Immunochemistry and

subtypes in BC
FDG PET/CT 43

Groheux D et al.
[32] 2015 P Diagnosis and biological

characterization

To predict
immunochemistry,

subtypes and pCR in BC
FDG PET/CT 146

Yoon HJ et al.
[33] 2015 R Diagnosis and biological

characterization

To predict invasive
components in breast

ductal carcinoma in situ
FDG PET/CT and

MRI 65



Int. J. Mol. Sci. 2022, 23, 13409 4 of 23

Table 1. Cont.

Author Year Design Clinical Context/Type
of Study Aim RP Scanner N. Pts.

Soussan M et al.
[34] 2014 R Diagnosis and biological

characterization To predict BC prognosis FDG PET/CT 54

Umutlu et al.
[35] 2022 R NAC To predict response after

NAC FDG PET/MRI 73

Fantini et al. [36] 2021 P NAC To predict response after
NAC FLT PET/CT 15

Choi et al. [37] 2020 R NAC To predict response after
NAC FDG PET/CT and

PET/MRI 56

Li et al. [38] 2020 R NAC To predict response after
NAC FDG PET/CT 100

Antunovic et al.
[39] 2019 R NAC To predict response after

NAC FDG PET/CT 291

Lee H et al. [40] 2019 R NAC To predict response after
NAC FDG PET/CT 435

Willaime J M Y
et al. [41] 2013 R NAC To predict response after

NAC FLT PET 15

Cheng et al. [42] 2022 R NAC To predict ALN mts FDG PET/CT 290

Eifer et al. [43] 2022 R Staging/re-staging
To differentiate between

ALN mts and
inflammation

FDG PET/CT 99

Chen et al. [44] 2022 R Staging/re-staging To detect occult ALN mts
in cN0 FDG PET/CT 180

Araz et al. [45] 2022 R Staging/re-staging To predict HR positivity FDG PET/CT 153

Moreau et al.
[46] 2022 P Staging/re-staging

To detect BC mts and to
determine treatment

response in metastatic BC
FDG PET/CT 60

Lee et al. [47] 2021 R Staging/re-staging To predict ALN mts FDG PET/CT 326

Li et al. [48] 2021 R Staging/re-staging To predict ALN mts FDG PET/CT 407

Song et al. [49] 2021 R Staging/re-staging To predict ALN mts FDG PET/CT 100

Schiano et al.
[50] 2019 R Staging/re-staging To detect early mts FDG PET/MRI 217

Jo et al. [51] 2022 R Prognosis To evaluate RFS FDG PET/CT 124

Bouron et al. [52] 2022 P Prognosis To predict prognosis in
TNBC FDG PET/CT 111

Weber et al. [53] 2021 R Prognosis To predict BC prognosis FDG PET/CT 50

Chang et al. [54] 2019 R Prognosis To predict BC prognosis FDG PET/CT 35

Groheux et al.
[55] 2017 R Prognosis

To predict
immunochemistry and

prognosis in BC
FDG PET/CT 143

Satoh et al. [56] 2022 R dbPET To predict BC FDG PET/CT and
dbPET 284

Satoh et al. [57] 2020 R dbPET To characterize BC FDG PET/CT and
dbPET 44

Hathi et al. [58] 2020 R dbPET To characterize BC FDG PET/CT and
dbPET 10
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Table 1. Cont.

Author Year Design Clinical Context/Type
of Study Aim RP Scanner N. Pts.

Moscoso A et al.
[59] 2018 R dbPET

To predict
immunochemistry and

subtypes in BC
FDG dbPET 127

Satoh et al. [60] 2020 R dbPET To predict BC FDG dbPET 105

Cheng L et al.
[61] 2017 R dbPET To predict response after

NAC FDG PET/CT and
dbPET 61

Castaldo et al.
[62] 2022 P Technical papers

Framework of analysis to
generate a combined

radiomic signature in BC
FDG PET/MRI 36

Takahashi et al.
[63] 2022 R Technical papers Deep learning to improve

diagnostic accuracy in BC FDG PET/CT 500

Aide et al. [64] 2018 P Technical papers
PET/CT acquisition

protocol optimization to
improve BC diagnosis

FDG PET/CT 47

Boughdad S et al.
[65] 2018 R Technical papers Robustness of textural

features in BC FDG PET/CT 552

Orlhac F et al.
[66] 2018 R Technical papers

Harmonization method
for multicenter radiomic

study
FDG PET 63

Yang Z et al. [67] 2017 R Technical papers

Assessment of estrogen
receptor from
intratumoral
heterogeneity

FES PET/CT 46

Orlhac F et al.
[68] 2017 R Technical papers Robustness of textural

features in BC FDG PET/CT 54

Hatt M et al. [69] 2015 R Technical papers
Textural features to

quantify intratumoral BC
heterogeneity

FDG PET/CT 555

Orlhac F et al.
[70] 2014 P Technical papers Robustness of textural

features in BC FDG PET/CT 106

Chen et al. [71] 2022 R

Diagnosis and biological
characteriza-
tion/Staging

re-staging

To predict HER2
expression in BC FDG PET/CT 271

Umutlu et al.
[72] 2021 R Diagnosis and biological

characterization/NAC
Breast cancer phenotyping

and tumor decoding FDG PET/MRI 124

Molina Garcia
et.al [73] 2018 P Diagnosis and biological

characterization/NAC To predict BC prognosis FDG PET/CT 68

Lemarignier et al.
[74] 2017 R Diagnosis and biological

characterization/NAC
To characterize BC (T

stage, stage and histology) FDG PET/CT 171

Ha et al. [75] 2017 R
Diagnosis and biological

characteriza-
tion/NAC/Prognosis

To predict
immunochemistry,

response after NAC and
prognosis in BC

FDG PET/CT 73

Aide et al. [76] 2021 P
Diagnosis and biological

characteriza-
tion/Prognosis

To predict
immunochemistry and

prognosis in BC
FDG PET/CT 38
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Table 1. Cont.

Author Year Design Clinical Context/Type
of Study Aim RP Scanner N. Pts.

Huang et al. [77] 2018 R
Diagnosis and Biological

Characteriza-
tion/Prognosis

To predict
immunochemistry and

prognosis in BC
FDG PET/CT 113

Yoon et al. [78] 2019 R NAC/Prognosis To predict response after
NAC FDG PET/CT and

MRI 83

ALN: axillary lymph nodes; BC: breast cancer; BSGI: breast-specific gamma imaging; dbPET: dedicated breast
PET; FDG: [18F]F-Fluorodeoxyglucose; FES: [18F]F-Fluorestradiol; FLT: [18F]F-Fluorothymidine; HR: hormone
receptors; HER-2: Human epidermal growth factor receptor 2; MTS: metastases; NAC: neoadjuvant chemotherapy;
pCR: pathological complete response; P: prospective; R: retrospective; RFS: relapse free survival; RP: radiophar-
maceutical; TNBC: TN breast cancer.

2.1. Diagnosis and Biological Characterization

The wide reach of screening programs allows earlier detection of BC in the popula-
tion, significantly improving patients’ outcomes [79]. However, BC screening has some
limitations and improving radiological performances in this subset is an unmet need of
oncology [80–83]. Indeed, after detecting a lesion with screening programs, a biopsy is
usually performed, with a certain number of cases hesitating in benign or uncertain find-
ings. Therefore, several authors have tried to solve this issue by applying radiomics to
many imaging modalities, including PET/CT/MRI, to obtain “free” information on newly
diagnosed breast lesions from already available imaging data. Krajnc et al. [28] found
a high performance of holomic models in BC detection (80% sensitivity, 78% specificity,
80% accuracy, 0.81 area under the curve (AUC)) and TNBC tumor identification (85%
sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). For the same purpose, an intermediate
result was obtained with the SUVmax model (AUC 0.76 in cancer detection and 0.70 in
the prediction of TNBC subtype). Conversely, holomic models demonstrated only low
performance for determining receptor status and luminal A/B subtype (0.46–0.68 AUC).
Moreover, Lemarignier et al. [74] reported that all the texture features extracted from FDG
PET demonstrated significant correlations with tumor size (T2 vs. T3), the American Joint
Committee on Cancer stage (stage II vs. stage III) and the histological type (invasive ductal
carcinoma vs. invasive lobular carcinoma).

Yoon et al. [33] performed a texture-based analysis of intratumoral metabolic hetero-
geneity aiming to reveal the presence of tumoral invasive components in a retrospective
analysis of 65 patients undergoing FDG PET/CT for ductal carcinoma in situ (DCIS). The
authors reported a lower AUC of cumulative SUV histograms (AUC-CSH), a parameter
reflecting higher intratumoral metabolic heterogeneity, was associated with an underesti-
mation of invasive components. Thus, sentinel lymph node biopsy should be considered in
patients affected by DCIS with low AUC-CSH.

Ou and colleagues [29,30] investigated the ability of FDG PET/CT radiomic features
to discriminate BC from breast lymphoma using a ML approach. PETa (based on clinical,
SUV and radiomic features from PET images) and CTa (clinical and radiomic features
from CT images) models showed the best ability to discriminate between two different
breast malignancies, both in training and in validation groups (AUCs of 0.867 and 0.806
for PETa model, AUCs of 0.891 and 0.759 for CTa model, respectively). Moreover, SUV
metrics (particularly SUVmax) extracted from FDG PET/CT images showed potential in the
differentiation between breast lymphoma and carcinoma as well as for the differentiation
of the different subtypes of lymphoma [30].

Another important application of radiomics is in the biological characterization of
BC. Indeed, different BC subtypes present very different behaviours in terms of incidence,
clinical-pathological features, disease natural history and prognosis [84]. Therefore, several
authors applied radiomic features to predict the biologic characterization of BC [12,73,77].
Liu et al. [27] compared conventional PET parameters (SUVmax, SUVmean, SUVpeak,
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MTV, TLG) and PET-derived radiomic features in the prediction of molecular subtype
classification of BC. As a result, PET-derived radiomic features outperformed every in-
dividual conventional PET parameter, including luminal vs. non-luminal (AUC = 0.913
vs. AUC = 0.725), HER-2+ vs. HER-2– (AUC = 0.912 vs. AUC = 0.820), and TNBC vs.
non-TNBC classification (AUC = 0.968 vs. AUC = 0.901). Similarly, Umutlu et al. [72],
in a cohort of 124 patients undergoing FDG PET/MRI, extracted radiomic features from
both types of images (PET and MRI). The authors found that texture features extracted
from MRI images had the best performance in differentiating luminal A from luminal
B cancers (AUC = 0.98; accuracy = 97.3). Moreover, PET-derived radiomic features pro-
vided the best accuracy in the grading determination (AUC = 0.71), while both PET and
MRI-derived features could predict hormone receptor status (AUC = 0.87 and 0.88 for
estrogen receptor (ER) and progesterone receptor (PR), respectively), tumoral proliferation
index, expressed in Ki-67 (AUC = 0.997), and lymph nodes and distant metastatic disease
(AUC = 0.81 and 0.99, respectively). A similar result was reported by Aide et al. [76]. In a
cohort of 38 luminal non-metastatic BC, the authors extracted some radiomic features able
to correlate the heterogeneity of metabolic activity on FDG PET with that of ER and PR
expressions. Conversely, in 153 patients who underwent preoperative FDG PET/CT, Araz
et al. [45] found that only SUVmax, SUVmean, and SUVpeak were significantly higher in
HR negative patients, whereas none of the radiomics features were predictors for HR status.
This result is consistent with that published by other papers [74], in particular Ha et al. [75],
who reported that three tumor clusters obtained by unsupervised clustering based on FDG
PET-related texture features were not associated with ER, PR, or HER-2 status, but only
with ki-67 index. Likewise, Groheux et al. [32] did not find radiomic features correlated
with clinical and histopathological characteristics or with BC subgroups in a cohort of
171 patients with stage II-III BC. Acar et al. [31] reported an intermediate result between the
papers described above. In this work, both conventional and radiomic parameters extracted
from FDG PET correlated with ER expression, but only conventional PET metrics were able
to predict Ki-67 index and the status of PR and HER-2. Chen et al. [71] investigated the
ability of ML, based on FDG PET, to predict HER-2 status in BC patients. The best results
were obtained by the XGBoost model based on PET/CTmean or PET/CTconcat radiomic
fusion features. Finally, Soussan et al. [34] reported that the best performance in identifying
TNBC was obtained by combining SUVmax and High-Gray-level Run Emphasis (HGRE), a
textural index extracted from delineated tumor volume on FDG PET/CT (AUC = 0.83).

2.2. Neoadjuvant Chemotherapy

The treatment of locally advanced BC (LABC) usually differs from that of early BC
(EBC) as in LABC, surgery is usually preceded by neoadjuvant chemotherapy (NAC) [85].
However, NAC indications are have been widely debated in the literature after recent
evidence suggested consideration of NAC in TNBC and HER-2-positive BC, regardless of
disease extension [86]. The literature underlines the essential value of pathological complete
response (pCR) after NAC, which is significantly associated with prolonged disease free
survival (DFS) and overall survival (OS) [87–89]. In this context, several authors extracted
radiomic features to predict pCR from baseline FDG PET/CT. Umutlu et al. [35] recently
assessed the potential role of baseline multiparametric FDG PET/MRI-based radiomics
to predict pCR after NAC in 73 female patients with newly diagnosed therapy-naïve BC.
The combination of all MRI sequences and PET data showed the best results in terms
of AUC and negative predictive value (NPV) (0.8 and 79.5%, respectively). Moreover,
in a subgroup of HR+/HER-2− patients, the best AUC (0.94) for predicting pCR was
obtained by combining all the MRI and PET data. This result is consistent with the previous
works by Antunovic et al. [39], Lee et al. [40], Yoon et al. [78] and Ha et al. [75]. Similarly,
Li et al. [38] found some baseline FDG PET/CT derived radiomic features able to predict
efficacy prior to NAC (prediction accuracy (PA) = 0.857; AUC = 0.844 on the training split
set and PA = 0.767; AUC = 0.722 on the independent validation set) in a retrospective
analysis of 100 BC patients. Interestingly, incorporating age in the analysis improved PA
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to 0.857 (AUC = 0.958) and 0.8 (AUC = 0.73) for the split set and independent validation
set, respectively, outperforming the clinical prediction model. Similarly, Molina-Garcia
et al. [73] reported the usefulness of textural variables obtained from baseline FDG PET/CT
before NAC for predicting OS and DFS. Interestingly, radiomic-derived parameters were
equally as strong at predicting patient outcomes as PET at the diagnosis stage.

Choi and colleagues [37] in a further step, introduced a breast PET/MRI image deep
learning model (convolutional neural network—CNN) and compared it with the conven-
tional parameters. They found that the application of CNN could improve the AUC of
conventional parameters, except for baseline diffusion MRI images.

Conversely, in the work by Lemarignier et al. [74] and Cheng et al. [61], radiomic
features could not predict pCR. However, the modifications in conventional and radiomic
PET features, evaluated between baseline and after two cycles of NAC, resulted in increased
predictive strength for pCR.

Investigating the clinical value of [18F]F-fluoroestradiol (FES) in the assessment of
the ER status and its intratumoral heterogeneity expression in BC patients was the main
aim of the work published by Yang et al. [67]. These authors found a good correlation
between FES, FDG uptake (SUVmax and SUVmean), and pathological features (ER, PR,
HER-2, Ki67%, and tumor size). Furthermore, they suggest the use of SUVmean instead of
SUVmax because it provided a slightly better correlation between quantitative tumor FES
uptake and hormone receptor expression (ER, PR) and HER-2 amplification.

Finally, Fantini and colleagues [36] extracted radiomic advanced textural features from
[18F]F-FLT (FLT) PET/CT and explored their accuracy in the prediction of response to NAC
in a cohort of 15 patients with LABC. A combination of SUVmax and textural feature index
IVH_VolumeIntFract_90 was identified as the best combination to classify PET response.
Moreover, the combination of PET response, ID range, and ID_Coefficient of Variation was
able to classify pathological response to NAC. A similar result was obtained by Willaime
et al. [41], who showed a correlation between FLT PET/CT derived radiomic features and
both partial pathological response and pCR after NAC in 14 BC patients.

2.3. Staging and Restaging

FDG PET/CT is an imaging modality widely used in oncology to assess the glycolytic
metabolism and is based on the so-called “Warburg effect” [90]. Specifically, malignant
cells have an increased glucose metabolism in comparison with normal tissues, and this
metabolic change can be easily detected by FDG PET/CT in numerous malignancies,
including BC [91]. In particular, in patients with BC, axillary lymph node (ALN) metastasis
is one of the most significant clinical factors, dictating the treatment strategy and predicting
survival [92]. For this reason, in the last years, several papers have focused on the potential
diagnostic role of PET radiomics for predicting ALN metastasis [43,44,47–49]. Li et al. [48]
constructed an AI-assisted diagnosis system using deep-learning technology to improve
clinicians’ diagnostic accuracy in the identification of ALN metastasis. They analyzed
404 BC patients who underwent FDG PET/CT before surgery. The AI model did not
outperform the clinicians’ image analysis, but the diagnostic accuracies were considerably
improved when combining both evaluations. Indeed, the two clinicians’ sensitivities
of 59.8% and 57.4% increased to 68.6% and 64.2%, respectively, whereas the clinicians’
specificities of 99.0% and 99.5% remained unchanged. The authors concluded by suggesting
a possible assistance role for AI in assisting clinicians in ambiguous cases.

On the other hand, Song and colleagues [49] proposed a ML-based radiomic model
developed analysing FDG PET/CT with the aim of predicting ALN metastasis in a cohort of
100 patients with invasive ductal BC. The model showed excellent results (90.9%, 71.4%, and
80% for sensitivity, specificity, and accuracy, respectively), which suggest it as a promising
tool for the preoperative detection of ALN metastasis.

Regardless of negative preoperative investigations (including ultrasound imaging,
PET/CT, or fine-needle aspiration), some cN0 patients develop metastases. As a conse-
quence, sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND)
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are frequently performed, although they are invasive procedures not free from complica-
tions [93,94]. Therefore, finding a non-invasive tool able to detect occult ALN metastases
in cN0 patients would be very useful. In this subset of patients, Chen et al. [44] identi-
fied 14 FDG PET/CT-derived radiomics features able to perceive ALN metastasis. Then,
random forest (RF), support vector machine (SVM), stochastic gradient descent (SGD),
and k-nearest neighbour (KNN) were used to build the prediction models. Among the
four models, RF showed the highest accuracy (mean AUC 81.2%, p < 0.001) and could
potentially help the clinicians in determining ALN status in patients with cN0.

Furthermore, Lee et al. [47] investigated the role of textural parameters, extracted
from peritumoral breast adipose tissue, on pre-operative FDG PET/CT in predicting ALN
metastasis in 326 BC patients. Among 38 features extracted, the highest AUC value (0.830)
was shown by grey-level co-occurrence matrix (GLCM) entropy, which outperformed
visual analysis (0.739, p < 0.05) and was comparable to LN SUVmax (0.793, p < 0.05).
Interestingly, GLCM entropy could also predict ALN metastasis in patients with negative
findings on visual analysis (AUC: 0.759). This study highlights the importance of tumor
microenvironment, such as adipose tissue, in the progression and metastatic spread of BC.

In the era of COVID-19 mRNA vaccination, a new challenge faced by clinicians is the
correct differentiation between metastatic and reactive axillary LN. In their retrospective
study, Eifer et al. [43] aimed to differentiate between metastatic axillary lymphadenopathy
in BC patients and reactive inflammatory LN in those who received anti-COVID-19 vaccine
using a radiomics and a ML approach. According to the RF and KNN models, combined
PET/CT features had the highest AUC values for differentiating between axillary metastasis
and inflammation post-vaccination, followed by CT and PET features. In particular, the
first-order, GLRLM, and GLDM features were those with AUC values above 0.9. Based on
these results, the authors suggest a potential application in discriminating between benign
and malignant LN.

Although most of the studies have been based on PET/CT, Schiano et al. [50] have
combined radiomics parameters from hybrid FDG PET/MRI with the expression level
of the transcriptional factor Yin Yang 1 (YY1) for the detection of early metastases. YY1
level was significantly overexpressed in the ER+/PR+/HER-2- subtype of BC patients with
synchronous metastasis at staging compared with metachronous metastasis and healthy
subjects (p < 0.001), and it correlated significantly with SUVmax (r = 0.48). Hence, the
combination of functional FDG PET/MRI parameters and molecular determination of YY1
could represent a novel integrated approach to predict synchronous metastatic disease with
more accuracy than FDG PET/MRI alone.

In the last decades, several criteria, both morphological and metabolic (e.g., RECIST
and PERCIST), have been proposed to assess treatment response in oncology. Nevertheless,
manual segmentation of all lesions is time consuming in clinical practice, especially in
patients with multiple metastases. For this reason, Moreau and colleagues [46] trained
two deep-learning models in order to automatically segment BC metastatic lesions on the
baseline and follow-up FDG PET/CT of 60 patients. The authors assessed four imaging
biomarkers, i.e., SULpeak, TLG, PET Bone Index, and PET Liver Index, with SULpeak
identified as the best biomarker to assess patients’ response (sensitivity 87%, specificity
87%), representing a promising tool for automatic segmentation of metastatc BC lesions.

2.4. Prognosis

Several variables concur in defining BC prognosis, including clinical-pathological
features and treatment selection [9,95]. Moreover, new insights in imaging analysis demon-
strated an incremental value in stratifying the prognosis of BC patients [81]. Among imag-
ing modalities, several papers have reported the prognostic meaning of FDG PET/CT [8,96].
Bouron et al. [52] aimed to identify the association among metabolic, volumetric and textu-
ral parameters extracted from FDG PET/CT at diagnosis and clinical outcomes, expressed
by DFS and OS, in 111 TNBC patients. Five metabolic and volumetric parameters (i.e.,
SUVmax, SUVmean, SUVpeak, MTV, and TLG), and six textural features (i.e., entropy,
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homogeneity, Short-Run Emphasis, Long-Run Emphasis, Low-Gray-level Zone Emphasis,
and High-Gray-level Zone Emphasis) derived from the primary tumor were analysed.
While in the univariate analysis, high TLG, MTV and entropy of the primary tumor were
associated with DFS and OS, in the multivariate analysis only MTV of the primary tumor,
with a threshold value of 9.3, correlated with a shorter OS. Similarly, two more studies
reported that, on multivariate analysis, primary tumor MTV was an independent pre-
dictor of relapse free survival (RFS) [51] and event free survival (EFS) [55], respectively,
whereas textural analysis of PET images did not show any added value. In another study
with similar aims, only MTVwb was an independent predictor for shorter progression
free survival (PFS) in 35 patients with newly diagnosed invasive ductal BC (HR: 8.29,
95% CI: 2.17–31.64, p = 0.0020) [54]. Moreover, a higher clinical stage was found to be an
independent prognostic factor for OS.

A prognostic significance for FDG PET radiomic features was found by Aide et al. [76].
Skewness_ER was identified as a predictor of 8y-EFS using the univariable Kaplan–Meier
method, although this was not confirmed by multivariate analysis. Moreover, Yoon et al. [78]
found that only high-intensity zone emphasis was a significant predictor of recurrence
(p = 0.027) in a cohort of 83 patients with LABC who underwent FDG PET at diagnosis.

Two papers applied AI on FDG PET to obtain prognostic data. In the paper published
by Huang et al. [77], the three tumor clusters identified with an unsupervised clustering
of FDG PET and MRI-derived parameters showed a significant correlation not only with
tumor molecular subtypes and immunohistochemistry, but also with relapse free survival
(RFS). This is consistent with the results of Ha et al. [75]. Furthermore, Weber et al. [53]
evaluated the accuracy of a neural network, trained for lymphoma and lung cancer, in
the correct detection and segmentation of pathological uptakes in patients with advanced
BC. Surprisingly, the authors report a high correlation between AI-derived and manually
segmented MTV (R2 = 0.91; p < 0.001). Moreover, in multivariate analysis, AI-derived MTV
(both whole body and organ-wise) resulted a predictor of OS.

2.5. dbPET

dbPET consists of high resolution molecular imaging acquired on hanging uncom-
pressed breast, using a high resolution full-ring breast-dedicated tomograph [97]. The
first experience using dbPET was published by Moliner et al. [98] in 2010. This imaging
modality provides a very high detection rate, thanks to its 1.5–2.0 mm spatial resolution [99].
In a few studies, textural features were extracted to make a direct comparison between
dbPET and whole-body PET [57–59]. Satoh et al. [57], in a retrospective study of 44 pa-
tients, compared the two tomographs in classifying tumor characteristics of BC, obtaining
similar results for both dbPET and whole-body PET/CT. Conversely, Moscoso et al. [59],
demonstrated strong correlations between FDG dbPET-derived radiomic features and both
immunohistochemistry and molecular subtypes of BC, stronger than those obtained by
whole-body PET. Hathi et al. [58] characterized similarities and differences in the uptake of
FDG between bilateral dbPET and wbPET in a cohort of ten patients with biopsy-confirmed
LABC before starting NAC. FDG uptake measurements and 20 radiomic features related
to morphology, tumor intensity, and texture were calculated and compared to predict the
response to NAC. dbPET-derived features outperformed wbPET ones when using SULpeak
(five times increased in comparison with wbPET) and spatial heterogeneity features. The
authors conclude that dbPET could be useful for prediction of primary tumor response
to NAC.

Analysing dbPET images, Satoh et al. [60] developed a ML model with SVM including
quantitative parameters that was able to detect early BC using dbPET. They found that
SVM outperformed visual assessment for this purpose (0.77 vs. 0.89, 0.57 vs. 0.94, 0.77
vs. 0.77 and 0.71 vs. 0.85, for AUC, sensitivity, specificity, and accuracy, respectively).
Cheng et al. [42] aimed to develop a ML model combining dbPET features and clinical
variables to predict pathological involvement of ALN in 420 early-stage BC. The AUC
of the integrated model, which included six clinical-pathological factors and five dbPET
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radiomics parameters, was 0.94 in the training set (n = 203) and 0.93 in the validation set
(n = 87) (p < 0.05 in both cases). Moreover, in the clinical N0 subgroup, NPV and PPV were
96.9% and 92.7%, respectively. The study highlights the potential positive impact of ML for
improving true negative and true positive detection of ALN.

More recently, Satoh et al. [56] attempted to determine the best DL model to predict
BC. The model was trained with 458 breasts (including 109 breast and 349 non-breast
cancers) and tested with 160 breasts, comprehending 43 cancers and 117 non-breast cancers.
The deep learning model showed 93% for both sensitivity and specificity, compared with
77–89% and 79–100% obtained from two expert radiologists. In addition, the diagnostic
performance of the model (AUC = 0.937) was not significantly different from that of the
experts (AUC = 0.983, p = 0.095; AUC = 0.941, p = 0.907).

2.6. Techincal Papers

The lack of standardization of features calculation and methodology hinders compar-
isons of the results of radiomic studies in the literature [68,100]. After features extraction,
the reproducibility of each features, robustness and sensitivity should be investigated [101].
To allow for texture index value interpretation, Orlhac et al. [68] investigated the changes
in value of six texture indices computed from simulated and real patient data. Variability
in texture index values as a function of voxel size (variations up to 85.8% for the most
homogeneous sphere model) and edge effects (variations up to 29%) was demonstrated.

Boughdad et al. [65] found significant SUVs and textural features differences as a
function of age in normal breast tissue and in BC radiomic phenotype with triple-negative
tumors being the most affected. Their results suggest that age should be considered as a
covariable in radiomic models.

In order to clarify the relationship between texture features and conventional indices
(SUV, MTV, TLG), Orlhac et al. [70] studied 31 different TFs in 3 different tumor types.
They reported that only 17 of 31 texture indices were robust with respect to the tumor
segmentation method. Additionally, they proposed that a resampling formula with at least
32 gray levels should be used to preserve the relationship between textural features and
SUV. Moreover, Hatt et al. [69] demonstrated the correlation (Spearman rank correlation
rs = 0.74) between tumor heterogeneity (entropy) and metabolic tumor volume in a multi-
cancer site BC patient cohort.

A further complexity occurs in multicenter studies. It is necessary to remove the center
effect (i.e., scanner, acquisition protocol) while preserving patient-specific effects. Orlhac
et al. [66] proposed a post-reconstruction harmonization method efficient at removing
multicenter effects for textural features and SUVs. After harmonization, none of the nine
features, extracted form healthy liver tissue ROI in BC patients, significantly differed
between the two departments (p > 0.1).

The influence of acquisition protocol and reconstruction setting on TFs was investi-
gated by Aide et al. [64]. A prediction model for tumor classification was built using a
random forests method. Matrix size and PSF modelling appeared to improve discrimination
between immunohistochemical subtypes (luminal versus non-luminal) in breast cancer.

Recently, some authors have developed AI models in order to improve prognosis [62]
and increase diagnostic accuracy [63] in BC patients. Castaldo et al. [62], in a pilot study,
evaluated different normalization methods on primary component analysis (PCA), both
within-subject and between-subjects, in order to generate a combined radiomic signature for
a more precise breast cancer prognosis, helping clinicians to achieve improved therapeutic
decision-making and make progress towards ever more personalized medicine. The results
were compared and validated on twenty-seven patients to investigate the tumor grade, Ki-
67 index, and molecular cancer subtypes using classification methods (LogitBoost, random
forest, and linear discriminant analysis).

To increase the diagnostic accuracy of PET/CT, deep learning models using images
derived from four different degrees (i.e., 0◦, 30◦, 60◦, and 90◦) of PET maximum-intensity
projection (MIP) were developed by Takahashi et al. [63]. The models were trained with
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400 images (200 cancers and 200 non-cancers) and tested on 50 breast and 50 non-breast
cancers. The promising sensitivity (80% to 98%) and specificity (76% to 92%) obtained in
the different models, suggest that a deep learning model may be able to assist radiologists
in their diagnostic work in the future.

2.7. Radiomics Quality Assessment

To assess the overall quality of the considered radiomics studies, we adopted the RQS
metric. All the considered studies had an RQS between 5 (13.89%) and 22 (61.11%). The
distribution of the RQS scores of the studies in Figure 2 shows that most of the studies are
non-compliant with the best-practice procedures. Nevertheless, 15% of the studies have
achieved a score that is representative of a study that highly satisfies the research criteria in
the radiomics area.

Figure 2. Histograms of average RQS scores according to the blinded analysis of two authors, based
on the previous study of Lambin and colleagues [16].

3. Materials and Methods
3.1. Literature Search Strategy

A search on the most relevant databases and online sources (Pubmed/Medline, Web
of Science, Scopus) was performed running the following query string: “(PET OR Positron
Emission Tomography OR PET/CT or PET/MRI) AND (Breast OR Breast Cancer) AND
(Radiomics OR Texture OR Texture Analysis OR Machine Learning OR Deep Learning OR
Artificial Intelligence OR AI) NOT REVIEW”. English-language original articles published
before 15 June 2022 were considered.

3.2. Study Selection

Titles and abstracts were independently reviewed by three authors (L.U.; L.M.; and
A.C.) to evaluate study inclusion. Full articles were retrieved when the abstract was
considered relevant. Inclusion criteria applied during selection were as follows: (a) articles
concerning BC; and (b) articles on texture analysis derived from PET/CT, PET/MRI and/or
computer science applications. The following papers were considered ineligible: (a) review
articles; (b) articles not in the English language; and (c) studies not within the field of
interest (i.e., not radiomics/AI aims, not PET images, conference papers, not human
studies, and not breast cancer). The data were summarized in a database with the following
fields: first author, journal, year, title, exclusion/issues, imaging modality, computer
science area, number of patients, training set size, test set size, validation set size, and the
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setting/purpose of the study (diagnosis and biological characterization, NAC, staging and
restaging, prognosis, dbPET and technical papers) for the subsequent data analysis.

For each study, the radiomic analysis was assessed based on the radiomic quality score
(RQS) [16]. For a robust calculation, RQS was blindly computed by two of the authors
(L.U.and L.M.) and discrepancies were discussed to reach a consensus.

4. Discussion and Conclusions

This systematic review provides a state-of-the-art picture of the application of radiomic
features and AI on FDG PET in BC. Due to its high prevalence, BC is a high impact neoplasm.
Therefore, the application of radiomics and AI on this type of malignancy can have a
very high relevance in terms of precision medicine, patient management and prognosis.
However, although much work has been conducted in the last five years, further research is
required before these approaches can be implemented in daily clinical practice. Promising
results have been obtained in the characterization of the primary tumor characteristics,
in particular, the molecular subtypes, although these have not been confirmed by all
the studies analyzed. If validated in larger studies, or even through the use of big data,
radiomics could provide an additional tool to further explore BC characteristics, alongside
what breast biopsy already offers. In this context, the papers comparing dbPET and wbPET
suggest the superiority of dbPET-derived radiomic features. Nevertheless, dbPET does not
allow exploration of eventual metastases at a distance.

The application of PET radiomics for the prognostic stratification of BC has provided
disappointing results to date, with quantitative parameters, particularly MTV, still appear-
ing as the most reliable for this purpose [9]. Currently, the most interesting scenarios for PET
radiomic application in BC appear to be the evaluation of ALN status and the prediction
of pCR after NAC. The early identification of ALN metastasis has a large impact on a BC
patient’s prognosis, as well as on the selection of the invasiveness of the surgical procedure
performed (SLNB vs. ALND) [102]. Similarly, identifying patients who will not reach
pCR after NAC is essential for offering a second-line therapy in patients requiring it [86].
However, PET radiomic studies are still very inhomogeneous and lack the reproducibility
required for introduction into daily clinical practice, as already suggested by previous
analyses [20,81,103]. In this context, considering the overview in Tables 2 and 3, a trend for
a rudimentary standardization seems to have started. The newest studies in the top half of
the table at least report substantial information regarding the methods used for radiomic
analysis, whereas the older studies at the bottom of the table lack methodological data.
This might be considered a first step towards the use of solid, recognized radiomic analysis
systems, which we hope will allow the widespread use of AI for selected applications in
the near future.

Finally, some settings of BC still remain almost unexplored with radiomic analysis. In
particular, the prediction of metastasis at distance at baseline PET imaging was performed
by only one paper [50], but with encouraging results. Similarly, radiomic-assisted therapy
response assessment was only explored by one study [46], which introduced an interesting
automatic segmentation of BC lesions using DL. We encourage researchers to investigate
the potentialities of radiomic analysis and AI also on these clinical settings of BC.

Table 2. Summary of studies’ radiomic features analyses (from newest to older).

Author TA FTs n. FTs Types Sw TA Sw
Class

Selected
FTs Statistical Test RQS (%)

[16]

Chen et al. [44] Yes 3124

First-order, GLCM,
GLRLM, GLDM,

NGTDM, GLSZM,
shape

3D slicer OS 14 t-test, LASSO 15 (41.67%)
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Table 2. Cont.

Author TA FTs n. FTs Types Sw TA Sw
Class

Selected
FTs Statistical Test RQS (%)

[16]

Umutlu et al.
[35] Yes 101

First-order, GLCM,
GLRLM, NGLDM,
NGTDM, GLSZM

ITK-SNAP OS 6
elastic net

combining Lasso
and ridge regression

13 (36.11%)

Eifer et al. [43] Yes 110

First-order, GLCM,
GLRLM, GLDM,

NGTDM, GLSZM,
shape

Python
Software OS 18 t-test, Chi square 12 (33.33%)

Jo et al. [51] Yes 7 First-order Lifex OS 7

ROC, Cox
proportional-

hazards
model

10 (27.78%)

Cheng et al.
[42] Yes 851

First-order, GLCM,
GLRLM, GLDM,

NGTDM, GLSZM,
Shape, Wavelat

3D slicer OS 34 LASSO 13 (36.11%)

Castaldo et al.
[62] Yes 74 First- and

second-order PMOD C 7 Spearman
correlation, PCA 18 (50.00%)

Bouron et al.
[52] Yes 6

Homogeneity,
entropy, SRE, LRE,

LGZE, HGZE
DOSIsoft C 6 PCA, ROC, log-rank

test 16 (44.44%)

Araz et al. [45] Yes 42 First- and
higher-order Lifex OS 2 binary logistic

regression analysis 7 (19.44%)

Satoh et al. [56] No nd nd nd nd nd ICC, ROC 8 (22.22%)

Takahashi et al.
[63] No nd nd nd nd nd ICC, ROC 5 (13.89%)

Moreau et al.
[46] No nd nd nd nd nd

Wilcoxon,
Kolmogorov–

Smirnov, Spearman
correlation

5 (13.89%)

Chen et al. [71] Yes 2436
First-order, GLCM,
GLRLM, GLDM,
GLSZM, shape

3D slicer OS 34

ICC, variance
threshold,

Mann–Whitney U
test

12 (33.33%)

Lee et al. [47] Yes 38
First-order, GLCM,
GLRLM, GLZLM,

NGLDM
Lifex OS 38 t-test, Chi square,

ROC 10 (27.78%)

Liu et al. [27] Yes 1710
First-order, GLCM,
GLRLM, NGLDM,
NGTDM, GLSZM

Matlab C 1710 Wilcoxon and
LASSO 12 (33.33%)

Fantini et al.
[36] Yes 148 First- and

higher-order, shape Matlab C 39 ICC, LASSO 19 (52.78%)

Umutlu et al.
[72] Yes 101

First-order, GLCM,
GLRLM, NGLDM,
NGTDM, GLSZM

CERR C 6 Lasso regression 14 (38.89%)

Krajnc et al.
[28] Yes 121

First-order, GLCM,
GLSZM, NGTDM,

shape
MUW OS 77 Pearson correlation 22 (61.11%)

Weber et al.
[53] Yes nd nd nd OS nd

Wilcoxon,
Mann–Whitney U

test
5 (13.89%)
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Table 2. Cont.

Author TA FTs n. FTs Types Sw TA Sw
Class

Selected
FTs Statistical Test RQS (%)

[16]

Aide et al. [76] Yes nd First-order, GLCM,
NGLDM Lifex OS nd Mann–Whitney,

ROC 19 (52.78%)

Li et al. [48] No nd nd nd OS nd nd 8 (22.22%)

Song et al. [49] Yes 792 nd 3D slicer OS 30 nd 7 (19.44%)

Satoh et al. [57] Yes 38 GLCM, GLRLM,
GLZSM, NGLDM PTexture OS 38 PCA 8 (22.22%)

Hathi et al. [58] Yes 20 First-order, GLCM,
NGTDM, shape 3D slicer OS 20 Wilcoxon 7 (19.44%)

Choi et al. [37] No nd nd nd OS nd Chi square,
Mann–Whitney U 8 (22.22%)

Satoh et al. [60] No nd nd nd nd nd Chi square, Fischer,
Mann–Whitney U 8 (22.22%)

Li et al. [38] Yes 104

First-order, GLCM,
NGTDM, GLRLM,
GLSZM, GLDLM,

shape

3D slicer OS 10 Wilcoxon 13 (36.11%)

Ou et al. [29] Yes 55
First-order, GLCM,
NGLDM, GLRLM,

GLZLM, shape
LifeX OS 19 LASSO 11 (30.56%)

Schiano et al.
[50] Yes 12 GLCM PMOD C 15

Spearman
correlation,
Wilcoxon

12 (33.33%)

Chang et al.
[54] Yes 15 GLCM CGITA OS 15 Spearman

correlation, ROC 9 (25.00%)

Ou et al. [30] Yes 12
First-order, GLCM,
GLRLM, NGLDM,

GLZLM, shape
LifeX OS 6 ROC 7 (19.44%)

Acar et al. [31] Yes nd
First-order, GLCM,
GLRLM, NGLDM,

GLZLM, shape
LifeX OS nd Mann–Whitney U

and Kruskal–Wallis 7 (19.44%)

Antunovic et al.
[39] Yes nd First-, second- and

higher-order LifeX OS nd ROC, LASSO 11 (30.56%)

Aide et al. [64] Yes 20 GLCM, NGLDM,
GLZLM LifeX OS 20 Spearman

correlation 17 (47.22%)

Lee H et al.
[40] Yes nd First-order, GLCM,

GLRLM Mazda OS 19 Wilcoxon, Chi
square 10 (27.78%)

Huang S Y
et al. [77] Yes 42 First-order, shape,

texture Pyradiomics OS 10 Chi square 11 (30.56%)

Boughdad S
et al. [65] Yes 31 GLCM, GLRLM,

NGLDM, GLZLM LifeX OS 6 Spearman
correlation, Anova 6 (16.67%)

Molina-Garcia
D et al. [73] Yes 16 GLCM, GLRLM Matlab C 3

Kolmogorov–
Smirnov,

Mann–Whitney,
ROC

17 (47.22%)

Yoon HJ et al.
[78] Yes 46 First-, second-order CGITA OS 37

Kolmogorov–
Smirnov,

Mann–Whitney,
ROC

10 (27.78%)
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Table 2. Cont.

Author TA FTs n. FTs Types Sw TA Sw
Class

Selected
FTs Statistical Test RQS (%)

[16]

Orlhac et al.
[66] Yes 9 GLCM, GLRLM,

GLZLM LifeX OS 6 Wilcoxon 9 (25.00%)

Moscoso A
et al. [59] Yes nd First-order, GLCM,

GLSZM Matlab C 10
Spearman
correlation,

Kruskal–Wallis
9 (25.00%)

Antunovic et al.
[12] Yes 17 First-order, shape,

size Matlab C 12 Pearson correlation 8 (22.22%)

Cheng et al.
[61] Yes 3 Skewness, entropy,

coarseness Matlab C 3 Chi square, ROC 9 (25.00%)

Ha et al. [75] Yes 109
GLCM, GLRLM,

NGLDM, GLZLM,
GLSZM

CGITA OS 109 Pearson correlation 8 (22.22%)

Yang et al. [67] Yes 5 Pathological features nd nd 5 Spearman
correlation 6 (16.67%)

Groheux et al.
[55] Yes nd GLCM nd nd 3

Wilcoxon test,
Benjamini–
Hochberg
method

6 (16.67%)

Orlhac et al.
[68] Yes 6

Homogeneity,
entropy, SRE, LRE,

LGZE, HGZE
LifeX OS 2 Wilcoxon 7 (19.44%)

Groheux et al.
[32] Yes nd nd nd nd nd Spearman

correlation, ROC 13 (36.11%)

Yoon et al. [33] Yes 9
Clinical

PET-MRI/BSGI
features

PMOD C 9

Chi square,
Kruskal–Wallis,

Logistic regression
analysis

6 (16.67%)

Hatt et al. [69] Yes 15 GLCM nd nd 4

Spearman
correlation,

univariate Cox
proportional hazards

regression

5 (13.89%)

Soussan et al.
[34] Yes 31 First-order, GLCM,

GLRLM nd nd 3 ROC, univariate
logistic regression 9 (25.00%)

Orlhac et al.
[70] Yes 36

First-order, GLCM,
GLRLM, NGLDM,

GLZLM
nd nd 7 Pearson correlation 16 (44.44%)

Willaime et al.
[41] Yes 28 First-order, GLCM,

GLSZM, NGTDM Matlab C 8 Shapiro–Wilk, ICC 6 (16.67%)

Lemarignier
et al. [74] Yes 4

Entropy,
homogeneity,

contrast and energy
nd nd 4 Spearman

correlation 8 (22.22%)

BC: breast cancer; BSGI: breast-specific gamma imaging; C: commercial; GLCM: gray-level co-occurrence matrix;
GLDM: gray-level difference matrix; GLRLM: gray-level run-length matrix; GLSZM: gray-level size zone matrix;
GLZLM: gray-level zone-length matrix; FTs: features; HGZE: high gray-level zone emphasis; ICC: intra-class
correlation; LASSO: least absolute shrinkage and selection operator; LGZE: low gray-level zone emphasis; LRE:
long-run emphasis; nd: not defined; NGLDM: neighborhood gray-level different matrix; NGTDM: neighborhood
gray-tone difference matrix; OS: open source; PCA: principal component analysis; ROC: receiving operating
characteristics; RQS: radiomics quality score; SRE: short-run emphasis; Sw: software; TA: texture analysis.
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Table 3. Summary of studies’ data mining (from newest to older).

Author AI Area AI Sw Sw Class Data-Mining
Methods Validated Validation Test

Chen et al. [44] ML Pyton software and
Pyradiomics module OS RF, SVM, SGD, KNN Yes 5-fold

cross-validation

Umutlu et al.
[35] DL Matlab C SVM Yes 5-fold

cross-validation

Eifer et al. [43] ML
Pyradiomics,
Scikit-learn,

TensorFlow libraries
OS KNN and RF Yes 5-fold

cross-validation

Jo et al. [51] nd NA NA NA No NA

Cheng et al.
[42] ML R-software OS

Multivariable
regression with the

Akaike’s information
criterion (AIC)

Yes 10-fold
cross-validation

Castaldo et al.
[62] ML R-software OS

Additive logistic
regression (LogitBoost),

RF, LDA
Yes 3-fold

cross-validation

Araz et al. [45] ML WEKA OS SVM, Hoeffding tree,
J48, and MLP Yes 10-fold

cross-validation

Satoh et al. [56] DL Pytorch OS CNN based on
Xception No NA

Takahashi et al.
[63] DL Pytorch OS CNN based on

Xception No NA

Moreau et al.
[46] DL Python and Phytorch OS U-Net Yes 5-fold

cross-validation

Chen et al. [71] ML Python OS MLP, SVM, RF and
XGBoost Yes 3-fold

cross-validation

Umutlu et al.
[72] ML Matlab C SVM Yes 5-fold

cross-validation

Krajnc et al.
[28] ML NA NA RF Yes 100-fold

MC-cross-validation

Weber et al. [53] ML Matlab C CNN Yes bootstrap Gauss test

Aide et al. [76] ML XLSTAT Software C RF Yes OOB

Li et al. [48] DL DCNN-based
diagnosis method IH 3D CNN Yes 5-fold

cross-validation

Song et al. [49] ML R OS XGBoost Yes NA

Choi et al. [37] DL CNN-based sofware OS CNN Yes 3-fold
cross-validation

Satoh et al. [60] ML
scikit-learn and data
mining framework in

Pyton
OS SVM Yes 2-fold

cross-validation

Li et al. [38] ML
Scikit-learn, numpy,

scipy and math
packages in Pyton

OS/C RF Yes 10-fold
cross-validation

Ou et al. [29] ML PYTHON and IBM
SPSS OS/C LDA Yes 10-fold

cross-validation

Antunovic et al.
[39] ML STATA/R C/OS

Univariable and
multivariable logistic

regression
Yes 10-fold

cross-validation
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Table 3. Cont.

Author AI Area AI Sw Sw Class Data-Mining
Methods Validated Validation Test

Aide et al. [64] ML XLSTAT Software C RF Yes OOB

Lee et al. [40] ML R OS Multivariable logistic
regression Yes

Cross-validation
10-fold, 5-fold, and

leave-one-out
methods

Huang et al.
[77] ML Python IH SVM, RF, logistic

regression Yes 3-fold
cross-validation

AI: artificial intelligence; BC: breast cancer; CNN: convolutional neural network; DL: deep learning; FTs: fea-
tures; KNN: k-nearest neighbors; LDA: linear discriminant analysis; IH: in-house; ML: machine learning; MLP:
multi-layer perceptron; NA: not applicable; nd: not defined; OOB: Out-Of-Bag; RF: random forest; SGD: stochas-
tic gradient descent; SVM: support vector machine; Sw: software; TA: texture analysis; XGBoost: eXtreme
Gradient Boosting.

Author Contributions: Conceptualization, S.P.; methodology and formal analysis, L.M.; validation,
L.E., G.G. and A.T.; investigation, A.C., M.C. and L.F.; data curation and writing, L.U., A.C. and
L.M.; original draft preparation, L.U.; writing—review and editing, S.P.; visualization, all authors;
supervision, S.P., C.C. and M.C.; project administration, S.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA. Cancer J. Clin. 2020, 70, 7–30. [CrossRef]
2. Holm, J.; Eriksson, L.; Ploner, A.; Eriksson, M.; Rantalainen, M.; Li, J.; Hall, P.; Czene, K. Assessment of Breast Cancer Risk Factors

Reveals Subtype Heterogeneity. Cancer Res. 2017, 77, 3708–3717. [CrossRef]
3. Haque, W.; Verma, V.; Hatch, S.; Klimberg, V.S.; Butler, E.B.; Teh, B.S. Response rates and pathologic complete response by breast

cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2018, 170, 559–567. [CrossRef]
4. Haynes, B.; Sarma, A.; Nangia-Makker, P.; Shekhar, M.P. Breast cancer complexity: Implications of intratumoral heterogeneity in

clinical management. Cancer Metastasis Rev. 2017, 36, 547–555. [CrossRef]
5. Cajal, S.R.Y.; Sesé, M.; Capdevila, C.; Aasen, T.; Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernández-Losa, J.; Castellví, J. Clinical

implications of intratumor heterogeneity: Challenges and opportunities. J. Mol. Med. 2020, 98, 161. [CrossRef]
6. Kitajima, K.; Miyoshi, Y.; Yamano, T.; Odawara, S.; Higuchi, T.; Yamakado, K. Prognostic value of FDG-PET and DWI in breast

cancer. Ann. Nucl. Med. 2017, 32, 44–53. [CrossRef]
7. Paydary, K.; Seraj, S.M.; Zadeh, M.Z.; Emamzadehfard, S.; Shamchi, S.P.; Gholami, S.; Werner, T.J.; Alavi, A. The Evolving Role of

FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Mol. Imaging Biol. 2019, 21, 1–10. [CrossRef]
8. Groheux, D.; Cochet, A.; Humbert, O.; Alberini, J.L.; Hindié, E.; Mankoff, D. 18F-FDG PET/CT for staging and restaging of breast

cancer. J. Nucl. Med. 2016, 57, 17S–26S. [CrossRef]
9. Evangelista, L.; Urso, L.; Caracciolo, M.; Stracuzzi, F.; Panareo, S.; Cistaro, A.; Catalano, O. FDG PET/CT Volume-Based

Quantitative Data and Survival Analysis in Breast Cancer Patients: A Systematic Review of the Literature. Curr. Med. Imaging
Former. 2022. Epub ahead of printing. [CrossRef]

10. Koolen, B.B.; Vrancken Peeters, M.J.T.F.D.; Wesseling, J.; Lips, E.H.; Vogel, W.V.; Aukema, T.S.; van Werkhoven, E.; Gilhuijs,
K.G.A.; Rodenhuis, S.; Rutgers, E.J.T.; et al. Association of primary tumour FDG uptake with clinical, histopathological and
molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2012,
39, 1830–1838. [CrossRef]

11. Kitajima, K.; Fukushima, K.; Miyoshi, Y.; Nishimukai, A.; Hirota, S.; Igarashi, Y.; Katsuura, T.; Maruyama, K.; Hirota, S. Association
between 18F-FDG uptake and molecular subtype of breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1371–1377. [CrossRef]

12. Antunovic, L.; Gallivanone, F.; Sollini, M.; Sagona, A.; Invento, A.; Manfrinato, G.; Kirienko, M.; Tinterri, C.; Chiti, A.; Castiglioni,
I. [18F]FDG PET/CT features for the molecular characterization of primary breast tumors. Eur. J. Nucl. Med. Mol. Imaging 2017,
44, 1945–1954. [CrossRef]

http://doi.org/10.3322/caac.21590
http://doi.org/10.1158/0008-5472.CAN-16-2574
http://doi.org/10.1007/s10549-018-4801-3
http://doi.org/10.1007/s10555-017-9684-y
http://doi.org/10.1007/s00109-020-01874-2
http://doi.org/10.1007/s12149-017-1217-9
http://doi.org/10.1007/s11307-018-1181-3
http://doi.org/10.2967/jnumed.115.157859
http://doi.org/10.2174/1573405618666220329094423
http://doi.org/10.1007/s00259-012-2211-z
http://doi.org/10.1007/s00259-015-3070-1
http://doi.org/10.1007/s00259-017-3770-9


Int. J. Mol. Sci. 2022, 23, 13409 19 of 23

13. Im, H.-J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current Methods to Define Metabolic Tumor Volume in Positron Emission
Tomography: Which One is Better? Nucl. Med. Mol. Imaging 2018, 52, 5. [CrossRef]

14. Castello, A.; Castellani, M.; Florimonte, L.; Urso, L.; Mansi, L.; Lopci, E. The Role of Radiomics in the Era of Immune Checkpoint
Inhibitors: A New Protagonist in the Jungle of Response Criteria. J. Clin. Med. 2022, 11, 1740. [CrossRef]

15. Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al.
Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188,
20–29. [CrossRef]

16. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef]

17. Cho, N. Molecular subtypes and imaging phenotypes of breast cancer. Ultrasonography 2016, 35, 281–288. [CrossRef]
18. Ma, W.; Zhao, Y.; Ji, Y.; Guo, X.; Jian, X.; Liu, P.; Wu, S. Breast Cancer Molecular Subtypes Prediction by Mammographic Radiomics

Features. Acad. Radiol. 2019, 26, 196. [CrossRef]
19. Chang, R.F.; Chen, H.H.; Chang, Y.C.; Huang, C.S.; Chen, J.H.; Lo, C.M. Quantification of breast tumor heterogeneity for ER

status, HER2 status, and TN molecular subtype evaluation on DCE-MRI. Magn. Reson. Imaging 2016, 34, 809–819. [CrossRef]
20. Sollini, M.; Cozzi, L.; Ninatti, G.; Antunovic, L.; Cavinato, L.; Chiti, A.; Kirienko, M. PET/CT radiomics in breast cancer: Mind

the step. Methods 2021, 188, 122–132. [CrossRef]
21. Ranschaert, E.R.; Morozov, S.; Algra, P.R. Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks; Springer:

Cham, Switzerland, 2019. [CrossRef]
22. Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J.

Radiol. 2017, 18, 570–584. [CrossRef] [PubMed]
23. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [CrossRef] [PubMed]
24. Manco, L.; Maffei, N.; Strolin, S.; Vichi, S.; Bottazzi, L.; Strigari, L. Basic of machine learning and deep learning in imaging for

medical physicists. Phys. Medica 2021, 83, 194–205. [CrossRef]
25. Maffei, N.; Manco, L.; Aluisio, G.; D’Angelo, E.; Ferrazza, P.; Vanoni, V.; Meduri, B.; Lohr, F.; Guidi, G. Radiomics classifier to

quantify automatic segmentation quality of cardiac sub-structures for radiotherapy treatment planning. Phys. Medica 2021, 83,
278–286. [CrossRef]

26. Aktolun, C. Artificial intelligence and radiomics in nuclear medicine: Potentials and challenges. Eur. J. Nucl. Med. Mol. Imaging
2019, 46, 2731–2736. [CrossRef]

27. Liu, J.; Bian, H.; Zhang, Y.; Gao, Y.; Yin, G.; Wang, Z.; Li, X.; Ma, W.; Xu, W. Molecular subtype classification of breast cancer using
established radiomic signature models based on 18F-FDG PET/CT images. Front. Biosci.-Landmark 2021, 26, 475–484. [CrossRef]

28. Krajnc, D.; Papp, L.; Nakuz, T.S.; Magometschnigg, H.F.; Grahovac, M.; Spielvogel, C.P.; Ecsedi, B.; Bago-Horvath, Z.; Haug, A.;
Karanikas, G.; et al. Breast tumor characterization using [18F]FDG-PET/CT imaging combined with data preprocessing and
radiomics. Cancers 2021, 13, 1249. [CrossRef]

29. Ou, X.; Zhang, J.; Wang, J.; Pang, F.; Wang, Y.; Wei, X.; Ma, X. Radiomics based on 18F-FDG PET/CT could differentiate
breast carcinoma from breast lymphoma using machine-learning approach: A preliminary study. Cancer Med. 2020, 9, 496–506.
[CrossRef]

30. Ou, X.; Wang, J.; Zhou, R.; Zhu, S.; Pang, F.; Zhou, Y.; Tian, R.; Ma, X. Ability of 18 F-FDG PET/CT radiomic features to distinguish
breast carcinoma from breast lymphoma. Contrast Media Mol. Imaging 2019, 2019, 4507694. [CrossRef]
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