PollenDetect: An Open-Source Pollen Viability Status Recognition System Based on Deep Learning Neural Networks
Abstract
:1. Introduction
2. Results
2.1. Pollen Viability Detection Algorithm Design and Training
2.2. Comparison of the Accuracy of the Three Algorithms
2.3. Comparison of the Counting Performance of the Three Algorithms
2.4. Transfer of the Detection Capability of PollenDetect to Pollen from Different Plants
2.5. Detection of Cotton Pollen High-Temperature Tolerance via PollenDetect
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. TTC Staining
4.3. TTF Quantitation
4.4. Image Annotation
4.5. Data Preprocessing
4.6. YOLOv5 Detection Algorithm
4.6.1. Input Side
4.6.2. Backbone
4.6.3. Neck
4.6.4. Prediction
4.7. YOLOv3 Detection Algorithm Design
4.8. Faster R-CNN Detection Algorithm Design
4.9. YOLOv5 Model Refinement
4.10. Model Evaluation Metrics
5. Conclusions
Limitations and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNNs | convolutional neural networks |
R-CNN | region-CNN |
CSP | cross-stage partial |
mAP | mean average precision |
FPN | feature pyramid network |
PAN | pixel aggregation network |
NMS | non-maximum suppression |
HT | high temperature |
HTT | HT-tolerant |
HTI | intermediately HT-tolerant |
HTS | HT-sensitive |
References
- Song, G.; Chen, Q.; Tang, C. The effects of high-temperature stress on the germination of pollen grains of upland cotton during square development. Euphytica 2014, 200, 175–186. [Google Scholar] [CrossRef]
- Min, L.; Li, Y.; Hu, Q.; Zhu, L.; Gao, W.; Wu, Y.; Ding, Y.; Liu, S.; Yang, X.; Zhang, X. Sugar and Auxin Signaling Pathways Respond to High-Temperature Stress during Anther Development as Revealed by Transcript Profiling Analysis in Cotton. Plant Physiol. 2014, 164, 1293–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Hu, Q.; Zhang, C.; Hu, S.; Chen, Q.; Tang, C. High Temperature Reduces the Viability of Pollen from Upland Cotton in China. Agron. J. 2019, 111, 3039–3047. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Shi, Y.; Yang, S. Molecular Regulation of Plant Responses to Environmental Temperatures. Mol. Plant 2020, 13, 544–564. [Google Scholar] [CrossRef] [PubMed]
- Jolls, C.L. Techniques for Pollination Biologists. BioScience 1994, 44, 366–368. [Google Scholar] [CrossRef]
- Bourel, B.; Marchant, R.; de Garidel-Thoron, T.; Tetard, M.; Barboni, D.; Gally, Y.; Beaufort, L. Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains. Comput. Geosci. 2020, 140, 104498. [Google Scholar] [CrossRef]
- Keller, A.; Danner, N.; Grimmer, G.; Ankenbrand, M.; von der Ohe, K.; von der Ohe, W.; Rost, S.; Härtel, S.; Steffan-Dewenter, I. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 2014, 17, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.; Tang, M.; Hu, J.; Zhou, X. Genome-skimming provides accurate quantification for pollen mixtures. Mol. Ecol. Resour. 2019, 19, 1433–1446. [Google Scholar] [CrossRef] [Green Version]
- Jardine, P.E.; Gosling, W.D.; Lomax, B.H.; Julier, A.C.M.; Fraser, W.T. Chemotaxonomy of domesticated grasses: A pathway to understanding the origins of agriculture. J. Micropalaeontol. 2019, 38, 83–95. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldu, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- García-Fortea, E.; García-Pérez, A.; Gimeno-Páez, E.; Sánchez-Gimeno, A.; Vilanova, S.; Prohens, J.; Pastor-Calle, D. A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology 2020, 9, 272. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J.; Zhou, M.; Yi, J.; Liao, M.; Gao, Z. A YOLOv3-based computer vision system for identification of tea buds and the picking point. Comput. Electron. Agric. 2022, 198, 107116. [Google Scholar] [CrossRef]
- Mirhaji, H.; Mirhaji, H.; Soleymani, M.; Soleymani, M.; Asakereh, A.; Asakereh, A.; Mehdizadeh, S.A.; Mehdizadeh, S.A. Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions. Comput. Electron. Agric. 2021, 191, 106533. [Google Scholar] [CrossRef]
- Shi, R.; Li, T.; Yamaguchi, Y. An attribution-based pruning method for real-time mango detection with YOLO network. Comput. Electron. Agric. 2020, 169, 106533. [Google Scholar] [CrossRef]
- Daood, A.; Ribeiro, E.; Bush, M. Pollen Grain Recognition Using Deep Learning. In Proceedings of the International Symposium on Visual Computing, Virtual, 12 December 2016; pp. 321–330. [Google Scholar]
- Bodla, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS—Improving Object Detection With One Line of Code. In Proceedings of the International Conference on Computer Vision (Iccv), Venice, Italy, 22–29 October 2017; pp. 5562–5570. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Min, L.; Wang, J.; Li, Y.; Wu, Y.; Hu, Q.; Ding, Y.; Wang, M.; Liang, Y.; Gong, Z. A combination of genome-wide and transcriptome-wide association studies reveals genetic elements leading to male sterility during high temperature stress in cotton. New Phytol. 2021, 231, 165–181. [Google Scholar] [CrossRef]
- Ronneberger, O.; Schultz, E.; Burkhardt, H. Automated pollen recognition using 3D volume images from fluorescence microscopy. Aerobiologia 2002, 18, 107–115. [Google Scholar] [CrossRef]
- Gallardo-Caballero, R.; García-Orellana, C.J.; García-Manso, A.; González-Velasco, H.M.; Tormo-Molina, R.; Macías-Macías, M. Precise Pollen Grain Detection in Bright Field Microscopy Using Deep Learning Techniques. Sensors 2019, 19, 3583. [Google Scholar] [CrossRef]
- Masteling, R.; Voorhoeve, L.; Ijsselmuiden, J.; Dini-Andreote, F.; Boer, W.D.; Raaijmakers, J.M. DiSCount: Computer vision for automated quantification of Striga seed germination. Plant Methods 2020, 16, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Su, Q.; Wu, Y.; Zhang, R.; Li, Y.; Ma, Y.; Ma, H.; Guo, X.; Zhu, L. High temperature induces male sterility via MYB66–MYB4–Casein kinase I signaling in cotton. Plant Physiol. 2022, 189, 2091–2109. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Z.; Min, L.; Wang, M.J.; Wang, C.Z.; Zhao, Y.L.; Li, Y.Y.; Fang, Q.D.; Wu, Y.L.; Xie, S.; Ding, Y.H.; et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell 2018, 30, 1387–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. In Proceedings of the IEEE/Cvf Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13024–13033. [Google Scholar] [CrossRef]
- Fawzi, A.; Samulowitz, H.; Turaga, D.; Frossard, P. Adaptive data augmentation for image classification. In Proceedings of the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016; pp. 3688–3692. [Google Scholar] [CrossRef] [Green Version]
- Qin, A.; Zhang, Y.J. YOLOV3 traffic sign recognition and detection based on FPN improvement. Sci. J. Intell. Syst. Res. 2020, 2, 11. [Google Scholar]
- Ma, J.Q.; Shao, W.Y.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.B.; Xue, X.Y. Arbitrary-Oriented Scene Text Detection via Rotation Proposals. IEEE Trans. Multimed. 2018, 20, 3111–3122. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Wang, P.; Liu, W.; Li, J.Z.; Ye, R.G.; Ren, D.W. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: An astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 806–813. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Yang, J.; Li, Q.; Su, F.; Yang, T.; Wang, W.; Aierxi, A.; Zhang, X.; Yang, W.; Kong, J.; et al. PollenDetect: An Open-Source Pollen Viability Status Recognition System Based on Deep Learning Neural Networks. Int. J. Mol. Sci. 2022, 23, 13469. https://doi.org/10.3390/ijms232113469
Tan Z, Yang J, Li Q, Su F, Yang T, Wang W, Aierxi A, Zhang X, Yang W, Kong J, et al. PollenDetect: An Open-Source Pollen Viability Status Recognition System Based on Deep Learning Neural Networks. International Journal of Molecular Sciences. 2022; 23(21):13469. https://doi.org/10.3390/ijms232113469
Chicago/Turabian StyleTan, Zhihao, Jing Yang, Qingyuan Li, Fengxiang Su, Tianxu Yang, Weiran Wang, Alifu Aierxi, Xianlong Zhang, Wanneng Yang, Jie Kong, and et al. 2022. "PollenDetect: An Open-Source Pollen Viability Status Recognition System Based on Deep Learning Neural Networks" International Journal of Molecular Sciences 23, no. 21: 13469. https://doi.org/10.3390/ijms232113469
APA StyleTan, Z., Yang, J., Li, Q., Su, F., Yang, T., Wang, W., Aierxi, A., Zhang, X., Yang, W., Kong, J., & Min, L. (2022). PollenDetect: An Open-Source Pollen Viability Status Recognition System Based on Deep Learning Neural Networks. International Journal of Molecular Sciences, 23(21), 13469. https://doi.org/10.3390/ijms232113469