Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study
Abstract
:1. Introduction
2. Results
2.1. Verification of FAM159B Expression in the Selected Cancer Cell Lines
2.2. Immunocytochemical and Immunohistochemical Double-Labelling Experiments with Different Markers for Neuroendocrine Cells
2.3. FAM159B-NSE Co-Localization and Interaction Experiments
3. Discussion
3.1. Verification of FAM159B Expression in the Selected Cancer Cell Lines
3.2. Immunocytochemical and Immunohistochemical Double-Labelling Experiments
3.3. Association between FAM159B and NSE
4. Materials and Methods
4.1. Antibody
4.2. Tumour Cell Lines
4.3. Immunocytochemistry
4.4. Western Blot Analysis
4.5. Immunohistochemistry
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
5-HT | serotonin |
CgA | chromogranin A |
D2R | dopamine receptor 2 |
GPCR | G-protein coupled receptor |
INSM1 | insulinoma-associated protein 1 |
MOR | µ-opioid receptor |
NCAM1 | neural cell adhesion molecule 1 |
NSE | neuron-specific enolase |
RGS9 | regulator of G-protein signalling 9 |
SST | somatostatin |
SCLC | small-cell lung cancer |
SSTR | somatostatin receptor |
SYP | synaptophysin |
References
- Pei, J.; Grishin, N.V. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors. Cell Signal 2012, 24, 758–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielsson, A.; Pontén, F.; Fagerberg, L.; Hallström, B.M.; Schwenk, J.M.; Uhlén, M.; Korsgren, O.; Lindskog, C. The human pancreas proteome defined by transcriptomics and antibody-based profiling. PLoS ONE 2014, 9, e115421. [Google Scholar] [CrossRef] [PubMed]
- Camunas-Soler, J.; Dai, X.Q.; Hang, Y.; Bautista, A.; Lyon, J.; Suzuki, K.; Kim, S.K.; Quake, S.R.; MacDonald, P.E. Patch-seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 2020, 31, 1017–1031. [Google Scholar] [CrossRef] [PubMed]
- Augsornworawat, P.; Maxwell, K.G.; Velazco-Cruz, L.; Millman, J.R. Single-cell transcriptome profiling reveals beta cell maturation in stem cell-derived islets after transplantation. Cell Rep. 2020, 32, 108067. [Google Scholar] [CrossRef] [PubMed]
- Beyer, A.S.L.; Kaemmerer, D.; Sänger, J.; Evert, K.; Lupp, A. Immunohistochemical evaluation of adaptor protein FAM159B expression in normal and neoplastic human tissues. Int. J. Mol. Sci. 2021, 22, 12250. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Kanakis, G.; Kaltsas, G. Biochemical markers for gastroenteropancreatic neuroendocrine tumours (GEP-NETs). Best Pract. Res. Clin. Gastroenterol. 2012, 26, 791–802. [Google Scholar] [CrossRef]
- Giovinazzo, F.; Schimmack, S.; Svejda, B.; Alaimo, D.; Pfragner, R.; Modlin, I.; Kidd, M. Chromogranin A and its fragments as regulators of small intestinal neuroendocrine neoplasm proliferation. PLoS ONE 2013, 8, e81111. [Google Scholar] [CrossRef] [Green Version]
- Mjones, P.; Sagatun, L.; Nordrum, I.S.; Waldum, H.L. Neuron-specific enolase as an immunohistochemical marker is better than its reputation. J. Histochem. Cytochem. 2017, 65, 687–703. [Google Scholar] [CrossRef]
- Bellizzi, A.M. Immunohistochemistry in the diagnosis and classification of neuroendocrine neoplasms: What can brown do for you? Hum. Pathol. 2020, 96, 8–33. [Google Scholar] [CrossRef]
- Isgro, M.A.; Bottoni, P.; Scatena, R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [PubMed]
- Polcyn, R.; Capone, M.; Hossain, A.; Matzelle, D.; Banik, N.L.; Haque, A. Neuron specific enolase is a potential target for regulating neuronal cell survival and death: Implications in neurodegeneration and regeneration. Neuroimmunol. Neuroinflamm. 2017, 4, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Dichev, V.; Kazakova, M.; Sarafian, V. YKL-40 and neuron-specific enolase in neurodegeneration and neuroinflammation. Rev. Neurosci. 2020, 31, 539–553. [Google Scholar] [CrossRef]
- Vizin, T.; Kos, J. Gamma-enolase: A well-known tumour marker, with a less-known role in cancer. Radiol. Oncol. 2015, 49, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valtorta, F.; Pennuto, M.; Bonanomi, D.; Benfenati, F. Synaptophysin: Leading actor or walk-on role in synaptic vesicle exocytosis? BioEssays 2004, 26, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Wiedenmann, B.; Franke, W.W.; Kuhn, C.; Moll, R.; Gould, V.E. Synaptophysin: A marker protein for neuroendocrine cells and neoplasms. Proc. Natl. Acad. Sci. USA 1986, 83, 3500–3504. [Google Scholar] [CrossRef] [Green Version]
- Kalina, M.; Lukinius, A.; Grimelius, L.; Hoog, A.; Falkmer, S. Ultrastructural localization of synaptophysin to the secretory granules of normal glucagon and insulin cells in human islets of Langerhans. Ultrastruct. Pathol. 1991, 15, 215–219. [Google Scholar] [CrossRef]
- DeLellis, R.A.; Shin, S.J.; Treaba, D.O. Chapter 10—Immunohistology of Endocrine Tumors. In Diagnostic Immunohistochemistry, 3rd ed.; Dabbs, D.J., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2020; pp. 291–339. [Google Scholar]
- Fujino, K.; Motooka, Y.; Hassan, W.A.; Ali Abdalla, M.O.; Sato, Y.; Kudoh, S.; Hasegawa, K.; Niimori-Kita, K.; Kobayashi, H.; Kubota, I.; et al. Insulinoma-associated protein 1 is a crucial regulator of neuroendocrine differentiation in lung cancer. Am. J. Pathol. 2015, 185, 3164–3177. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Dermawan, J.K.; Lanigan, C.P.; Farver, C.F. Insulinoma-associated protein 1 (INSM1) is a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: An immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod. Pathol. 2018, 32, 100–109. [Google Scholar] [CrossRef]
- Tanigawa, M.; Nakayama, M.; Taira, T.; Hattori, S.; Mihara, Y.; Kondo, R.; Kusano, H.; Nakamura, K.; Abe, Y.; Ishida, Y.; et al. Insulinoma-associated protein 1 (INSM1) is a useful marker for pancreatic neuroendocrine tumor. Med. Mol. Morphol. 2018, 51, 32–40. [Google Scholar] [CrossRef]
- Xie, J.; Cai, T.; Zhang, H.; Lan, M.S.; Notkins, A.L. The zinc-finger transcription factor INSM1 is expressed during embryo development and interacts with the Cbl-associated protein. Genomics 2002, 80, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.J.; Treaba, D.O.; DeLellis, R.A. Immunohistology of endocrine tumors. In Diagnostic Immunohistochemistry: Theranostic and Genomic Applications; Dabbs, D.J., Ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013; pp. 345–389. [Google Scholar]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, H.H.; Capsomidis, A.; Smits, E.L.; Van Tendeloo, V.F. CD56 in the immune system: More than a marker for cytotoxicity? Front. Immunol. 2017, 8, 892. [Google Scholar] [CrossRef] [Green Version]
- Mohammad-Zadeh, L.F.; Moses, L.; Gwaltney-Brant, S.M. Serotonin: A review. J. Vet. Pharmacol. Ther. 2008, 31, 187–199. [Google Scholar] [CrossRef]
- Gellynck, E.; Heyninck, K.; Andressen, K.W.; Haegeman, G.; Levy, F.O.; Vanhoenacker, P.; Van Craenenbroeck, K. The serotonin 5-HT7 receptors: Two decades of research. Exp. Brain Res. 2013, 230, 555–568. [Google Scholar] [CrossRef]
- Kanova, M.; Kohout, P. Serotonin—Its synthesis and roles in the healthy and the critically ill. Int. J. Mol. Sci. 2021, 22, 4837. [Google Scholar] [CrossRef]
- Ampofo, E.; Nalbach, L.; Menger, M.D.; Laschke, M.W. Regulatory mechanisms of somatostatin expression. Int. J. Mol. Sci. 2020, 21, 4170. [Google Scholar] [CrossRef] [PubMed]
- Martemyanov, K.A.; Arshavsky, V.Y. Biology and functions of the RGS9 isoforms. Prog. Mol. Biol. Transl. Sci. 2009, 86, 205–227. [Google Scholar]
- Gerber, K.J.; Squires, K.E.; Hepler, J.R. Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity. Mol. Pharmacol. 2016, 89, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Zachariou, V.; Georgescu, D.; Sanchez, N.; Rahman, Z.; DiLeone, R.; Berton, O.; Neve, R.L.; Sim-Selley, L.J.; Selley, D.E.; Gold, S.J.; et al. Essential role for RGS9 in opiate action. Proc. Natl. Acad. Sci. USA 2003, 100, 13656–13661. [Google Scholar] [CrossRef] [Green Version]
- Hooks, S.B.; Martemyanov, K.; Zachariou, V. A role of RGS proteins in drug addiction. Biochem. Pharmacol. 2008, 75, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Psifogeorgou, K.; Terzi, D.; Papachatzaki, M.M.; Varidaki, A.; Ferguson, D.; Gold, S.J.; Zachariou, V. A unique role of RGS9-2 in the striatum as a positive or negative regulator of opiate analgesia. J. Neurosci. 2011, 31, 5617–5624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspari, S.; Papachatzaki, M.M.; Koo, J.W.; Carr, F.B.; Tsimpanouli, M.E.; Stergiou, E.; Bagot, R.C.; Ferguson, D.; Mouzon, E.; Chakravarty, S.; et al. Nucleus accumbens-specific interventions in RGS9-2 activity modulate responses to morphine. Neuropsychopharmacology 2014, 39, 1968–1977. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.M.; Espinoza, S.; Gainetdinov, R.R. Dopamine receptors—IUPHAR Review 13. Br. J. Pharmacol. 2015, 172, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J. Exp. Neurosci. 2018, 12, 1179069518779829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martel, J.C.; Gatti McArthur, S. Dopamine receptor subtypes, physiology and pharmacology: New ligands and concepts in schizophrenia. Front. Pharmacol. 2020, 11, 1003. [Google Scholar] [CrossRef]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin receptors: From signaling to clinical practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.J.; Lupp, A.; Korbonits, M.; Castano, J.P.; Wester, H.J.; et al. International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: Structure, function, ligands, and new nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Ye, Z.; Wang, F.; Qin, Y.; Xu, X.; Yu, X.; Ji, S. Role of somatostatin receptor in pancreatic neuroendocrine tumor development, diagnosis, and therapy. Front. Endocrinol. 2021, 12, 679000. [Google Scholar] [CrossRef]
- Kovoor, A.; Seyffarth, P.; Ebert, J.; Barghshoon, S.; Chen, C.K.; Schwarz, S.; Axelrod, J.D.; Cheyette, B.N.; Simon, M.I.; Lester, H.A.; et al. D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J. Neurosci. 2005, 25, 2157–2165. [Google Scholar] [CrossRef] [Green Version]
- Orton, R.J.; Sturm, O.E.; Vyshemirsky, V.; Calder, M.; Gilbert, D.R.; Kolch, W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J. 2005, 392, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Belkacemi, L.; Darmani, N.A. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol. Res. 2020, 161, 105124. [Google Scholar] [CrossRef]
- Peltier, J.; O’Neill, A.; Schaffer, D.V. PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev. Neurobiol. 2007, 67, 1348–1361. [Google Scholar] [CrossRef] [PubMed]
- Evers, B.M.; Ishizuka, J.; Townsend, C.M., Jr.; Thompson, J.C. The human carcinoid cell line, BON. Ann. N. Y. Acad. Sci. 1994, 733, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Sung, E.; Kwon, O.K.; Lee, J.M.; Lee, S. Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells. Electrophoresis 2017, 38, 2638–2645. [Google Scholar] [CrossRef]
- Tai, S.; Sun, Y.; Squires, J.M.; Zhang, H.; Oh, W.K.; Liang, C.Z.; Huang, J. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 2011, 71, 1668–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, D.; You, Z. In vitro and in vivo model systems used in prostate cancer research. J. Biol. Meth. 2015, 2, e17. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, G.M.; Fields, W.R.; Doolittle, D.J. Gene expression profiling of cultured human bronchial epithelial and lung carcinoma cells. Toxicol. Sci. 2001, 61, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Kalemkerian, G.P.; Jasti, R.K.; Celano, P.; Nelkin, B.D.; Mabry, M. All-trans-retinoic acid alters myc gene expression and inhibits in vitro progression in small cell lung cancer. Cell Growth Differ. 1994, 5, 55–60. [Google Scholar]
- Gazdar, A.F.; Carney, D.N.; Russell, E.K.; Sims, H.L.; Baylin, S.B.; Bunn, P.A., Jr.; Guccion, J.G.; Minna, J.D. Establishment of continuous, clonable cultures of small-cell carcinoma of lung which have amine precursor uptake and decarboxylation cell properties. Cancer Res. 1980, 40, 3502–3507. [Google Scholar]
- Luk, G.D.; Goodwin, G.; Marton, L.J.; Baylin, S.B. Polyamines are necessary for the survival of human small-cell lung carcinoma in culture. Proc. Natl. Acad. Sci. USA 1981, 78, 2355–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graness, A.; Hanke, S.; Boehmer, F.D.; Presek, P.; Liebmann, C. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells. Biochem. J. 2000, 347, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Tsai, P.H.; Kandaswami, C.C.; Chang, G.D.; Cheng, C.H.; Huang, C.J.; Lee, P.P.; Hwang, J.J.; Lee, M.T. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells. Mol. Cancer 2011, 10, 87. [Google Scholar] [CrossRef] [PubMed]
Antibody | Clone | Type | Manufacturer | Dilution |
---|---|---|---|---|
FAM159B HPA011778 | --- | rabbit polyclonal | Atlas Antibodies AB, Bromma, Sweden | 1:100 |
FAM159B-FITC conjugated | --- | rabbit polyclonal | Biozol, Eching, Germany | 1:100 |
CgA | LK2H10 | mouse monoclonal | BioLogo, Kronshagen, Germany | 1:50 |
NSE | ENO2/1375 | mouse monoclonal | Abcam, Cambridge, MA, USA | 1:2500 |
SYP | YE269 | rabbit monoclonal | Abcam, Cambridge, MA, USA | 1:800 |
INSM1 | A-8 | mouse monoclonal | Santa Cruz Biotechnology, Dallas, TX, USA | 1:100 |
NCAM1 | 123C3 | mouse monoclonal | Santa Cruz Biotechnology, Dallas, TX, USA | 1:500 |
Serotonin | mouse | Dako, Glostrup, Denmark | 1:50 | |
SST14/28 | YC7 | rat monoclonal | Abcam, Cambridge, MA, USA | 1:300 |
RGS9 | --- | rabbit polyclonal | ATLAS Antibodies AB, Bromma Sweden | 1:500 |
D2R | 960710 | mouse monoclonal | Bio-Techne GmbH, Wiesbaden, Germany | 1:100 |
SSTR1 | UMB-7 | rabbit monoclonal | Abcam, Cambridge, MA, USA | 1:25 |
SSTR2 | UMB-1 | rabbit monoclonal | Abcam, Cambridge, MA, USA | 1:10 |
SSTR3 | UMB-5 | rabbit monoclonal | Abcam, Cambridge, MA, USA | 1:20 |
SSTR4 | rabbit monoclonal | Abcam, Cambridge, MA, USA | 1:10 | |
SSTR5 | UMB-4 | rabbit monoclonal | Abcam, Cambridge, MA, USA | 1:10 |
Alexa Fluor 488-conjugated anti-mouse | --- | donkey polyclonal | Invitrogen, Karlsruhe, Germany | 1:5000 |
Alexa Fluor 488-conjugated anti-rat | --- | donkey polyclonal | Invitrogen, Karlsruhe, Germany | 1:5000 |
Alexa Fluor 488-conjugated anti-rabbit | --- | goat polyclonal | Invitrogen, Karlsruhe, Germany | 1:5000 |
Cy3-conjugated anti-rabbit | ---t | goat polyclonal | Invitrogen, Karlsruhe, Germany | 1:5000 |
peroxidase-conjugated anti-rabbit | --- | goat polyclonal | Santa Cruz Biotechnology, Dallas, TX, USA | 1:5000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyer, A.-S.L.; Kaemmerer, D.; Sänger, J.; Lupp, A. Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study. Int. J. Mol. Sci. 2022, 23, 13503. https://doi.org/10.3390/ijms232113503
Beyer A-SL, Kaemmerer D, Sänger J, Lupp A. Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study. International Journal of Molecular Sciences. 2022; 23(21):13503. https://doi.org/10.3390/ijms232113503
Chicago/Turabian StyleBeyer, Anna-Sophia Liselott, Daniel Kaemmerer, Jörg Sänger, and Amelie Lupp. 2022. "Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study" International Journal of Molecular Sciences 23, no. 21: 13503. https://doi.org/10.3390/ijms232113503
APA StyleBeyer, A. -S. L., Kaemmerer, D., Sänger, J., & Lupp, A. (2022). Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study. International Journal of Molecular Sciences, 23(21), 13503. https://doi.org/10.3390/ijms232113503