Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications
Abstract
:1. Introduction
1.1. CD-Based Polymers for Theranostic and Biomedical Applications
1.2. Significance of Protein Corona for Theranostic Applications
1.3. CD-Based Polymers Functionalized with Protein Corona at the Blood-Brain Barrier
2. Cyclodextrin-Based Polymers
2.1. Structural Features of Cyclodextrin-Based Polymers
2.1.1. Cyclodextrin-Centred Core polymers
2.1.2. Cyclodextrin-(Pendant and Terminated) Polymers
2.2. Application of Cyclodextrin-Based Polymers in Theranostic Nanomedicine
Polymer | CD Nature | References |
---|---|---|
Poly-paclitaxel | β-CD | [80] |
PEG-PPG-PEG polyrotaxane vectors | 2-HP-β-CD | [81] |
Cationic cyclodextrin polyrotaxane | α-CD | [83] |
Cyclodextrin polyrotaxane | CD | [85] |
Hyperbranched polyglycerol | β-CD | [95] |
Poly(glycidyl methacrylate) | β-CD | [93] |
AIE-active dye with β-cyclodextrin terminated polymers | β-CD | [86] |
An-HPG-βCD | β-CD | [87] |
Epsilon-polylysine-grafted-PEI-βCD | βCD | [90] |
2.3. Application of Cyclodextrin-Protein Corona in Biomedical Approaches
2.4. Mechanism of Protein Fibrillation
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villers, A. Sur la fermentation de la fecule par l action du ferment butyrique. Compt. Rend. Acad. Sci. 1891, 112, 536–538. [Google Scholar]
- Veselinovic, A.M.; Veselinovic, J.B.; Toropov, A.A.; Toropova, A.P.; Nikolic, G.M. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Int. J. Pharm. 2015, 495, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.L.J.; Benito, J.M.; Mellet, C.O.; Fernández, J.M.G. Molecular nanoparticle-based gene delivery systems. Drug Deliv. Sci. Technol. 2017, 42, 18–37. [Google Scholar] [CrossRef]
- Da Silveira, A.M.; Ponchel, G.; Puisieux, F.; Duchêne, D. Combined Poly(isobutyl cyanoacrylate) and Cyclodextrins Nanoparticles for Enhancing the Encapsulation of Lipophilic Drugs. Pharm. Res. 1998, 15, 1051–1055. [Google Scholar] [CrossRef]
- Yao, X.; Huang, P.; Nie, Z. Cyclodextrin-based Polymer Materials: From Controlled Synthesis to Applications. J. Prog. Polym. Sci. 2019, 93, 1–35. [Google Scholar] [CrossRef]
- Corrêa, D.H.; Melo, P.S.; de Carvalho, C.A.; de Azevedo, M.B.; Durán, N.; Haun, M. Dehydrocrotonin and its β-cyclodextrin complex: Cytotoxicity in V79 fibroblasts and rat cultured hepatocytes. Eur. J. Pharmacol. 2005, 510, 17–24. [Google Scholar] [CrossRef]
- Kirila, T.; Smirnova, A.; Filippov, A.; Razina, A.; Tenkovtsev, A. Thermosensitive star-shaped poly-2-ethyl-2-oxazine. Synthesis, structure characterization, Conformation, and self-organization in aqueous solutions. J. Eur. Polym. 2019, 120, 109215. [Google Scholar] [CrossRef]
- Kuang, R.; Zhang, Z.; Jin, X.; Hu, J.; Shi, S.; Ni, L.; Ma, P.X. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. J. Acta Biomater. 2016, 33, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.-K.; Menard-Moyon, C.; Bianco, A. Physically-triggered nano-systems based on two-dimensional materials for cancer theranostics. Adv. Drug Deliv. Rev. 2018, 138, 211–232. [Google Scholar] [CrossRef]
- Santini, J.T., Jr.; Cima, M.J.; Langer, R. A controlled-release microchip. Nature 1999, 397, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Barman, S.; Das, G.; Gupta, V.; Mondal, P.; Jana, B.; Bhunia, D.; Khan, J.; Mukherjee, D.; Ghosh, S. Dual-Arm Nano capsule Targets Neuropilin-1 Receptor and Microtubule: A Potential Nanomedicine Platform. Mol. Pharm. 2019, 16, 2522–2531. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D.M. Theranostic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14, 1310–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, S.S.; Reineke, T.M. Theranostics: Combining imaging and therapy. Bioconjug. Chem. 2011, 22, 1879–1903. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammers, T.; Aime, S.; Hennink, W.E.; Storm, G.; Kiessling, F. Theranostic Nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038. [Google Scholar] [CrossRef]
- Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharm. Res. 2010, 27, 2569–2589. [Google Scholar] [CrossRef] [Green Version]
- Datz, S.; Illes, B.; Gößl, D.; Schirnding, C.V.; Engelke, H.; Bein, T. Biocompatible crosslinked β-cyclodextrin nanoparticles as multifunctional carriers for cellular delivery. Nanoscale 2018, 10, 16284–16292. [Google Scholar] [CrossRef]
- Badruddoza, A.Z.M.; Rahman, T.; Ghosh, S.; Hossain, Z.; Shi, J.; Hidajat, K.; Uddin, M.S. β-Cyclodexrin conjugated magnetic, fluorescent silica core-shell nanoparticles for biomedical applications. Carbohydr. Polym. 2013, 95, 449–457. [Google Scholar] [CrossRef]
- Deng, T.; Wang, J.; Li, Y.; Han, Z.; Peng, Y.; Zhang, J.; Gao, Z.; Gu, Y.; Deng, D. Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by ingenious Self-Assembly Strategies for tumor Theranostic. ACS Appl. Mater. Interfaces 2018, 10, 27657–27668. [Google Scholar] [CrossRef]
- Urruticoechea, A.; Alemany, R.; Balart, J.; Villanueva, A.; Vinals, F.; Capella, G. Recent Advances in cancer Therapy: An Overview. Curr. Pharm. Des. 2010, 16, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Swann, R.; McPhail, S.; Witt, J.; Shand, B.; Abel, G.; Hiom, S.; Rashbass, J.; Lyratzopoulos, G.; Rubin, G.; The National Cancer Diagnosis Audit Steering Group. Diagnosing cancer in primary care: Results from the National Cancer Diagnosis Audit. Br. J. Gen. Pract. 2018, 68, e63–e72. [Google Scholar] [CrossRef]
- Massoumi, B.; Farnudiyan-Habibi, A.; Derakhshankhah, H.; Samadian, H.; Jahanban-Esfahlan, R.; Jaymand, M. A novel multi-stimuli-responsive theranostic nanomedicine based on Fe3O4@Au nanoparticles against cancer. Drug Dev. Ind. Pharm. 2020, 46, 1832–1843. [Google Scholar] [CrossRef]
- Pei, M.; Pai, J.-Y.; Du, P.; Liu, P. Facile Synthesis of Fluorescent Hyper-Crosslinked-Cyclodextrin-Carbon Quantum Dot Hybrid Nano sponges for Tumor Theranostic Application with Enhanced Antitumor Efficacy. Mol. Pharm. 2018, 15, 4084–4091. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial Intelligence in cancer imaging: Clinical Challenges and Applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Kamkaew, A.; Sun, H.; Jiang, D.; Valdovinos, H.F.; Gong, H.; England, C.G.; Goel, S.; Barnhart, T.E.; Cai, W. Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano 2016, 10, 7721–7730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Oh, E.-T.; Yoon, H.; Kim, C.W.; Han, Y.; Song, J.; Jang, H.; Park, H.J.; Kim, C. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale 2017, 9, 6901–6909. [Google Scholar] [CrossRef]
- Mieszawska, A.J.; Kim, Y.; Gianella, A.; van Rooy, I.; Priem, B.; Labarre, M.P.; Ozcan, C.; Cormode, D.P.; Petrov, A.; Langer, R.; et al. Synthesis of Polymer-Lipid Nanoparticles for Image-Guided Delivery of Dual Modality Therapy. Bioconjug. Chem. 2013, 24, 1429–1434. [Google Scholar] [CrossRef] [Green Version]
- Areses, P.; Agüeros, M.T.; Quincoces, G.; Collantes, M.; Richter, J.; López-Sánchez, L.M.; Sánchez-Martínez, M.; Irache, J.M.; Peñuelas, I. Molecular Imaging Techniques to study the Biodistribution of Orally Administered 99mTC−Labelled Native and Ligand-Tagged Nanoparticles. Mol. Imaging Biol. 2010, 13, 1215–1223. [Google Scholar] [CrossRef]
- Yu, H.; Sun, J.; Zhang, Y.; Zhang, G.; Chu, Y.; Zhuo, R.; Jiang, X. pH- and β-cyclodextrin-responsive micelles based on polyaspartamide derivatives as drug carriers. J. Polym. Sci. Part A 2015, 53, 1387–1395. [Google Scholar] [CrossRef]
- Dreifuss, T.; Betzer, O.; Shilo, M.; Popovtzer, A.; Motiei, M.; Popovtzer, R. A challenge for theranostics: Is the optimal particle for therapy also optimal for diagnostics? Nanoscale 2015, 7, 15175–15184. [Google Scholar] [CrossRef] [PubMed]
- Betzer, O.; Shwartz, A.; Motiei, M.; Kazimirsky, G.; Gispan, I.; Damti, E.; Brodie, C.; Yadid, G.; Popovtzer, R. Nanoparticle-Based CT Imaging Technique for Longitudinal and Quantitative Stem Cell Tracking within the Brain: Application in Neuropsychiatric Disorders. ACS Nano 2014, 8, 9274–9285. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. J. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Arnida; Malugin, A.; Ghandehari, H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: A comparative study of rods and spheres. J. Appl. Toxicol. 2010, 30, 212–217. [Google Scholar] [CrossRef]
- De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. J. Biomater. 2008, 29, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P.C.; et al. Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in Vivo. ACS Nano 2012, 6, 4483–4493. [Google Scholar] [CrossRef] [Green Version]
- Mejia-Ariza, R.; Graña-Suárez, L.; Verboom, W.; Huskens, J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J. Mater. Chem. B 2017, 5, 36–52. [Google Scholar] [CrossRef]
- Yu, G.; Yang, Z.; Fu, X.; Yung, B.C.; Yang, J.; Mao, Z.; Shao, L.; Hua, B.; Liu, Y.; Zhang, F.; et al. Polyrotaxane-based supramolecular theranostics. Nat. Commun. 2018, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef] [Green Version]
- Berrecoso, G.; Crecente-Campo, J.; Alonso, M.J. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv. Transl. Res. 2020, 10, 730–750. [Google Scholar] [CrossRef]
- Chen, D.; Ganesh, S.; Wang, W.; Amiji, M. Protein Corona-Enabled Systematic Delivery and targeting of Nanoparticles. AAPS J. 2020, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Lee, B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017, 12, 3137–3151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walkey, C.D.; Olsen, J.B.; Song, F.; Liu, R.; Guo, H.; Olsen, D.W.H.; Cohen, Y.; Emili, A.; Chan, W.C.W. Protein Corona Fingerprinting Predicts the Cellular Interaction of Gold and Silver Nanoparticles. ACS Nano 2014, 8, 2439–2455. [Google Scholar] [CrossRef]
- Vence, M.G.; del Pilar Chantada-Vazquez, M.; Vazquez-Estevez, S.; Cameselle-Teijeiro, J.M.; Bravo, S.B.; Nunez, C. Potential clinical application of the personalized, disease-specific protein corona on nanoparticles. Clin. Chim. Acta 2020, 501, 102–111. [Google Scholar] [CrossRef]
- Palchetti, S.; Pozzi, D.; Mahmoudi, M.; Caracciolo, G. Exploitation of nanoparticle-protein corona for emerging therapeutic and diagnostic applications. J. Mater. Chem. B 2016, 4, 4376–4381. [Google Scholar] [CrossRef] [PubMed]
- Coisne, C.; Tilloy, S.; Monflier, E.; Wils, D.; Fenart, L.; Gosselet, F. Cyclodxetrins as Emerging Therapeutic Tools in the treatment of Chlosterol-Associated Vascular and Neurodegenerative Diseases. Molecules 2016, 21, 1748. [Google Scholar] [CrossRef] [PubMed]
- El-Darzi, N.; Mast, N.; Petrov, A.M.; Pikuleva, I.A. 2-Hydroxypropyl-β-cyclodextrin reduces retinal cholestrol in wild-type and Cyp27a1−/− mice with deficiency in the oxysterol production. Br. J. Pharmacol. 2020, 178, 3220–3234. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lai, K.-Y.; Wu, W.-C.; Chen, Y.-J.; Lee, W.-S.; Hsu, C.-Y. In Vitro Scleral Distribution by Cyclodextrin Containing Nanoemulsions. Chem. Pharm. Bull. 2015, 63, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhao, M.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial via intra and paracellular pathways. J. Control. Release 2016, 228, 9–19. [Google Scholar] [CrossRef]
- Ji, Y.; Shan, S.; He, M.; Chu, C.-C. Inclusion complex from cyclodextrin-grafted hyaluronic acid and pseudo protein as biodegradable nano-delivery vehicle for gambogic acid. Acta Biomater. 2017, 62, 234–245. [Google Scholar] [CrossRef]
- Tan, Y.F.; Chandrasekharan, P.; Maity, D.; Yong, C.X.; Chuang, K.-H.; Zhao, Y.; Wang, S.; Ding, J.; Feng, S.-S. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyrthylene glycol 1000 succinate nanoparticles. Biomaterials 2011, 32, 2969–2978. [Google Scholar] [CrossRef]
- Medarova, Z.; Pham, W.; Farrar, C.; Petkova, V.; Moore, A.M. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 2007, 13, 372–377. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Zarghami, N. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. J. Control. Release 2021, 330, 1046–1070. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, L.; Pang, Y.; Huang, W.; Qiu, F.; Jiang, X.; Zhu, X.; Yan, D.; Chen, Q. Photoluminescent Hyperbranched Poly (amido amine) Containing β-Cyclodextrin as a Nonviral Gene Delivery Vector. Bioconjugate Chem. 2011, 22, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Yan, H.; Bai, T.; Feng, Y.; Zhao, Y.; Ji, Y.; Feng, W.; Lu, T.; Nie, Y. High Fluorescent Hyperbranched Polysiloxane Containing β-Cyclodextrin for Cell Imaging and Drug Delivery. Biomacromolecules 2019, 20, 4230–4240. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Cyclodextrin-based nanoparticles for pharmaceutical applications: A review. Environ. Chem. Lett. 2021, 19, 4297–4310. [Google Scholar] [CrossRef]
- Takata, T.; Aoki, D. Topology-transformable polymers: Linear-branched polymer structural transformation via the mechanical linking of polymer chains. Polym. J. 2018, 50, 127–147. [Google Scholar] [CrossRef]
- Cheng, J.; Khin, K.T.; Jensen, G.S.; Liu, A.; Davis, M.E. Synthesis of Linear, β-Cyclodextrin-Based Polymers and Their Camptothecin Conjugates. J. Bioconjug. Chem. 2003, 14, 1007–1017. [Google Scholar] [CrossRef]
- Flory, P.J. Network topology and the theory of rubber elasticity. Br. Polym. J. 1985, 17, 96–102. [Google Scholar] [CrossRef]
- Duplantier, B. Statistical mechanics of polymer networks of any topology. J. Stat. Phys. 1989, 54, 581–680. [Google Scholar] [CrossRef]
- Tezuka, Y.; Oike, H. Topological polymer chemistry: Systematic classification of nonlinear polymer topologies. J. Am. Chem. Soc. 2001, 123, 11570–11576. [Google Scholar] [CrossRef] [PubMed]
- Gref, R.; Amiel, C.; Molinard, K.; Daoud-Mahammed, S.; Sébille, B.; Gillet, B.; Beloeil, J.-C.; Ringard, C.; Rosilio, V.; Poupaert, J.; et al. New self-assembled nanogels based on host–guest interactions: Characterization and drug loading. J. Control. Release 2006, 111, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.W.; Santos, J.L.; Williford, J.-M.; Mao, H.-Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 2015, 219, 536–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Mou, Q.; Wang, D.; Zhu, X.; Yan, D. Dendritic polymers for Theranostics. Theranostics 2016, 6, 930–947. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Yu, S.; Wu, W.; Jiang, X. Synthesis and Self-Assembly of a Nanoscaled Multiarm Polymer Terminated by β-Cyclodextrin. ACS Macro Lett. 2012, 2, 82–85. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.; Zhang, S.; Cheng, C.; Nie, C.; Zhao, C. Versatile and rapid postfunctionalization from cyclodextrin modified host polymeric membrane substrate. Langmuir 2015, 31, 9665–9674. [Google Scholar] [CrossRef]
- Kawano, S.; Lie, J.; Ohgi, R.; Shizuma, M.; Muraoka, M. Modulating Polymeric Amphiphiles Using Thermo- and pH-Responsive Copolymers with Cyclodextrin Pendant Groups through Molecular Recognition of the Lipophilic Dye. Macromolecules 2021, 54, 5229–5240. [Google Scholar] [CrossRef]
- Liao, R.; Liu, Y.; Lv, P.; Wu, D.; Xu, M.; Zheng, X. Cyclodextrin pendant polymer as an efficient drug carrier for scutellarin. Drug Deliv. 2020, 27, 1741–1749. [Google Scholar] [CrossRef]
- Jia, Y.-G.; Zhu, X.X. Self-healing supramolecular hydrogel made of polymers bearng cholic acid and β-cyclodextrin pendants. Chem. Mater. 2015, 27, 387–393. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L.D.; Fenyvesi, E.; Crini, G. Water-insoluble β-cyclodextrin-epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processess using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci. 2018, 78, 1–23. [Google Scholar] [CrossRef]
- Uekama, K.; Hirayama, F.; Arima, H. Recent Aspects of Cyclodextrin-Based Drug Delivery System. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 3–8. [Google Scholar] [CrossRef]
- Song, X.; Wen, Y.; Zhu, J.-L.; Zhao, F.; Zhang, Z.-X.; Li, J. Thermoresponsive Delivery of Paclitaxel by β-CD-Based Poly(N-isopropylacrylamide) Star Polymer via Inclusion Complexation. Biomacromolecules 2016, 17, 3957–3963. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, P.M.; Peimanfard, S.; Zarrabi, A.; Khosravi, A.; Islami, M. Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy. Anti-Cancer Agents Med. Chem. 2020, 20, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Wong, B.; Haddleton, D.M. Synthesis of well-defined cyclodextrin-core star polymers. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 2206–2214. [Google Scholar] [CrossRef]
- Schaefgen, J.R.; Flory, P.J. Synthesis of Multichain polymers and Investigation of their Viscosities. J. Am. Chem. Soc. 1948, 70, 2709–2718. [Google Scholar] [CrossRef]
- Ito, D.; Kimura, Y.; Takenaka, M.; Ouchi, M.; Terashima, T. Single-chain crosslinked polymers via the transesterification of folded polymers: From efficient synthesis to crystallinity control. J. Polym. Chem. 2020, 11, 5181–5190. [Google Scholar] [CrossRef]
- Morton, M.; Helminiak, T.E.; Gadkary, S.D.; Bueche, F. Preparation and properties of monodisperse branched polystyrene. J. Polym. Sci. 1962, 57, 471–482. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H.; Driva, P.; Sakellariou, G.; Chatzichristidi, M. Polymers with Star-Related Structures: Synthesis, Properties, and Applications. Polym. Sci. Compr. Ref. 2012, 6, 29–111. [Google Scholar] [CrossRef]
- Szillat, F.; Schmidt, B.V.K.J.; Hubert, A.; Barner-Kowollik, C.; Ritter, H. Redox-Switchable Supramolecular Graft Polymer Formation via Ferrocene-Cyclodextrin Assembly. J. Macromol. Rapid Commun. 2014, 35, 1293–1300. [Google Scholar] [CrossRef]
- Daoud-Mahammed, S.; Ringard-Lefebvre, C.; Razzouq, N.; Rosilio, V.; Gillet, B.; Couvreur, P.; Amiel, C.; Gref, R. Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies: Formation and interaction with a hydrophobic drug. J. Colloid Interface Sci. 2007, 307, 83–93. [Google Scholar] [CrossRef]
- Haley, R.M.; Gottardi, R.; Langer, R.; Mitchell, M.J. Cyclodextrins in drug delivery: Applications in gene and combination therapy. Drug Deliv. Transl. Res. 2020, 10, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Simões, S.M.N.; Rey-Rico, A.; Concheiro, A.; Alvarez-Lorenzo, C. Supramolecular cyclodextrin-based drug nanocarriers. Chem. Commun. 2015, 51, 6275–6289. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Nie, T.; Fang, Y.; You, X.; Huang, H.; Wu, J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J. Mater. Chem. B 2022, 10, 2077–2096. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Faham, A.; Clas, S.-D.; Boyd, B.J.; Jannin, V.; Bernkop-Schnürch, A.; Zhao, H.; Lecommandoux, S.; Evans, J.C.; Allen, C.; et al. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int. J. Pharm. 2019, 558, 128–142. [Google Scholar] [CrossRef]
- Solms, J.; Egli, R.H. Harze mit Einschlusshohlräumen von Cyclodextrin-Struktur. Helv. Chim. Acta 1965, 48, 1225–1228. [Google Scholar] [CrossRef]
- Lederer, M.; Nguyen, H.K.H. Adsorption chromatography on cellulose XIV. Some results use aqueous solutions of soluble cyclodextrin polymers as eluents. J. Chromatogr. 1996, 723, 405–409. [Google Scholar] [CrossRef]
- Safapour, S.; Mazhar, M.; Nikanfard, M.; Liaghat, F. Recent advancements on the functionalized cyclodextrin-based adsorbents for dye removal from aqueous solutions. Int. J. Environ. Sci. Technol. 2022, 19, 5753–5790. [Google Scholar] [CrossRef]
- Petitjean, M.; García-Zubiri, I.X.; Isasi, J.R. Cyclodextrin-Based Polymers for Food and Pharmaceutical Applications: A Historical Review. Hist. Cyclodext. 2020, 52, 281–304. [Google Scholar] [CrossRef]
- Rahman, M.; Alrobaian, M.; Almalki, W.H.; Mahnashi, M.H.; Alyami, B.A.; Alqarni, A.O.; Alqahtani, Y.S.; Alharbi, K.S.; Alghamdi, S.; Panda, S.K.; et al. Suprabranched polyglycerol nanostructures as drug delivery and theranostics tools for cancer treatment. J. Drug Discov. Today 2021, 26, 1006–1017. [Google Scholar] [CrossRef]
- Khor, S.Y.; Quinn, J.; Whittaker, M.; Truong, N.P.; Davis, T.P. Controlling Nanomaterials Size and Shape for Biomedical Applications via Polymerization-Indced Self-Assembling. J. Macromol. Rapid Commun. 2018, 40, e1800438. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, J.; Tang, J.; Shen, Y.; Guo, W.; Zhou, M.; Wang, R.; Jiang, N.; Gan, Z.; Yu, Q. Tumor-specific and renal excretable star-like polymer-doxorubicin conjugates for safe and efficient anticancer therapy. Biomacromolecules 2018, 19, 2849–2862. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, S.; Liu, H.; Yang, C.; Kang, Y.; Wang, M. Unimolecular micelles of amphiphilic cyclodextrin-core star-like block copolymers for anticancer drug delivery. J. Chem. Commun. 2015, 51, 15768–15771. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Senthil, K.; Sun, Y.; Wang, Y.; Huo, H.; Hao, Y.; Liu, Y.; Chen, H.; Li, H.; Zhang, Z.; et al. Nearly monodisperse unimolecular micelles via chloro-based atom transfer radical polymerization. Giant 2021, 7, 100062. [Google Scholar] [CrossRef]
- Namgung, R.; Lee, Y.M.; Kim, J.; Jang, Y.; Lee, B.-H.; Kim, I.-S.; Sokkar, P.; Rhee, Y.; Hoffman, A.S.; Kim, W.J. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun. 2014, 5, 3702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badwaik, V.D.; Aicart, E.; Mondjinou, Y.A.; Johnson, M.A.; Bowman, V.D.; Thompson, D.H. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors. Biomaterials 2016, 84, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Gómez-García, M.; Benito, J.M.; Butera, A.P.; Mellet, C.O.; Fernández, J.M.G.; Blanco, J.L.J. Probing Carbohydrate-Lectin Recognition in Heterogeneous Environments with Monodisperse Cyclodextrin-Based Glycoclusters. J. Org. Chem. 2012, 77, 1273–1288. [Google Scholar] [CrossRef]
- Albuzat, T.; Keil, M.; Ellis, J.; Alexander, C.; Wenz, G. Transfection of luciferase DNA into various cells by cationic cyclodextrin polyrotaxanes derived from ionene-11. J. Mater. Chem. 2012, 22, 8558–8565. [Google Scholar] [CrossRef]
- Arima, H.; Yamashita, S.; Mori, Y.; Hayashi, Y.; Motoyama, K.; Hattori, K.; Takeuchi, T.; Jono, H.; Ando, Y.; Hirayama, F. In Vitro and In Vivo gene delivery mediated by Lactosylated Dendrimer/α-Cyclodextrin Conjugates (G2) into Hepatocytes. J. Control. Release 2010, 146, 106–111. [Google Scholar] [CrossRef]
- Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Koch, M.; Wenz, G.; Lehr, C.-M. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J. Mater. Chem. B 2015, 3, 2590–2598. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Xu, D.; Liu, M.; Jiang, R.; Mao, L.; Huang, Q.; Wan, Q.; Wen, Y.; Zhang, X.; Wei, Y. Direct encapsulation of AIE-active dye with β-cyclodextrin terminated polymers: Self-assembly and biological imaging. J. Mater. Sci. Eng. C 2017, 78, 862–867. [Google Scholar] [CrossRef]
- Huang, H.; Liu, M.; Chen, J.; Mao, L.; Wan, Q.; Wen, Y.; Deng, F.; Zhou, N.; Zhang, X.; Wei, Y. Fabrication of β-CD containing AIE-active polymeric composites through the formation of dynamic phenylboronic borate and their theranostic applications. Cellulose 2019, 26, 8829–8841. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Chen, J.; Luo, S.; Xu, D.; Xue, Y.; Huang, H.; Wan, Q.; Liu, M.; Zhang, X.; Wei, Y. Fabrication of AIE-active Amphiphilic Fluorescent Polymeric Nanoparticles through Host-guest interaction. RSC Adv. 2016, 6, 54812–54819. [Google Scholar] [CrossRef]
- Sukumar, U.K.; Bose, R.J.C.; Malhotra, M.; Babikir, H.A.; Afjei, R.; Robinson, E.; Zeng, Y.; Chang, E.; Habte, F.; Sinclair, R.; et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and resensitization of glioblastoma to temozolomide. Biomaterials 2019, 218, 119342. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Mu, J.; Zeng, L.; Lin, J.; Nie, Z.; Jiang, X.; Huang, P. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater. Horiz. 2019, 6, 846–870. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, L.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. Construction of a High-Efficacy Drug and Gene Co-Delivery System for Cancer Therapy from a pH-Sensitive Supramolecular Inclusion between Oligoethyleneimine-graft-β-cyclodextrin and Hyperbranched Polyglycerol Derivative. ACS Appl. Mater. Interfaces 2018, 10, 35812–35829. [Google Scholar] [CrossRef]
- Yallapu, M.M.; Chauhan, N.; Othman, S.F.; Khalilzad-Sharghi, V.; Ebeling, M.C.; Khan, S.; Jaggi, M.; Chauhan, S.C. Implicatons of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials 2015, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, S.; Nuhn, L.; Barz, M.; Butt, H.; Koynov, K. Shining Light on polymeric Drug Nanocarriers with fluorescence correlation spectroscopy. Macromol. Rapid Commun. 2022, 43, 2100892. [Google Scholar] [CrossRef]
- Carulla, N.; Caddy, G.L.; Hall, D.; Zurdo, J.; Gairí, M.; Feliz, M.; Giralt, E.; Robinson, C.; Dobson, C.M. Molecular recycling within amyloid fibrils. Nature 2005, 436, 554–558. [Google Scholar] [CrossRef]
- Rajan, R.S.; Illing, M.E.; Bence, N.F.; Kopito, R.R. Specificity in intracellular protein aggregatio and inclusion body formation. Proc. Natl. Acad. Sci. USA 2001, 98, 13060–13065. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci. 2017, 5, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro-Lago, C.; Lynch, I.; Dawson, K.A.; Linse, S. Inhibition of IAPP and IAPP(20-29) Fibrilltion by Polymeric Nanoparticles. Langmuir 2010, 26, 3453–3461. [Google Scholar] [CrossRef] [PubMed]
- Mirsadeghi, S.; Dinarvand, R.; Ghahremani, M.H.; Hormozi-Nezhad, M.R.; Mahmoudi, Z.; Hajipour, M.J.; Atyabi, F.; Ghavami, M.; Mahmoudi, M. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale 2015, 7, 5004–5013. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Gause, K.T.; Kamphuis, M.M.J.; Ang, C.-S.; O’Brien-Simpson, N.; Lenzo, J.; Reynolds, E.; Nice, E.C.; Caruso, F. Differential Roles of the Protein Corona in the Cellular Uptake of Nanoporous Polymer Particles by Monocyte and Macrophage Cell Lines. ACS Nano 2013, 7, 10960–10970. [Google Scholar] [CrossRef]
- Ghosh, P.; De, P. Modulation of Amyloid Protection Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS Appl. Bio Mater. 2020, 3, 6598–6625. [Google Scholar] [CrossRef] [PubMed]
- Shinde, M.N.; Khurana, R.; Barooah, N.; Bhasikuttan, A.C.; Mohanty, J. Sulfobutylether-β-Cyclodextrin for inhiition and Rpture of Amyloid Fibrils. J. Phys. Chem. 2017, 121, 20057–20065. [Google Scholar] [CrossRef]
- Christoffersen, H.F.; Andreasen, M.; Zhang, S.; Nielsen, E.H.; Christiansen, G.; Dong, M.; Skrydstrup, T.; Otzen, D.E. Scaffolded multimers of hIAPP20–29 peptide fragments fibrilate fatser and lead to different fibrils compared to the free hIAPP20–29 peptide fragment. Biochim. Biophys. Acta 2015, 1854, 1890–1897. [Google Scholar] [CrossRef]
- Oliveri, V.; Zimbone, S.; Giuffrida, M.L.; Bellia, F.; Tomasello, M.F.; Vecchio, G. Pophyrin Cyclodextrin Conjugates Modulate Amyloid Beta Peptide Aggregation and Cytotoxicity. Chem. Eur. J. 2018, 24, 6349–6353. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Pan, Y.; Yan, Y.; Hu, X.; Chen, R.; Ravoo, B.J.; Guo, D.; Zhang, T. Recognition and Removal of Amyloid-beta by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer’s Disease. Adv. Mater. 2021, 33, e2006483. [Google Scholar] [CrossRef]
- Iannuzzi, C.; Irace, G.; Sirangelo, I. The Effect of Glycosaminoglycans (GACs) on Amyloid Aggregation and Toxicity. Molecules 2015, 20, 2510–2528. [Google Scholar] [CrossRef] [Green Version]
- Dilnawaz, F.; Acharya, S.; Sahoo, S.K. Recent trends of nanomedicine approach in clinics. Int. J. Pharm. 2018, 538, 263–278. [Google Scholar] [CrossRef] [PubMed]
Compound | CD Nature | Characterization Methods |
---|---|---|
Inhibition and/or disintegration of amyloid fibrils produced from human insulin and lysozyme proteins | Sulfobutylether (SBE7) β-CD |
|
human islet amyloid polypeptide (hIAPP20–29): Cyclotriphosphazene (N3P3) and human islet amyloid polypeptide (hIAPP20–29): α-cyclodextrin (αCD) | α-CD |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaeilpour, D.; Broscheit, J.A.; Shityakov, S. Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications. Int. J. Mol. Sci. 2022, 23, 13505. https://doi.org/10.3390/ijms232113505
Esmaeilpour D, Broscheit JA, Shityakov S. Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications. International Journal of Molecular Sciences. 2022; 23(21):13505. https://doi.org/10.3390/ijms232113505
Chicago/Turabian StyleEsmaeilpour, Donya, Jens Albert Broscheit, and Sergey Shityakov. 2022. "Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications" International Journal of Molecular Sciences 23, no. 21: 13505. https://doi.org/10.3390/ijms232113505
APA StyleEsmaeilpour, D., Broscheit, J. A., & Shityakov, S. (2022). Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications. International Journal of Molecular Sciences, 23(21), 13505. https://doi.org/10.3390/ijms232113505