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Abstract: Traditional drug design requires a great amount of research time and developmental
expense. Booming computational approaches, including computational biology, computer-aided
drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery
by minimizing the time and financial cost. In recent years, computational approaches are being
widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the
approval of plenty of new drugs for marketing. The present review emphasizes on the applications
of these indispensable computational approaches in aiding target identification, lead discovery, and
lead optimization. Some challenges of using these approaches for drug design are also discussed.
Moreover, we propose a methodology for integrating various computational techniques into new
drug discovery and design.

Keywords: computational biology; computer-aided drug design (CADD); artificial intelligence-aided
drug design (AIDD); deep learning

1. Introduction

Drug research and development is a multistep process that includes drug discovery,
clinical testing, and approval for production (Figure 1). Drug discovery is a lengthy,
expensive, and complicated process that spans years and costs millions of dollars [1,2]. This
process consists of target identification, lead discovery, lead optimization, and preclinical
testing (Figure 1) [3–5]. Traditional drug discovery begins with the identification of a
specific disease, suitable target identification, effective molecule identification (including
molecular synthesis and bioactivity testing), and preclinical testing. Despite investing large
amounts of money and time, the success rate of clinical testing is below 15% [6]. The cause
of failure in approximately 50% of drug discovery is poor pharmacokinetic properties
(absorption, distribution, metabolism, excretion, and toxicity [ADMET]) [7]. The speed
and success rate of drug discovery have tremendously increased with the development of
computational approaches [8].

Nowadays, computational and deep learning approaches play an increasingly vital
role in drug discovery. The fast evolvement of methods and algorithms has shortened the
time and financial costs in finding the drug candidates.

In drug discovery, contributions of computational biology include the characteriza-
tion of ligand-binding molecular mechanisms, the identification of binding/active sites
and structure refinement of binding poses of the ligand-target. Most of these approaches
indicate that binding/active sites on the target protein should be well determined. Specific
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residues of these binding sites could be used to guide the modification and optimiza-
tion of the initial lead compound and generate new ligand–target protein interactions.
In some cases, engagement of the active site is inadequate for exploring the pathologic
activity. Mutations away from the active site, conformational transitions, drug resistance,
and expression levels are also known to induce pathosis. Computational biology, espe-
cially biomacromolecular simulation, is a powerful method for revealing the molecular
mechanism of the target protein and providing new perspectives for drug design.
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Figure 1. The process of drug research and development. The details in drug development have been
improved in the past forty years. Nowadays, the complete process in drug research includes drug
discovery, clinical testing, and approval for production. The process of drug discovery includes target
identification, lead discovery, lead optimization, and preclinical testing. This process usually takes
7–10 years and $600 M–$800 M. Then approximately 200 compounds enter preclinical testing step
while about 5 compounds enter clinical testing process. This process includes three steps, phase I,
II and III clinical trials, respectively. It is a long and expensive process that costs 6–12 years and
billions of dollars. The compounds that have passed clinical testing enter the process of approval for
production. Approved compounds by FDA/EMA can commercialize on the market. This process
takes 1–2 years and about $50 M.

According to Newtonian Mechanics, molecular dynamics (MD) simulations, which
have been widely employed in drug discovery, can capture the position and motion of
each atom in a system [9]. This approach can reveal the details of binding, unbinding, and
conformational changes of the target protein, which provides complementary information
to experiments [10]. Moreover, MD simulations can provide the thermodynamics, kinetics,
and free energy profiles of target–ligand interactions [11]. This information can be useful
in improving the binding affinity of the lead compound [9]. Due to the availability of
more reliable binding affinity results, MD simulations are used to validate the accuracy
of docking results [12]. Moreover, quantum mechanics (QM) approaches, such as density
functional theory (DFT) [13,14] and ab initio calculation methods [14,15] can be applied to
virtual screening (VS) by exploring atomic-electronic interactions between the ligand and
target [16]. But these QM approaches are computationally extremely expensive and not
always applied to VS in industry.

Computer-aided drug design (CADD) is typically used to discover, develop, and ana-
lyze drug candidates and active molecules having similar biochemical properties [4,17–20];
accelerate drug discovery, and reduce costs and failure rates [21]. CADD-discovered drug
candidates are usually from small-molecule libraries. These discoveries are made using
various methods, including molecular docking, pharmacophore modeling, VS, and quan-
titative structure–activity relationship (QSAR) [4,17–20]. Among these approaches, VS
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is the major contributor applied to screen new hit compounds with required properties
from large chemical databases. VS is classified as structure-based VS (SBVS) [22,23] and
ligand-based VS (LBVS) [24,25]. VS is used to accelerate drug discovery and shorten the
number of compounds to be tested in the wet lab. Additionally, VS also plays an important
role in drug repurposing or repositioning, optimizing the drug candidates quickly, which
accelerates the process of drug design and development [26,27].

Artificial intelligence (AI) has recently been proposed as a promising technique in
learning and discovering pharmacological big data in drug discovery that has boosted
the success rates of drug identification [28]. Using the extensive datasets from biomedical
research, AI can learn and discover further rules for translating the data into accessible
knowledge. Leading pharmaceutical companies have applied AI to enhance the efficacy of
their drug candidates, thereby saving time and costs on unnecessary synthesis and tests.
Machine learning [29–31], a subfield of AI, and its subfield, deep learning [32–34], have
been combined with the VS process [35–37] to improve the efficiency of similarity searching
and the reliability of mining screening data in the ligand-based VS process and enhance the
accuracy of scoring functions in structure-based VS [36–38]. The approaches also contribute
to the generation of novel compounds [32,34].

This review discusses the application of powerful computational approaches to drug
discovery and overviews various computational techniques applied to drug discovery
including MD simulations, developed Coarse-Grained models, QM, molecular docking,
VS, pharmacophore modeling, QSAR, machine learning, and deep learning. Additionally,
it discusses how to exploit various computational techniques along with VS to extend the
chemical space of novel lead compounds and accelerate the process of drug discovery.

2. Computational Biology in Drug Design

Modern drug discovery begins with target identification. Various approaches at the
crossroads such as structural biology, molecular biology, cell biology, genomics, proteomics,
computational biology, and bioinformatics [39–45] are being explored to identify the target
or related targets and investigate the pathogenesis. Understanding the pathogenesis is
also vital for drug discovery and therapies. Computational chemistry techniques, such as
MM, QM and MD simulations are widely used in computational biology and medicinal
chemistry. MD simulations, DFT, and QM are efficient methods for exploring the pathogenic
mechanism and drug resistance [39,46–57]. We herein summarize the applications of these
methods in drug discovery, specifically in the study of pathogenic mechanism, molecular
docking, and lead optimization.

2.1. Application of Molecular Mechanics in Drug Design

Molecular mechanics (MM) is an approach which approximately treats the molecules
with the laws of classical mechanics and saves the computational resources required for
quantum mechanical calculations [58]. Over the past decades, MM approach plays an
important role in understanding the ligand-protein structures, interactions and optimizing
leads. It is achieved by MM potential energy function, which represents the sum of different
energy terms, referred as “force fields” [59]. MM potential energy functions are used in
various sampling methods, such as MD and MC (Monte Carlo). MD simulations are often
utilized in drug discovery [60,61]. MD is one of the most popular algorithms for sampling.
It utilizes various integration algorithms, such as Verlet’s Algorithm, Leap-frog Algorithm
and Beeman’s Algorithm, to interpret classical Newton’s equation of motion to analyze the
trajectories, movements and interactions in a given molecular system [61]. Time-dependent
properties can be obtained from MD [62]. The system is generally a biomacromolecule,
such as a protein for example an enzyme, with a solvent environment. For this protein
or enzyme system, the initial protein structure is resolved by experiments [63]. Then, the
structure could be modelled by different methods. After that, simulations start with the
prepared model. X-ray crystallography is used as an experimental method for obtaining the
three-dimensional protein structure [64]. However, X-ray requires the protein to form stable
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crystals and the crystal quality determines the resolution of the structure, which limits
the obtainment of high-quality protein structures, especially of membrane proteins [65].
Cryo-EM addresses the problem without the need to form crystals [66,67]. Cryo-EM can
determine even quite unstable and intractable membrane protein structures [67]. However,
Cryo-EM is not a panacea. In cryo-EM, sample quality is still the most critical factor for
determining the high-resolution structure [54]. If no experimental structure is available,
modeling or predicting the structure is necessary. Homology modeling [68,69] and Al-
phaFold developed by DeepMind [70–72] are preferred techniques for acquiring the initial
protein structure. In the molecular dynamics simulation, atoms and molecules of the system
interact during the fixed time, providing the dynamic features of the system. Atom trajecto-
ries are generally determined by Newton’s laws of motion. Molecular mechanics methods
with various force fields [73–78] are employed to calculate the energies of the system.

2.1.1. Application in Investigating the Mechanism of the Target Protein

Target protein can be regulated by drugs to cure the disease or relieve the symptoms.
The overall process is dynamic and usually accompanied by the conformational changes
of the target protein. Target protein conformation has an essential role in drug design.
Even minor changes, as well as the motions of residues, may affect the target–ligand
interactions. MD simulations can provide dynamic information about the target protein
and the ligand in terms of drug design, which cannot be obtained through experimental
methods. Compared with experiments, MD simulations can provide detailed information
about the target protein folding process and describe the conformational changes of the
protein with environmental changes such as temperature, pH, and residue mutations, with
detailed energetic information. At present, MD simulations have been broadly applied to
study the molecular mechanisms of the target protein to aid drug design.

For example, Horikoshi et al. revealed the molecular mechanisms underlying the loss
of activity in the most severe glucose-6-phosphate dehydrogenase (G6PD) deficiency [79].
It is triggered by the long-distance propagation of structural defects at the dimer interface.
The findings indicated that a promising drug can possibly be discovered and developed by
correcting these structural defects. While studying pathogenic mutations in the kinesin-3
motor KIF1A by using MD simulations, Budaitis et al. found that these mutations were
linked to neurodevelopmental and neurodegenerative disorders that impaired neck linker
docking and dramatically reduced the KIF1A force generation [80]. Zanetti-Domingues’s
work revealed autoinhibition mechanisms in dimers and oligomers of the epidermal growth
factor receptor (EGFR) and supported that dysregulated species bear populations of sym-
metric and asymmetric kinase dimers coexisting in an equilibrium [81]. The structural
feature of the assembly inspires the related drug design. Based on MD simulations, Zhu’s
lab elaborated on the genotype-determined EGFR-RTK heterodimerization and its drug
resistance mechanism in lung cancer caused by a tighter EGFR-RTK crosstalk [82]. The
study promotes drug design against the tighter crosstalk of the genotype determined. Un-
derstanding the dynamic behaviors of sirtuins, which have several ligand-binding sites [83],
may provide perspectives for the design of selective inhibitors or activators. Polymyxin
resistance was found to be induced by lipopolysaccharides and outer membrane vesicles
in the multidrug-resistant Pseudomonas aeruginosa [84]. Based on this mechanism, an
intelligent strategy for designing lipopeptide antibiotics against polymyxin resistance was
developed [84]. The strategy may be suitable for the discovery of other classes of bacterial
pathogen-targeting antibiotics. In addition to regular MM approach, coarse-grained models
can be used to investigate the molecular mechanism of the target. More details are shown
in Section 2.1.4.

2.1.2. Application in Molecular Docking

In molecular docking, according to the space complementarity and energy match,
compounds are docked in the specific site. Then, the docking poses are scored and ranked
based on the scores [85]. On the basis of molecular docking, VS has been indispensable to
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drug discovery [86,87]. VS saves time and costs for drug discovery and efficiently obtains
various molecule scaffolds [88–92]. The complete VS process consists of pre-processing
compound libraries, molecular docking, and the selection of pretest compounds [22,93,94].
In general, the enrichment factor greatly determines the success of VS. The enrichment
factor is a validation tool that evaluates the effectiveness of VS by computing the ratio of
active molecules among the tested molecules in the initial library. For each VS step, different
strategies are used to enhance the enrichment factor [38,95]. The VS results depend on the
rationality of the docking poses between the target and ligand, and the accuracy of binding
affinity [39,96–103].

After VS step, filtering promising candidates may then be sampled with MD simula-
tions. The use of MD simulations can improve the flexibility in conformational sampling,
which increases the number of degrees of freedom of the system and consequently in the
computational effort [104]. For MM MD simulations, one of the most time-consuming parts
is the calculation of the interactions between each atom in the system, which cost more than
90% of the total simulation time. This is mainly related to the calculation giving rise to O(N2)
computational complexity (N represents the number of atoms in the system) [105–107].
The cutoff method applied to treat the interactions between atoms can reduce the compu-
tational complexity to O(N) [105,106]. Compared with the three-dimensional structure of
the target protein obtained through X-ray or Cryo-EM, MD simulations take the flexibility
of the target protein into account. The experimental structure is in the specific crystalized
condition, which is possibly different from the real binding conformation with the ligand.
A set of conformations can be obtained by modeling and simulations, especially the crucial
intermediate or transition state that may contribute to the ligand–target protein binding
process. MD simulations used to sample the specific conformation can provide more ratio-
nal docking poses and achieve a higher enrichment factor. In addition to the conformation
optimization of the target and ligand, MD simulations combined with binding free energy
calculations are applied to assess the binding affinity of the ligand with the target. MM-
PBSA and MM-GBSA are general approaches used to calculate binding free energy. Based
on the trajectories from MD simulations, electrostatic energy, solvation energy, and van
der Waals energy are calculated. Entropy change can be obtained through normal mode
analysis. Then, the binding free energy can be obtained [108]. The binding free energy
calculations are great and useful to augment the accuracy of the binding affinity of docking
poses and improve the enrichment factor. But these high-cost sampling calculations are
often used on an even smaller subset of potential hits.

2.1.3. Application in Lead Optimization

The optimal binding mode and the accurate binding affinity are vital for understanding
the ligand–target interactions and guiding the modification of screened compounds. The
ligand–target thermodynamical data, such as entropy change (∆S) and free energy change
(∆G), can be determined through experiments and are used to distinguish between active
and inactive compounds. However, the lack of details about target–ligand interactions
limits further structural modifications of the compounds. MD simulation is a powerful
approach for precisely evaluating the ligand–target binding modes. It can describe the
detailed ligand–target interactions and determine the free energy contribution of each
residue in the binding sites. The information can provide guidance for lead optimization.

Using the combination of MD simulations and VS, Patel’s lab optimized bedaquiline
to decrease the severity of its adverse side effects and discovered that the compound
CID 15947587 with low cardiotoxicity has the highest binding free energy (−85.27 kcal/mol)
and an optimal docking score (−5.64) with mycobacterial ATP synthase enzyme [109].
Castillo’s group optimized AKT inhibitors by using MD simulations, thereby improving the
binding affinity of the 2,4,6-trisubstituted pyridine scaffold in the ATP pocket of PKB/AKT
and interacting well with glutamates/aspartates in ATP-binding sites [110]. Zhang et al.
screened the new inhibitor against phosphodiesterase-2A (PDE2A). With the guidance of
MD simulations, they obtained the optimized lead, LHB-8, forming an extra hydrogen
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bond with D808 and a hydrophobic interaction with T768, in addition to the interactions
with Q859 and F862 of the PDE2A target [111].

2.1.4. Application of Coarse-Grained Models in Drug Design

All-atom MD simulations present the limitation while exploring the dynamic process
of the large-scale target protein or long-time scale. Coarse-grained (CG) models help
overcome the limitation well. When using CG models, the main chain of residues is in
the all-atom state, but the side chain is a simplified united atom. Compared with all-
atom MD simulations, CG simulations decrease the number of particles and make the
potential energy surface smoother. Thus, the longer time and larger scale are available
using CG models. Martini is a classical force filed to employ CG simulations. Martini is
currently applied to study the mechanism and oligomerization of membrane proteins and
self-assembly of proteins, predict conformational changes, and study binding and pore
formation in membranes [112–114].

The CG model consistently developed by Warshel et al. [77,78,115] is advantageous in
investigating the molecular mechanism of different biophysical systems, such as SARS-CoV-
2 [116], GPCR [117], ATPase [118,119], and kinase [120]. This model can accurately describe
the electrostatic term [121], which usually is the major contributor compared with other
types of interactions in proteins. The CG profile can determine the dynamic information of
the reaction in proteins, including the reaction energy barrier, rate-determining step, and
the transition state. These results offer energetic details for understanding the working
mechanism of proteins and guide rational drug discovery and development.

We are currently attempting to apply the CG model to VS to obtain more effective
compounds. CG simulations can provide vital dynamic information and details about the
transition state and energy barrier. The transition state is induced in the molecular docking
of VS, and the energy barrier is considered a rule in the score and rank. Then, the selected
compounds are used to construct the training set of AI to generate new molecules.

2.2. Application of QM in Drug Design

Structural studies have shown that the details of the potential drug target are valuable
not only for lead discovery and optimization but also for the later steps of drug design,
such as toxicity determination and prediction of binding modes of the leads and drug
targets. During drug discovery, the molecular docking or pharmacophore model is used for
predicting the binding modes in a short time. MD simulations can be employed to obtain
flexible and rational docking modes. They can also guide drug design by exploring ligand–
target interactions, such as studying the active site for extra electrostatic, hydrophilic, or
hydrophobic interactions that can increase binding affinity [39,122,123]. Although MD
simulations improve the accuracy of scoring and docking [124–126], concerns still exist,
especially in enzymes or metal-containing drug targets, in which valence electron transfer
occurs [127,128].

QM is considered the potential solution for the aforementioned concerns, which can
explore drug target details at the electronic level [52,123,128]. At present, QM is increasingly
applied to enzymes or metal-containing proteins that are considered drug targets, such
as HIV-1 protease [129], human DHFR [130], and GPCR [131], and clarify the molecular
mechanism for drug design [132–135]. QM is also used for designing novel drugs, including
the high-affinity ligands of FKBP12 [136] and novel inhibitors of human DHFR [137].

Additionally, researchers have attempted to improve scoring by inducing QM ap-
proaches, especially QM-polarized ligand docking [138], and QMScore, a semiempirical
QM (SQM) scoring function [139]. QM in combination with molecular mechanics (MM)
has been developed to enhance the accuracy of docking and VS [128,140–142]. Fong et al.
applied a series of QM/MM scoring functions to six HIV-1 proteases and found that parts
of QM/MM functions were superior to MM functions [143]. Kim et al. [144] proposed a
new strategy of using QM/MM with the implicit solvation model to rescore docking poses
and improve the docking performance on 40 GPCR–ligand complexes. A significant im-
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provement was observed over the conventional docking method. Chaskar et al. developed
a QM/MM on-the-fly docking method to deal with polarization and metal interactions
in docking and observed a significant improvement in scoring [145]. Compared to MD
simulations, QM calculations are even more expensive. For example, the Hartree-Fock
recovers approximately 99% of the total electronic energy and requires diagonalizing the
M by M Fock matrix at O(M3) cost (M represents the number of basis functions) [146]. By
Shor’s factoring algorithm, the complexity of quantum calculations is O((log2N)3) (N repre-
sents the number of atoms in the system) [147]. Moreover, QM calculations are restricted to
systems of up to a few hundred atoms in contrast to MD simulations, which has evolved
from simulating tens of thousands of atoms to handling over 100 million atoms comprising
an entire cell organelle [148,149].

3. Computer-Aided Drug Design

CADD has until now led to the discovery of more than 70 approved drugs [4], from
Captopril in 1981 [150,151] to Remdesivir in 2021 [152]. Two important categories of CADD,
structure-based drug design (SBDD) and ligand-based drug design (LBDD), are highlighted
in this review. These two categories have been widely used in lead discovery during drug
discovery (Figure 2). SBDD depends on the three-dimensional structure of the target
and active sites to determine ligand–target interactions [153]. On the other hand, LBDD
is used when the three-dimensional structure of the target is unknown. It begins with
a single molecule or a set of molecules effective against the target and depends on the
structure–activity relationship [153].
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Figure 2. The workflow of structure-based drug design (SBDD) and ligand-based drug design (LBDD).
For SBDD, it starts with target identification. Then, binding site of the target requires identifying
and compound library needs to be prepared. Next, dock each compound from the library into the
identified binding site evaluate the score. In molecular docking, MD simulations can be utilized to
obtain more flexible target and rescore for the docking process. Additionally, MD simulations can
be applied to lead optimization through ligand-target interactions. Through these steps, leads are
obtained primarily. For LBDD, it starts with known ligands with bioactivity. Then, extracting the
chemical features of these ligands and build pharmacophore or QSAR model. Next, according to the
information of known ligands (e.g., ligand similarity), ligand-based virtual screening is performed in
the compound library and leads are screened. These leads are further optimized in wet and dry lab.
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3.1. Structure-Based Drug Design

SBDD is an efficient approach for lead discovery and optimization. The most fre-
quently used methods in SBDD, that is, MD simulations, molecular docking, and structure-
based VS, are applied to evaluate binding affinity and ligand–target interactions and
explore conformational changes in the target. Using SBDD, some approved drugs, such as
Imatinib (an abltyrosine kinase inhibitor) [154], Indinavir (Crixivan, the inhibitor of HIV-1
protease) [155], Nilotinib (Tasigna, a selective tyrosine kinase receptor inhibitor used in the
treatment of chronic myelogenous leukemia) [156], and Lifitegrast (the LFA-1 antagonist
that blocks binding of ICAM-1 to LFA-1) [157], were discovered. SBDD mainly includes
target preparation, binding site identification, compound library preparation, molecular
docking and scoring, and MD simulations (Figure 2).

3.1.1. Target Preparation

With advancements in structural biology, increasing structures of the target proteins are
available and deposited in the PDB. Because of the limitations of experimental approaches,
some target structures have not been obtained yet [5,158,159]. Computational approaches
such as homology modeling, AlphaFold, and ab initio protein structure prediction can
predict target structures according to their sequences [68,69,71,72,160]. Homology modeling
selects an appropriate template structure to construct the target structure. AlphaFold is an
AI technique developed by DeepMind that predicts three-dimensional protein structures
according to their amino acid sequences, which can achieve approximate accuracy as
experiments [72]. The ab initio protein structure prediction is considered suitable when the
template structure is unavailable in the PDB. This technique considers global optimization,
which can help find the tertiary structure with minimum energy based on the primary
structure of the specific target [160].

3.1.2. Binding Site Identification

Binding site determination is an essential prerequisite for performing molecular dock-
ing. Information about the binding sites of target proteins can be obtained from site-directed
mutation and the co-crystallized complex structures of proteins with ligands [161]. When
any prior knowledge of the binding pocket is unknown, blind blocking is required to
predict the binding sites [162–164]. For blind docking method, docking has to be performed
on the entire protein surface to find the most probable binding mode. The whole process
includes several trials (>100 times recommended by Hetenyi, and Van Der Spoel [165]) and
energy evaluations (at least 10 million times per trial recommended by Hetenyi, and Van
Der Spoel [165]) to obtain the favorable ligand-target complex pose [163–165]. Compared
with regular docking, although blind docking is less reliable and limited due to inade-
quate sampling at the docking space, blind docking is meaningful to discover unexpected
interactions that may exist in the unidentified binding modes [164,166,167]. Some tools
are developed to predict the binding sites of target proteins by blind docking, including
DeepSite [168], DoGSiteScorer [169], POCASA [170], Fpocket [171,172], RaptorX-Binding
Site [173], COACH [174], and PocketDepth [175].

3.1.3. Compound Library Preparation

Compounds used for VS are selected from compound libraries such as the REAL
library of Enamine (1.4 billion make-on-demand compounds) [176], ZINC (750 million
purchasable compounds in ready-to-dock) [89,177,178], MCULE (122 million synthetic
compounds) [179], PubChem (112 million bioactive compounds) [180,181], DrugBank
(14,528 approved drug molecules or experimental drugs) [182,183], ChEMBL (approxi-
mately 2.2 million bioactive molecules with drug-like properties) [184,185], and ChemDB
(approximately 5 million commercially available small molecules) [186]. The compounds
were filtered on the basis of Lipinski’s “Rule of Five” [187], Veber criteria [188], ADMET,
and other specific properties (such as carcinogenicity and hepatotoxicity) [158]. Lipinski’s
“Rule of Five” and Veber criteria indicate that the compound can be recognized to be orally



Int. J. Mol. Sci. 2022, 23, 13568 9 of 35

bioactive if its molecular weight (MW) is <500 Da, hydrogen bond donors (HBD) ≤ 5,
hydrogen bond acceptors (HBA) ≤ 10, octanol–water partition coefficient logP ≤ 5, rotat-
able bonds (RotB) ≤ 10, and topological polar surface area ≤ 140 [187,188]. Moreover, the
synthetic accessibility of the compounds should be considered. After filtering ligands from
libraries, the optimized 3D structure of the ligand should be modelled.

3.1.4. Molecular Docking and Scoring

Molecular docking is currently used in combination with VS to simplify the search
process in the presence of a three-dimensional target structure [87]. It is used to assess
ligand–target interactions at the molecular level and rank the ligands according to their
binding affinity by using scoring functions [189]. The most frequently used molecular
docking tools include Autodock [190], AutoDock Vina [191], CDOCKER [192], GLIDE [193],
DOCK6 [194], GOLD [195], FLEXX [196], and SwissDock [197]. Regarding the flexibility of
the ligand and target, molecular docking approaches include (1) rigid docking wherein the
structures of the ligand and target are both rigid; (2) semi-flexible docking, which is the most
commonly used approach, wherein the ligand structure is flexible and the target is rigid;
and (3) flexible docking wherein the ligand and target structures are both flexible [198].
Different search algorithms are applied to deal with flexible ligands, such as systematic
search algorithms, random or stochastic algorithms, and simulation algorithms [199]. To
treat the flexible protein, molecular dynamic methods and Monte Carlo methods are
usually applied [200,201]. The accuracy of molecular docking relies on scoring functions,
which are applied to determine binding affinity and ligand–target binding modes and
identify the potential drug candidates [202]. Physics-based, empirical, knowledge-based,
and machine learning-based scoring functions are available [202]. Additionally, new deep
learning methods such as EquiBind, GNINA, DiffDock are developed to predict the binding
mode between the ligand and a specific protein target [203–205]. Especially, Equibind and
Diffdock have the potential to significantly change the VS landscape. EquiBind, an SE(3)-
equivariant geometric deep learning model, can perform direct-shot prediction of the
receptor binding location (blind docking) and the ligand binding pose and orientation [203].
This method significantly speeds up with better quality compared to traditional docking
methods [203]. DiffDock is a diffusion generative model over the non-Euclidean manifold
of ligand poses, which has fast inference times and provides confidence estimates with
high selective accuracy outperforming the previous traditional docking and deep learning
methods [205]. GNINA utilizes an ensemble of convolutional neural networks (CNNs)
as a scoring function and improves the quality of scoring and ranking binding poses for
protein-ligand complexes [204]. This method significantly outperforms SMINA/Vina in
all cases including redocking, cross-docking, flexible docking, and whole protein docking
tasks [204].

3.1.5. MD Simulations

MD simulations have been extensively used in SBDD. In molecular docking, MD
simulations can improve the flexibility of the target protein and obtain target conforma-
tions with well-defined binding cavities and flexibility for molecular docking [206,207].
Moreover, MD simulations can be applied for docking scoring and lead optimization.
Combined with free energy calculations, MD simulations can accurately assess binding
affinity and improve the accuracy of ranking the compounds. In lead optimization, MD
simulations can be employed on the small sets of compounds (no more than a few hun-
dred), and ligand–target interactions can be determined, which provide guidance for the
further development of ligands [208]. More details about MD simulations are provided in
Section 2.1 MD Simulations.

3.2. Ligand-Based Drug Design

In drug discovery, target structures may not be available, but some compounds against
the specific target may be known. In this situation, LBDD is applied. LBDD begins with a
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single compound or a set of active compounds against the specific target protein. Then,
compounds with physicochemical and structural properties responsible for the given bio-
logical activity are identified, which is based on structural similarities related to similarities
of biological activities [5,209]. According to structure–activity relationships (SARs), the
properties of the compounds are improved by designing appropriate analogs [209]. De-
signing can be performed in terms of structural similarity or properties. Commonly used
approaches in LBDD include pharmacophore modeling and QSAR.

3.2.1. Pharmacophore Modeling

Chemical features from a set of bioactive conformations of known ligands were ex-
tracted to employ the pharmacophore model. These conformations contain information
about the vital interactions of ligands with the specific target [5,210]. The chemical features
comprise hydrogen bond acceptors/donors, hydrophobic regions, positively/negatively
charged groups, and aromatic ring regions [211]. Generation of the pharmacophore model
generally includes the following steps: [212] (1) selecting a set of bioactive ligands against
the specific target as the training set; (2) creating the conformation space for each ligand in
the training set to characterize the conformation flexibility of the ligand; and (3) aligning
the ligands in the training set and determining the chemical features to construct the phar-
macophore model. Various pharmacophore model generators have been developed, such
as Catalyst [213], LigandScout [214], MOE [215], PharmMapper [216], PharmaGist [217],
Phase [218], Quasi [219], and UNITY [220]. Ligands with different scaffolds but similar
interactions can be selected through pharmacophore-based VS. The pharmacophore model
can also be combined with QSAR when aligning the ligands [221].

Classical pharmacophore models also have limitations: The models are static but are
used to represent the dynamic systems. Interactions in the pharmacophore model are
restricted to simple geometric features. The dynophore method [222], a combination of the
pharmacophore model and MD simulations, can address these limitations. This method
provides the details of ligand binding out of the traditional spherical geometry and offers
statistics of different binding modes and feature frequencies during the trajectory [222].

3.2.2. Quantitative Structure–Activity Relationship

QSAR, a modeling approach, unravels the relationship between bioactivities and
structural properties of ligands based on the principle that bioactivities are related to
structural properties [223]. Bioactivities refer to pharmacokinetic properties, including
ADMET and other properties. Structural properties refer to the physicochemical properties
of ligands. QSAR can rank numerous compounds according to their bioactivities, and
therefore, it is extensively used in lead discovery and optimization during drug discovery.
The statistical model is used for predicting the bioactivity of new ligands [223]. A reliable
QSAR should meet the following requirements: [5,224] (1) obtaining the dataset of sufficient
ligands (≥20 compounds) with bioactivities from the conventional experimental protocol;
(2) selecting appropriate compounds to construct the training set and testing set; (3) no
autocorrelation among the descriptors of the ligands (describing the chemical features of the
molecule in a numerical form) that induces overpredicting or overfitting; and (4) validating
the final QSAR model through internal/external validation to assure model reliability.

Based on the method of deriving descriptors, dimension-based QSAR methods are
classified as [188] (1) 1D-QSAR, relating bioactivity to global molecular physiochemical
properties such as logP and pKa; (2) 2D-QSAR, relating bioactivity to structural features of
the ligands, such as connectivity indices, without regard to three-dimensional representa-
tions of the features; (3) 3D-QSAR, relating bioactivity to noncovalent interactions around
the ligand; (4) 4D-QSAR, additionally containing the ensemble of ligand conformations on
the basis of 3D-QSAR; (5) 5D-QSAR, describing different induced-fit models of 4D-QSAR;
and (6) 6D-QSAR, further combining different solvation models of 5D-QSAR. Moreover,
based on the techniques of constructing the relationship between bioactivities and struc-
tural properties of ligands, QSAR methods are categorized as linear and nonlinear [225].
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Linear methods consist of linear regression, multiple linear regression, partial least squares,
and principal component analysis/regression [225]. Nonlinear methods include artifi-
cial neural networks, k-nearest neighbors, and bayesian neural nets [225]. To meet the
QSAR requirements in drug design, various QSAR-related tools were developed, such
as Cloud 3D-QSAR [226], Web-4D-QSAR [227], and DPubChem [228]. Although QSAR
has its advantages, some challenges exist related to QSAR application to drug design. For
example, the limitation of high-quality datasets makes it difficult to construct a reliable
QSAR model. Another challenge is the limitation of descriptors used for constructing
QSAR models. To address this problem, new descriptors are integrated to accurately
extract structural characterizations.

4. De Novo Drug Design by Artificial Intelligence

The above-mentioned machine learning based target identification, binding site identi-
fication, docking prediction, develop ability predictions, affinity predictions, etc., are the
whole or part of the work of drug discovery by screening the desired drug from existing
compound data. EquiBind was developed to predict receptor binding location and ligand’s
bound pose and orientation by applying geometric deep learning [203] ; additionally, Diff-
Dock completed the molecular docking task by a diffusion generative approach [205]. In
the following sections, we focus on reviewing the machine learning based frameworks
which are relevant to de novo drug design. In other words, the state-of-the-art AI-based
approaches which are able to generate novel molecules with desired properties are depicted.

Drug discovery using AI is an innovative process in which candidate molecules with
desired chemical properties are created [4,229–231]. The number of compounds that belong
to the drug would be in the 1023–1060 from the chemical space aspect, which makes com-
putation for the mining of novel compounds a challenge task [229,232,233]. Meanwhile,
since a molecule binds to a particular protein pocket so that it can inhibit or activate cellu-
lar biological functions, balancing multiple structural and physicochemical parameters is
crucial in drug discovery [234]. Machine learning techniques have considerably accelerated
the process of drug discovery, which can handle the complex relationship between input
and output variables for high-dimensional data [235,236]. Advances in deep learning
models have recently resulted in a significant progress in molecule generation [234]. While
machine learning models have been used for molecular property prediction, they presented
a big step forward in bridging the gap between chemical entities and drug-like proper-
ties [234,237]. In particular, combining generative techniques with various statistics and
probabilistic methods is the state-of-the-art approach in this task. The goal of generative
modeling is consistent with the aforementioned drug design: sample novel molecules with
intersection of multiple property constraints [238].

4.1. Overview of the Machine Learning Based de Novo Drug Design

Machine learning-based drug design involves a sequence of processes from data selec-
tion and representation to generative model construction. Figure 3 presents an overview of
the machine learning-based de novo drug design procedure. In the beginning, appropriate
data are selected from publicly available data sources, and property-based filtering and
classification are performed to obtain molecules having desired properties for subsequent
model learning. Then, sophisticated feature representation methods, such as those based
on simplified molecular input line entry system (SMILES) and graphs [34,239,240], are
applied to learn and represent the structures and properties of molecules. Finally, the
optimal generative model is selected for de novo molecule generation based on the learned
representation [229,236,238,241]. Furthermore, at the appropriate time, the generative
model is optimized by combining reinforcement learning strategy and property prediction
models [233,242,243].
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4.2. Overview of de Novo Molecule Generation

The recent massive increase in AI-based de novo drug design research can be attributed
primarily to the generative approach. This approach leverages deep learning strategy to
learn the probability distribution of molecular data and produces continuous or discrete
latent representation for molecules with property optimization. It finally maps learned
probability distribution and molecule representation into novel molecules while optimizing
molecular properties through the tuning of parameters of latent codes [230,231,244–246].
The generative approach is effective in property-based design, LBDD, and SBDD by gener-
ating both 2D and 3D molecules [239,247]. The generated novel drugs should potentially
interact with therapeutic target proteins on the specific docking site, for which structural
information about both proteins and molecules must be extracted during model train-
ing [248]. Hence, research efforts have been made on “structure-oriented generation” for
drug design. Accordingly, “ligand-oriented generation”-based drug design focuses on
structural and property information of molecules.

4.2.1. Structure-Oriented Generation

Structure-oriented generation creates novel molecules that bind to specific target
proteins in drug design [240]. These target proteins could be receptors, enzymes, or
other structural or functional proteins, and their structural information is required for
the generation task [249]. In addition to the generation process, structural information of
target proteins is crucial for exploring potential receptor–ligand interactions in drug design.
Besides, the generation process depends on the structures of molecules, which are usually



Int. J. Mol. Sci. 2022, 23, 13568 13 of 35

represented by scaffolds of chemical compounds [239]. The structural information of the
ligand and target protein can help explore the interaction between them [250].

In structure based de novo drug design, deep generative models are applied to learn
and score docking of protein–ligand by exploring their structures and functions, and this
information is used to generate de novo compound structures. The generation process
applies a “fragment-based” strategy: given the initial chemical scaffold embedded in the
binding site of the target protein, the pre-trained model generates molecules by sequentially
adding, deleting, inserting, or replacing and linking fragments for it in an iterative man-
ner [251,252]. In addition, with the availability of structural features of both target proteins
and molecules, structure-oriented generation would allow better binding of designed drugs
to target proteins [253].

In recent 5 years, the structure-based de novo drug design has applied generative
machine learning models and made use of feature information such as ligand-protein
complexes, protein binding sites, and bioactivity. Since the structure information of both
protein and ligand are available, it is desirable to generate molecules in terms of 3D repre-
sentations. A series of valuable tools for 3D molecule generation have emerged, including
DeepLigBuilder, G-SchNet, RELATION, and Pocket2Mol, which employed multiple gen-
erative strategies. DeepLigBuilder applied graph generative model named ligand neural
network (L-Net) to generate 3D molecules by iteratively refining existing structures, and it
further combined a reinforcement learning method called Monte Carlo tree search (MCTS)
to optimize the binding affinity [250]. The generative neural network (G-SchNet) learns
the conditional distribution of 3D molecular structures and chemical properties [254].
RELATION also paid attention on conditional distribution by applying the variational
autoencoder architecture, which consists of a 3D convolutional encoder, a LSTM-based
captioning decoder and a bidirectional transfer learning module in order to transfer the
features of protein-ligand complexes to latent space, for molecule generation [251]. It is
not difficult to find out that the reinforcement learning and transfer learning are appro-
priate approaches for learning features information like binding sites, protein structure
and docking scores, which were used to process molecule property optimization [234].
The Pocket2Mol has learned a probability distribution of atoms and bond types inside the
pocked based on exiting atoms by adopting an auto-regression strategy, and used a graph
neural network to capture features of atoms in binding pockets. For new drug sampling,
this research considers the structures and geometrical constraints of protein pockets in drug
design [255]. Another 3D generative model applied auto-regressive for novel molecule
sampling can be found in study [240], similarly, it also used a neural network architecture
to learn probability distribution of occurrences of atoms. Other studies also explored gen-
erating molecule from 1D and 2D aspects by exploiting SMILES representation of ligand
and graph representation of protein binding sites, such as study [253], and they combined
bioactivity affinity prediction model for generative model optimization.

4.2.2. Ligand-Oriented Generation

The designed novel molecules have high binding affinity to specific proteins but
low binding affinity to other proteins [233]. When compounds in the employed data are
already known to bind to the target proteins, the ligand-oriented approach is used for novel
structure generation [252]. Ligand-oriented approaches focus on the molecules themselves,
thereby generating compounds with new chemical hypotheses while optimizing the desired
properties. For instance, some approaches use the known actives of a compound for a
specific target receptor for latent chemical space retrieval [256].

The properties of chemical ligands are also optimized during generation, such as
ADMET, binding affinity, logP, QED, solubility, easy to synthesize, and clearance. Prop-
erties can be optimized in two ways: one is property-based generation, wherein models
would learn the chemical space of molecules with desirable properties, and then, the novel
molecules are generated within a desired property space [245,257]. Autoencoder is a typical
artificial neural network for property-based generation, which encodes molecular data
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along with corresponding properties into latent space. Many de novo drug design models
used the similar concept, such as CogMol applies the variational autoencoder [233], the
junction tree variational autoencoder applies graph message passing network for molec-
ular graph representation and chemical validity maintenance [230]; similarly, the graph
generative model in study [238] also used message passing neural for graph generation
and property control. The autoencoder in [231] then constructed a predictor to estimate
chemical properties from the latent continuous representation when exploiting SMILES
strings directly for encoding and decoding. A similar multilayer perceptron-based model
for mapping between latent vectors and molecular properties was also trained in the pop-
ular molecule generation model named MolFlow [229]. In another method, a prediction
function is applied for the desired properties of molecules and the generation model is
fine-tuned in terms of a particular property by using the reinforcement learning strategy,
such as constructing QSAR models, as reward functions [249,256]. GFlowNet and ReLeaSE
are the well-known novel molecules generation models ap-plying reinforcement learning
for property optimization [243,258]. Another common approach is to use transfer learning
strategy to finetuned the model for properties such as activity optimization [259]. Whereas
the influential research work, the generative model named GENTRL, not only learned a
mapping from discrete molecular graphs with partially known properties to continuous
latent space, but also applied reinforcement learning in the generating stage for property
optimization. One of the major challenges of the ligand-based generation is the difficulty in
actually synthesizing, that is, to ensure the high synthetic accessibility structures for the
generated molecules [252,260]. Although some reactants and reaction rules can be used as
the templates to guide the generation processes, such as RECAP [261] and SYNOPSIS [262],
the structural novelty and diversity of new molecules have to be reduced.

5. Approaches and Techniques in Artificial Intelligence Based de Novo Drug Design
5.1. Datasets in AI-Based de Novo Drug Design

The first step in AI-based drug design is to learn the structures and properties of
source chemical compounds to generate novel molecules that meet the requirements and
expectations for desired properties such as proper binding energy, QED, and logP. Hence,
appropriate molecular data are crucial for constructing the drug generative model [263].
High-throughput screening assays can act as a rich resource of bioactive molecular data,
including molecular structures, chemical properties of molecular structures, molecular
descriptors, side effects, clinical information, targets, and activity measurements [264].
Table 1 shows the widely used databases for AI-based drug design in recent years.

5.2. Descriptors/Feature Representation

Molecular descriptors/representations usually represent geometry, chemical struc-
ture, and physiochemical properties and biological activities of compounds. They are
numerical vectors that are used as input for generative models [264]. Deep generative
models produce molecule candidates by learning the underlying distribution of molecules
on the basis of these descriptors/representation [240]. The way for representation plays a
crucial role in the generative model, since efforts of deep neural networks (DNNs) have
been focused on molecule representation learning. The strength of neural networks de-
pends on their power and ability to make transformation among input, latent, and output
representations [34,246].

Four categories of representation have been established: one-hot embedding-based,
SMILES-based, graph-based, and 3D-based. Among these representations, the most com-
monly used feature representations for training DNN models are the SMILES representation
and the molecular graph representation [234].
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Table 1. Databases for AI based drug design.

Compound Database Description Number of Compounds

ChEMBL [264,265] Drug discovery database provides bioactive
molecules with drug-like properties knowledge. 2,157,379

ZINC [178,231–233,254] Database enables access to compounds for
drug discovery. 750 million + 230 million (3D)

PubChem [233,264,266]
Public chemical database at the National Library
of Medicine (NLM) collects chemical information

from different data sources.
112 million

DrugBank [183,231,232,254,264] Web resource contains drug-related information. 14,528

STITCH [264,267] Database contains interaction information
between different chemicals. 0.5 million

BindingDB [264,268] Database for molecular recognition, which
supports drug discovery related work. 1.1 million

SIDER [264,269] Resource contains drug reactions information. 1430 + 55,730

DCDB [264,270] Drug Combination Database 1363

GDB-11 [231,232,254,271]

Database collects and generates molecules with
up to 11 atoms of C, N, O, and F by considering
simple valency, chemical stability, and synthetic

feasibility rules.

26.4 million

GDB-13 [231,232,254,272]
Database upgrading from GDB-11, it enumerates

in a similar manner small organic molecules
containing up to 13 atoms of C, N, O, S, and Cl.

970 million

GDB-17 [231,232,254,273]
Chemical universe database covers drugs and
typical for lead compounds for molecules with

up to 17 atoms of C, N, O, S, and halogens.
166 billion

In one-hot embedding-based representation, binary vectors are used for atoms and
bonds as molecular descriptors [229,249,264]. SMILES-based representation processes
SMILES of a molecule directly by applying natural language processing techniques such as
deep learning methods, including recurrent neural networks and long short-term memory
(LSTM), which regard molecule generation as a Seq2Seq problem [34,234]. Seq2Seq is gener-
ally implemented on the basis of the encoder-decoder (encoder-decoder) framework, which
is good at dealing with global information of long sequence and synthesizing contextual
information of single token, to predict the corresponding alternative sequence [274,275].
The encoder transfers the SMILES strings representation into latent encodings, and the
decoder transfers it into output SMILES strings by iteratively predicting probabilities of
representation of particular tokens on the basis of previous information. In these methods,
SMILES was firstly tokenized into a sequence of tokens, and each token was embedded into
a space vector by different encoding methods such as one-hot encoding, pre-trained mod-
els [243,276]. Thus, grammar information of SMILES strings is learned for participating in
the subsequent construction of generative models such as the transformer model, language
model, variational autoencoder model, and generative adversarial networks [245,253].
There are recent studies used SMILES strings directly for molecule generation. The classical
and representative ways are applying RNN on SMILES to generate scaffolds and corre-
sponding attachment of molecules [276–278], applying self-attention mechanism model
on SMILES for de novo drug design [279], and training molecule properties predictor by
using SMILES [233]. Table 2 in next section shows the descriptions of the related deep
learning methods.
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Table 2. Deep learning techniques in molecules generation.

Deep
Learning Techniques Description Applications

Recurrent neural
networks (RNN)

Recurrent neural networks are similar to
Markov chains with memory and feedback

loops, each neuron in it would receive
information from both actual time input and

the previous neural [232,241,264]

SMILES strings representation [234,241,243];
generating novel and valid SMILES strings [34];

learn model autoregression [241];
construct encoder to convert discrete

representations of molecules to multidimensional
continuous representation [231];

estimate the probabilities of molecular data [259]

Long Short-Term
Memory (LSTM)

LSTM is one kind of recurrent neural work
with attention mechanism, which aims to solve
the vanishing gradient problem for Recurrent

Neural Networks (RNNs) [280,281]

encode SMILES strings [282];
builds sequence-to-sequence neural network for

autoencoder [249]

Gated Recurrent Neural
Network (Gated RNN)

One type of RNN with gated recurrent unit
(GRU) containing forget gate and updating

gate [283,284]

constructing encoder and decoder for SMILES
sequence translation [253,285];

junction tree message passing [230]

Convolutional neural
networks (CNN)

Convolutional neural networks contain
sequential layers of convolution and pooling,

and among them the convolution layers extract
features by moving a window over the input

tensors (arrays) and the pooling layers
sub-sample the features [241,264,286]

construct graph convolutional neural
networks [239];

grid-based 3D CNNs to predict protein–ligand
binding affinity by constructing [287]

Multilayer perceptron
networks (MPL)

Deep neural networks consist of multilayer
perceptions, which are fully connected

networks with activation functions [241]

chemical properties from latent codes [231];
mapping between latent vectors and molecular

properties [229]

Multi-head
attention networks

Contains encoder and decoder both with
stacked self-attention and fully-connected layer
inside, and the attention blocks in the network
are all in the form of multi-head for receiving

inputs of query, key, and value [288,289]

extract 3D conditional information of
molecule [236]

embed the active site graphs of target [253]

Message passing neural
networks (MPNN)

A state-of-the-art and typical model for
learning nodes and edges information in graph:

a target node’s representation come from its
directly connected nodes through a multilayer
neural network (or one layer), and the message

passing between nodes in the graph is a
circular iteration process [290].

parameterize atom graph encoding [243]
encode connected motifs information of

molecule [237]
graph message passing network to represent the

junction tree and molecular graph into latent
codes [193]

learn molecular graph and rationale
distribution [238]

Graph neural
network (GNN)

Regarding atoms as nodes and bonds as edges,
this network applies convoluting operations

for graphs encoding [40,264]

atoms and bonds information
representation [240,245]

parameterized the encoder and decoder for atoms
and bonds types [239]

spherical message passing graph neural networks
to extract 3D conditional information of

molecule [236]

A trend for adopting graph-based generation techniques in drug design has been
increasing [233,237]. Graph-based models generate molecules regressively, sequentially
predicting atoms or fragments for adding next time by learned probabilities [240]. Hence,
information about atoms and bonds would be learned and represented, which correspond
to nodes and edges in a graph. In graph-based representation, molecules are processed
as graphs with nodes and edges corresponding to atoms and bonds by DNNs [246]. The
three-dimensional information of a molecule is crucial for determining many molecular
properties [236]. In the three-dimension-based representation, molecular graphs are trans-
lated into three-dimensional conformations including coordinates and distance of different
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connected fragments [246,254]. Details of graph-based approaches and corresponding mod-
els are discussed in the next section since most of them applying deep learning methods.

5.3. Deep Learning Methods for Molecule Generation

DNNs are effective and efficient in drug discovery because they have a great learning
capacity and a relatively less number of parameters [241]. Deep learning models learn
the distribution of molecular structures, map the structures into continuous or discrete
latent vectors, and finally generate novel molecules by picking up vectors in the latent
space [236,238]. The complete generation procedure applies various deep learning tech-
niques and generative frameworks. Table 2 summarizes popular deep learning techniques
used in the molecule generation step of drug design.

Notably, graph neural networks (GNNs) can learn the structural information of atoms
and their neighbors and perform well during both molecule generation and property predic-
tion. These features are attributable to the message passing networks inside GNNs. Figure 4
shows a schema explaining how this model processes and learns graphical information.
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Figure 4. Example of a message passing neural network. The left side is an example of a graphical
molecule. Ten atoms are regarded as nodes, with each node connecting with one or more nodes. The
right side shows the message passing procedure for the target node I through a multilayer neural
network (or one layer). The information from the directly connected nodes J, C, and D is passed to the
target node I. As nodes J, C, and D have their own directly connected nodes (G, I, A, E), message is
also passed by each of their neural networks. Message passing between nodes in a graph is a circular
iteration process.

Other notable GNNs for de novel drug design include graph convolutional networks,
graph attention networks, and graph generative networks [229,237,239,291].

As mentioned above, in current deep learning-based de novo drug design, models
learn the probability distribution of molecular data and the mapping functions for encoding
input molecular data into latent codes. They then generate new molecules by picking up
vectors in the latent space based on probability distribution. This complete process can
be accomplished by generative models. These models rely on machine learning-based
approaches such as encoder–decoder (autoencoder), probability distribution learning, con-
ditional distribution learning, transfer learning, and reinforcement learning [232,239,253].
The next paragraphs focus on sophisticated and classical molecule generation models.

Variational autoencoder (VAE) is a deep learning-based generative model that has
been widely used in molecule design [249]. Being a probabilistic model, VAE can learn
the distribution of given data and generate new meaningful data with more intra-class
variations [249]. It consists of an encoder and a decoder. The encoder maps input molecular
data x into latent codes z by parameterizing a posterior distribution qØ(z|x), and the
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decoder reconstructs molecular data from the learned distribution pθ(x|z) [210,248,249].
Figure 5 illustrates the VAE architecture, which aims to maximize the likelihood of training
data pθ(x), which is expressed as Formula (1) [250]:

log pθ(x(i)) = Ez [log pθ(x(i)|z)] − DKL(qØ(z|x(i))||pθ(z)) + DKL(qØ(z|x(i))||pθ(z| x(i))) (1)
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Figure 5. Variational autoencoder architecture. It consists of an encoder and a decoder, and they are
deep neural networks. In general, the encoder maps input molecular data x into latent codes z by
parameterizing a posterior distribution qØ(z|x), and the decoder reconstructs molecular data from
the learned distribution pθ(x|z).

Kullback–Leibler (KL) divergence is used for measuring the difference between two
probability distributions in the same space. The KL divergence DKL(qØ(z|x(i))||pθ(z|x(i)))
measures difference between posterior distribution of latent variable and its prior distri-
bution; however in VAE, it is impossible to process the posterior distribution qØ(z|x(i)),
pθ(z|x(i)), which is introduced to approximate it [292,293]. Among Formula (1), as pθ(z|x(i))
is intractable but Kullback–Leibler (KL) divergence DKL(qØ(z|x(i))||pθ(z| x(i))) is always
larger than 0, the aim is to maximize the evidence lower bound (ELBO): Ez [log pθ(x(i)|z)]
− DKL(qØ(z|x(i))||pθ(z)). As − DKL(qØ(z|x(i))||pθ(z)) represents the negative KL diver-
gence between the variational approximation distribution qØ(z|x(i)) and the distribution of
the latent variable z. In order to maximize the final result, this KL divergence has to be as
small as possible. This KL divergence also prevents high consistency degree between the
distribution of input x and distribution of output x’.

VAE-based drug design models can exploit both SMILES strings and graphs for
molecular data representation and generation [253,292,294,295]. A popular VAE strategy-
based drug design is the junction tree variational autoencoder (JT-VAE). JT-VAE applies
the graph message passing the network to represent the junction tree and molecular graph
as latent codes. Then, it generates valid chemical substructures with the learned maximal
log-likelihood to form a tree-structured scaffold, and finally assembles these substructures
into the molecule [230]. Jin et al. [237] proposed a VAE-based hierarchical graph encoder–
decoder that applies the message passing the neural network for graphical representation, in
which each layer performs graph convolutions iteratively conditioned on the results of the
last layer. Another VAE-based molecule generation model employing graph information is
GENTRL. GENTRL combines variational autoencoder, reinforcement learning, and tensor
decompositions. It learns mapping from discrete molecular graphs with partially known
properties to the continuous latent space parameterized by distribution. Moreover, the
relationships between molecular structures and their properties are encoded by the tensor
decomposition method, and reinforcement learning is applied in the generating stage [242].
DeepScaffold also applies VAE for constructing a scaffold-based molecular generative



Int. J. Mol. Sci. 2022, 23, 13568 19 of 35

model [239]. GraphVAE generates a probabilistic fully connected graph from continuous
embedding and applies a graph matching algorithm to align the generated graph to ground
truth [296]. For models utilizing SMILES strings, CogMol is a popular VAE-based molecule
generation model that applies VAE to learn the latent space of SMILES representation
along with properties such as QED. It generates novel molecules with desired properties
by using a conditional latent (attribute) space sampling scheme [233]. Additionally, three-
dimensional molecular structures were utilized in the VAE-based model G-SchNet that
learns the conditional distribution of these structures, chemical properties, and sample
molecules with target properties [254].

Generative adversarial networks (GANs) are another emerging simple but very ef-
ficient technology in drug design [297]. Compared to VEA’s traditional training method
of learning through loss functions, GAN uses a more realistic comparison method to im-
plement adversarial training, which is more interpretable. The GAN model contains two
major components: a generator G, which transforms latent vectors that are sampled from
a prior distribution such as Gaussian into novel molecular data samples, similar to the
training samples, and a discriminator D, which distinguishes fake molecular data points
generated by G from the actual points sampled from the distribution of training data
with the learning boundaries between them. Hence, the generator’s task is to fool the
well-trained discriminator by generating novel molecules, whereas the discriminator’s task
is to improve its ability to distinguish between real and fake molecules [246]. Figure 6
presents the flowchart of drug design using GANs.
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Figure 6. Flowchart of drug design using GANs. It contains a generator and a discriminator, and they
are all deep neural networks. The generator transforms latent vectors that are sampled from a prior
distribution such as Gaussian into novel molecular data samples, and the discriminator distinguishes
fake molecular data generated by the generator from the actual points sampled from the distribution
of training data and gives feed-back.

Combined with GNNs, the power of GANs can be further increased in molecule
generation. One of the most widely used GAN-based drug design model is MolGAN.
This model adopts GANs to directly process graphical molecular data and combines
reinforcement learning to optimize specific desired chemical properties with generated
molecules [298]. Since constructing sequences and graphs requires backpropagating the
gradient, the training of GAN is more challenging than VEA. There are some drawbacks
that are difficult to avoid for GAN: generators widely ignore random vectors leads the
mappings of training data to output data are singularly deterministic; the two conflicting
goals of generator and discriminator lead to a continuous drift of the learning parameters,
resulting in varying degrees of distortion in the output.

Normalizing Flow is a method proposed to overcome the shortcomings of GAN and
VAE through invertible functions. Normalizing flow is a probabilistic generative model
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that uses simple probability distributions to simulate complex probability distributions.
Composing invertible functions, the normalizing flow model learns a series of invertible
transformations from the prior distribution of molecular data to simple distribution such
as Gaussian. It finally converts the simple distribution into high-dimensional molecular
data for de novo drug design [245,246]. Figure 7 illustrates the architecture of the normal-
izing flow model in molecule generation for drug design. Comparing to VAE and GAN,
normalizing flow does not need any noisy data in the output, thus it allows for more robust
local variance models; it is more stable during training process; and it is easier to converge.
It also has its own disadvantages, namely poor interpretability, and hard to ensure the
synthesizability of the generated molecules.
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ing molecular data into simple distribution and converting the distribution into high-dimensional
molecular data for de novo drug design. Each of the functions optimizes the data distribution.

The normalizing flow architecture has been used in certain molecule generation
models. MolFlow is a flow-based graph generative model that exploits normalizing flow to
map molecular graphs and latent representations. It trains a model to generate bonds and
a novel graph conditional flow to generate atoms on the basis of the bonds by leveraging
graph convolution operations. Finally, the bonds and atoms are assembled in bond-valence
constraints. They also train a multilayer perceptron model for mapping between latent
vectors and molecular properties [229]. The hierarchical normalizing flow model, called
MolGrow, generates a molecule from a single node and recursively splits every node into
two; these operations are invertible and use graphical representation for node and edge
attributes and feed them into an L invertible level architecture, wherein the generated
latent codes fit into Gaussian distribution. Each level contains multiple blocks and linear
transformations for noise separation and node merging; inside each block, three channel-
wise transformations and two RealNVP layers are present [245]. GraphDF is a discrete
latent variable model that applies normalizing flow for molecule generation. These discrete
latent variables are sampled from multinomial distributions, and the model uses invertible
modulo shift transform to sequentially map discrete latent variables to graph nodes and
edges [236]. GraphNVP is a normalizing flow-based molecular graph generation model
that represents the molecular graph by an adjacency tensor and a feature matrix of node
attributes. It applies a continuous density model to learn probability distributions and two
types of reversible affine coupling layers to transform the adjacency tensor and feature
matrix into latent representations. This model first generates a graph structure and then
generates node attributes [299].

In addition to normalizing flows, autoregressive model is another neural density
estimator, in which a variable is predicted by the previous variable because the model
decomposes the joint density as a product of conditionals [300]. The autoregressive model
creates an explicit density model that can maximize the likelihood function of training
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data. Several autoregressive generative models are used in drug design. They build the
molecular graph by refining its intermediate structure in an iterative fashion [236,301].

In addition to the above architectures, a variety of pretrained neural network models
were developed for handling drug discovery related problems. The pretrained graph
neural networks model 3D Infomax is an example, it can predict latent 3D and quantum in-
formation by utilizing the 2D molecular graphical data, which is beneficial the down-stream
tasks of molecule generation and molecular property prediction [302]. In recent years,
some studies explored combining techniques of natural language processing for molecular
data representation model training. The popular transformer architecture of language
model BERT was applied to learn molecular representations, and the resulted model
MolBert can be used for drug discovery related tasks [303]. Similar models that trained
by transformer-based architecture on SMILES strings are SMILES-BERT, ChemBERTa,
MegaMolBART [304–306], and so on. Another natural language processing related model,
namely MolT5, was trained by a self- supervised learning framework on large amount of
natural language text and molecule strings, which can be fine-tuned for molecule generation
from natural language and molecule captioning [307]. Having such pre-trained molecular
data representation models can largely improve the effectiveness and efficiency of de novo
drug design.

5.4. Machine Learning Methods for Molecular Properties Optimization

In many drug design procedures, optimization of molecular properties (e.g., high
drug-likeliness, synthetic accessibility, or solubility) is a critical step [308]. Various machine
learning techniques can be applied to the input feature space, latent space, and output space.
The probabilistic autoencoder can transform the features of molecular properties into latent
variables [233]. Bayesian is the most popular method applied to the latent space to retrieve
optimal latent solutions in the continuous latent space [34,233]. For property optimization
on the output space, the most widely used strategy is to combine reinforcement learning
with prediction machine learning models [233]. Statistical machine learning methods and
deep learning methods help to build the classification or regression model that can predict
molecular properties [263,309]. With the aid of prediction models, reinforcement learning
maximizes the reward derived from the predicted scores of properties and biases the gener-
ative models, which allows the molecule generation model to achieve a high success rate
in meeting the desired constraints [234,238,253]. Other optimization strategies have also
been described in existing research. Modof, a generative model, applies message passing
networks for encoding the difference between molecules before and after optimization at
one disconnection site to connect changing fragments of a molecule and properties [308].
The Expectation–Maximization algorithm was employed in a hierarchical generative model
to optimize molecular properties that mimic human experts [310].

For structure-oriented optimization, studies have been conducted to improve docking
scores and activities of generated molecules for binding to specific targets. QSAR A is a
classical model that is trained on docking scores from a chemical library [311]. EQUIBIND,
a geometric and graph deep learning model, exploits graph matching networks, three-
dimensional coordinates, and distance information-based graph neural networks (GNNs)
for predicting the ligand–receptor complex structure [203]. Other studies have applied
random forest, logistic regression, DNNs, and gradient boosting trees to predict the activity
of generated molecules on the biological target by using molecular descriptors [259].

5.5. Evaluation

To understand the quality of generated molecules, evaluations are necessary. For dif-
ferent drug designs, different measurements from different aspects are used to evaluate the
generated molecules. Table 3 displays crucial evaluation metrics in de novo drug design.
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Table 3. Evaluation metrics in drug design.

Evaluation Metrics Descriptions

LogP
The oil-water partition coefficient, also called the hydrophobic constant; the larger
the LogP value, the more lipophilic the drug is; conversely, the smaller the LogP

value, the more hydrophilic the drug is [233,239,243,245].

QED Quantitative estimate of drug-likeness, and the value it is between 0 and
1 [239,240,250,309].

Synthesizability The probability of the generated drug to be synthesized [233,240,277,309].

Binding affinity The magnitude of the interaction force between receptor and ligand. It can be
expressed by free binding energy [240,253].

Diversity Generated molecules are similar in terms of the desired properties but with variety
of forms [237–240,245].

Maximum Mean Discrepancy Maximum Mean Discrepancy values between generated molecules and real
molecules [236,239,245,250].

Docking score To measure the probability of the mutual recognition between ligand and receptor
through the matching principle [242,245,250].

Novelty The quality for generated molecules to be different from existed molecules, new
and unusual [238,312].

Validity
An inherent property of a drug, it represents the performance of drug in

prevention, treatment, diagnosis of diseases and regulation of physiological
functions [230,236,237,313].

Similarity Similarity between generated molecules and real molecules, such as Tanimoto
Similarity between molecular fingerprints [233,234].

Toxicity The degree of poisonous or harmful that the drug would be [233,314,315].

6. Conclusions and Perspectives

Computational biology approaches have been extensively used to facilitate drug de-
sign in target discovery, mechanism study, VS, and lead optimization. These approaches
have a solid theoretical foundation, and most training data required by deep learning meth-
ods are generated using the computational biology methods. MD simulations, including
force field-based simulations and ab initio simulations, continue to play an indispensable
role in molecular mechanism studies, as well as thermodynamic and kinetic property
research. In drug design, accurate calculation of binding energy or free energy change of
ligand–target, as well as capturing structural and dynamical features of targets continue to
rely on MD simulations. Compared with the ab initio method, molecular force field-based
simulations can be extended to a larger scale but lacks accuracy. The QM/MM method
compensates for this defect and is gradually applied for drug exploration. However, a
large number of computational tasks makes it difficult for MD simulation to expand to
larger scales, which limits the wide application of ab initio MD simulation. To address
the computational cost concern, the CG method is designed and applied in many cases.
Overall, the emergence and current wide applications of CADD, molecular docking, VS,
and QSAR have accelerated drug design. Researchers have recently used AI methods to
accelerate the traditional drug design paradigm and have made considerable progress. In
molecular generation, generative models based on molecular graphs or strings such as
SMILES or SELFIES have become the mainstream as they exhibited excellent performance
in various molecular optimization tasks [258,316–318].

Although computational modeling of complex protein machines and AI methods have
demonstrated their superior capability in drug design, several challenges remain to be
solved in the current AI-based designing framework. Similar to many other areas in ma-
chine learning, molecular generator evaluation is governed by certain compound datasets.
Indicators such as novelty, validity, and uniqueness are commonly used to measure model
performance. Numerous generators have achieved an excellent score among these datasets.
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However, as some have suggested, it is difficult to confirm if the model actually learn the
patterns in the training dataset. Moreover, most datasets are of low quality and cannot
satisfy all demands in real drug discovery [319]. Ideal benchmark datasets should include
diverse metrics for different tasks and consider practical applications; synthetic accessibility
can be set as a general indicator. In addition to benchmarks and metrics in model evaluation,
molecular representations play a vital role in molecular learning and generation. Two-
dimensional graphs are the most conventional method to represent molecules, and such
representations can be easily processed using GNNs. A typical drawback is that messages
passing based on GNNs are unable to distinguish different configurations of molecules
and some non-isomorphic graphs [320]. To capture spatial information, three-dimensional
representations (point clouds, three-dimensional graphs, and three-dimensional grids)
have recently gained considerable attention. Researchers must introduce additional units
in generators to catch Euclidean symmetries in the three-dimensional space, including
rotational, translational, and reflectional symmetries. Such generators are suitable for small
molecular systems because of the increased complexity of macromolecules [321]. Besides,
language models have received great attention in several challenging generative tasks
as they learn complex molecular distributions. Language models can scale multi-modal
distribution and generate larger molecules [322], while graph generative models are more
interpretable. Integration of the interpretability of a graph model and the flexibility of a
language model into a unified framework remains a challenge.

We suggest three potential future directions. (1) Similar to the representation learning
models in natural language processing and computer vision, such as BERT, GPT3, and
ViT, pre-trained molecular representation models have substantiated their potential in
various downstream tasks [323,324]. (2) Domain knowledge contains a high degree of
abstraction and summarization of natural phenomena and is essential for physics-informed
neural networks. In computational biology, domain knowledge has been used to compute
binding free energy and molecular potential and perform MD simulations [325–327]. To
accurately estimate the binding affinity or binding free energy, rigorous but expensive
methods, such as FEP or Linear Response Approximation, and their variants need to be
used. Machine learning-based methods have made substantial progress in predicting bind-
ing affinity [325,328,329]. The combination of these differentiable modules with molecular
generators is promising and may appreciably accelerate new drug development. (3) In
addition to structural data of proteins and drugs, the availability of omics or clinical data
can support drug discovery or repurposing. AI models can find hidden patterns and
relations and offer more accurate prediction by using big data with different scales and
types [330].
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