Coordination Chemistry of Phosphate Groups in Systems Including Copper(II) Ions, Phosphoethanolamine and Pyrimidine Nucleotides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cu/enP/TMP System
2.2. Cu/enP/UMP System
2.3. Cu/enP/CMP System
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, D.; Wang, A.H.-J. Structural Studies of Interactions between Anticancer Platinum Drugs and DNA. Prog. Biophys. Mol. Biol. 1996, 66, 81–111. [Google Scholar] [CrossRef]
- Hackl, E.V.; Kornilova, S.V.; Blagoi, Y.P. DNA Structural Transitions Induced by Divalent Metal Ions in Aqueous Solutions. Int. J. Biol. Macromol. 2005, 35, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, G.L. Metal Ions as Stabilizers or Destabilizers of the Deoxyribonucleic Acid Structure. Nature 1962, 194, 474–475. [Google Scholar] [CrossRef]
- Shamsi, M.H.; Kraatz, H.-B. Interactions of Metal Ions with DNA and Some Applications. J. Inorg. Organomet. Polym. Mater. 2013, 23, 4–23. [Google Scholar] [CrossRef]
- Kluska, K.; Adamczyk, J.; Krężel, A. Metal Binding Properties, Stability and Reactivity of Zinc Fingers. Coord. Chem. Rev. 2018, 367, 18–64. [Google Scholar] [CrossRef]
- Srivastava, R. Theoretical Studies on the Electronic and Optoelectronic Properties of DNA/RNA Hybrid-Metal Complexes. Polyhedron 2021, 196, 115015. [Google Scholar] [CrossRef]
- Egli, M. DNA-Cation Interactions: Quo Vadis? Chem. Biol. 2002, 9, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhu, K.; Zhang, M.; Liu, H.; Kang, J. Voltammetric Studies of the Interaction of Transition-Metal Complexes with DNA. J. Biochem. Biophys. Methods 2002, 52, 189–200. [Google Scholar] [CrossRef]
- Linder, M.C. The Relationship of Copper to DNA Damage and Damage Prevention in Humans. Mutat. Res. Mol. Mech. Mutagen. 2012, 733, 83–91. [Google Scholar] [CrossRef]
- Sagripanti, J.-L.; Goering, P.L.; Lamanna, A. Interaction of Copper with DNA and Antagonism by Other Metals. Toxicol. Appl. Pharmacol. 1991, 110, 477–485. [Google Scholar] [CrossRef]
- Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. The Transition Metals Copper and Iron in Neurodegenerative Diseases. Chem. Biol. Interact. 2010, 186, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, C.; Fanni, D.; Congiu, T.; Piras, M.; Cau, F.; Moi, M.; Faa, G. Liver Pathology in Wilson’s Disease: From Copper Overload to Cirrhosis. J. Inorg. Biochem. 2019, 193, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Parrilha, G.L.; Lessa, J.A.; Santiago, L.J.M.; Kanashiro, M.M.; Boniolo, F.S.; Bortoluzzi, A.J.; Vugman, N.V.; Herbst, M.H.; Horn, A. Synthesis, Crystal Structure, Nuclease and in Vitro Antitumor Activities of a New Mononuclear Copper(II) Complex Containing a Tripodal N3O Ligand. Inorg. Chim. Acta 2006, 359, 3167–3176. [Google Scholar] [CrossRef]
- Galindo-Murillo, R.; García-Ramos, J.C.; Ruiz-Azuara, L.; Cheatham, T.E., III; Cortés-Guzmán, F. Intercalation Processes of Copper Complexes in DNA. Nucleic Acids Res. 2015, 43, 5364–5376. [Google Scholar] [CrossRef] [Green Version]
- Zehra, S.; Tabassum, S.; Arjmand, F. Biochemical Pathways of Copper Complexes: Progress over the Past 5 Years. Drug Discov. Today 2021, 26, 1086–1096. [Google Scholar] [CrossRef]
- McGivern, T.J.P.; Afsharpour, S.; Marmion, C.J. Copper Complexes as Artificial DNA Metallonucleases: From Sigman’s Reagent to next Generation Anti-Cancer Agent? Inorg. Chim. Acta 2018, 472, 12–39. [Google Scholar] [CrossRef]
- Erxleben, A. Interactions of Copper Complexes with Nucleic Acids. Coord. Chem. Rev. 2018, 360, 92–121. [Google Scholar] [CrossRef]
- Chand, D.K.; Schneider, H.-J.; Aguilar, J.A.; Escartí, F.; García-España, E.; Luis, S.V. Copper Complexes of Polyaza[n]Cyclophanes and Their Interaction with DNA and RNA. Inorg. Chim. Acta 2001, 316, 71–78. [Google Scholar] [CrossRef]
- Lakshmipraba, J.; Arunachalam, S.; Riyasdeen, A.; Dhivya, R.; Vignesh, S.; Akbarsha, M.A.; James, R.A. DNA/RNA Binding and Anticancer/Antimicrobial Activities of Polymer–Copper(II) Complexes. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 109, 23–31. [Google Scholar] [CrossRef]
- Esteves, C.V.; Costa, J.; Esteban-Gómez, D.; Lamosa, P.; Bernard, H.; Platas-Iglesias, C.; Tripier, R.; Delgado, R. Phosphate and Polyphosphate Anion Recognition by a Dinuclear Copper(Ii) Complex of an Unsymmetrical Squaramide. Dalton Trans. 2019, 48, 10104–10115. [Google Scholar] [CrossRef]
- Lachowicz, J.I.; Todde, D.; Aberamchuk, K.; Picci, G.; Murgia, S.; Nurchi, V.M.; Klepka, M.; Kalinowska, D.; Torre, G.D.; Mujika, J.; et al. Kojic Acid Derivatives as Double Face Ligands for Metal and Phosphate Ions. J. Inorg. Biochem. 2021, 222, 111520. [Google Scholar] [CrossRef] [PubMed]
- Jastrzab, R. The Influence of Copper(Ii) Ions on Noncovalent Interactions in the Systems Including Phosphoserine and Biogenic Amines. New J. Chem. 2010, 34, 2867–2874. [Google Scholar] [CrossRef]
- Dawaliby, R.; Trubbia, C.; Delporte, C.; Noyon, C.; Ruysschaert, J.-M.; Van Antwerpen, P.; Govaerts, C. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J. Biol. Chem. 2016, 291, 3658–3667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caianiello, C.; D’Avino, M.; Cavasso, D.; Paduano, L.; D’Errico, G. Bioinspired Nanoemulsions Stabilized by Phosphoethanolamine and Phosphoglycerol Lipids. Nanomaterials 2020, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.E.; Elani, Y.; Brooks, N.J.; Seddon, J.M. The Effect of Headgroup Methylation on Polymorphic Phase Behaviour in Hydrated N -Methylated Phosphoethanolamine:Palmitic Acid Membranes. Soft Matter 2021, 17, 5763–5771. [Google Scholar] [CrossRef]
- Fontana, D.; Mauri, M.; Renso, R.; Docci, M.; Crespiatico, I.; Røst, L.M.; Jang, M.; Niro, A.; D’Aliberti, D.; Massimino, L.; et al. ETNK1 Mutations Induce a Mutator Phenotype That Can Be Reverted with Phosphoethanolamine. Nat. Commun. 2020, 11, 5938. [Google Scholar] [CrossRef]
- Samantha, A.; Vrielink, A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J. Mol. Biol. 2020, 432, 5184–5196. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, K.; Han, M.-L.; Yuan, B.; Li, J.; Gong, B.; Velkov, T.; Schreiber, F.; Wang, L.; Li, J. Outer Membranes of Polymyxin-Resistant Acinetobacter Baumannii with Phosphoethanolamine-Modified Lipid A and Lipopolysaccharide Loss Display Different Atomic-Scale Interactions with Polymyxins. ACS Infect. Dis. 2020, 6, 2698–2708. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, X.; Wu, M.; Zhu, W.; Arslan, A.; Takeda, S.; Nguyen, M.H.; Majeti, R.; Thomas, D.; Zheng, M.; et al. The Phosphatidylethanolamine Biosynthesis Pathway Provides a New Target for Cancer Chemotherapy. J. Hepatol. 2020, 72, 746–760. [Google Scholar] [CrossRef]
- Gabryel-Skrodzka, M.; Nowak, M.; Stachowiak, K.; Zabiszak, M.; Ogawa, K.; Jastrzab, R. The Influence of PH on Complexation Process of Copper(II) Phosphoethanolamine to Pyrimidine Nucleosides. Materials 2021, 14, 4309. [Google Scholar] [CrossRef]
- Gasowska, A.; Jastrzab, R.; Bregier-Jarzebowska, R.; Lomozik, L. Intermolecular and Coordination Reactions in the Systems of Copper(II) with Adenosine 5′-Monophosphate or Cytidine 5’-Monophosphate and Triamines. Polyhedron 2001, 20, 2305–2313. [Google Scholar] [CrossRef]
- Lomozik, L.; Jastrzab, R. Interference of Copper(II) Ions with Non-Covalent Interactions in Uridine or Uridine 5’-Monophosphate Systems with Adenosine, Cytidine, Thymidine and Their Monophosphates in Aqueous Solution. J. Solut. Chem. 2007, 36, 357–374. [Google Scholar] [CrossRef]
- Lomozik, L.; Gasowska, A.; Krzysko, G.; Bregier-Jarzebowska, R. Coordination Reactions and Noncovalent Interactions of Polyamines with Nucleotides in Binary Systems and with Nucleotides and Copper(II) Ion in Ternary Systems. Bioinorg. Chem. Appl. 2010, 2010, e740435. [Google Scholar] [CrossRef] [Green Version]
- Łomozik, L.; Jastrzab, R. Non-Covalent and Coordination Interactions in Cu(II) Systems with Uridine, Uridine 5’-Monophosphate and Triamine or Tetramine as Biogenic Amine Analogues in Aqueous Solutions. J. Inorg. Biochem. 2003, 97, 179–190. [Google Scholar] [CrossRef]
- Lomozik, L.; Jastrzab, R.; Gasowska, A. Interactions in Binary and Ternary Systems Including Cu(II), Uridine, Uridine 5’-Monophosphate or Diamine. Polyhedron 2000, 19, 1145–1154. [Google Scholar] [CrossRef]
- Lomozik, L.; Anna, G.; Krzyśko, G. Interactions of 1,12-Diamino-4,9-Dioxadodecane (OSpm) and Cu(II) Ions with Pyrimidine and Purine Nucleotides: Adenosine-5’-Monophosphate (AMP) and Cytidine-5’-Monophosphate (CMP). J. Inorg. Biochem. 2006, 100, 1781–1789. [Google Scholar] [CrossRef]
- Irving, H.M.; Miles, M.G.; Pettit, L.D. A Study of Some Problems in Determining the Stoicheiometric Proton Dissociation Constants of Complexes by Potentiometric Titrations Using a Glass Electrode. Anal. Chim. Acta 1967, 38, 475–488. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Simultaneous Calculation of Equilibrium Constants and Standard Formation Enthalpies from Calorimetric Data for Systems with Multiple Equilibria in Solution. J. Solut. Chem. 2008, 37, 467–476. [Google Scholar] [CrossRef]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad Simulation and Speciation (HySS): A Utility Program for the Investigation of Equilibria Involving Soluble and Partially Soluble Species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
- Jastrzab, R.; Lomozik, L. Coordination Mode in the Binary Systems of Copper(II)/O-Phospho-L-Serine. J. Coord. Chem. 2009, 62, 710–720. [Google Scholar] [CrossRef]
- Gasowska, A.; Jastrzab, R.; Lomozik, L. Specific Type of Interactions in the Quaternary System of Cu(II), Adenosine 5′-Triphosphate, 1,11-Diamino-4,8-Diazaundecane and Uridine. J. Inorg. Biochem. 2007, 101, 1362–1369. [Google Scholar] [CrossRef]
- Jastrzab, R. Phosphoserine and Specific Types of Its Coordination in Copper(II) and Adenosine Nucleotides Systems–Potentiometric and Spectroscopic Studies. J. Inorg. Biochem. 2009, 103, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Zabiszak, M.; Nowak, M.; Gabryel, M.; Ogawa, K.; Kaczmarek, M.T.; Hnatejko, Z.; Jastrzab, R. New Coordination Compounds of Citric Acid and Polyamines with Lanthanide Ions-Potential Application in Monitoring the Treatment of Cancer Diseases. J. Inorg. Biochem. 2019, 198, 110715. [Google Scholar] [CrossRef] [PubMed]
- Lomozik, L.; Jaskolski, M.; Wojciechowska, A. A Multistage Verification Procedure for the Selection of Models in the Study of Complex Formation Equilibria. Pol. J. Chem. 1991, 65, 1797–1807. [Google Scholar]
- Glasoe, P.K.; Long, F.A. Use of glass electrodes to measure acidities in deuterium oxide1,2. J. Phys. Chem. 1960, 64, 188–190. [Google Scholar] [CrossRef]
- Force, R.K.; Carr, J.D. Temperaure-Dependent Response of the Glass Electrode in Deuterium Oxide. Anal. Chem. 1974, 46, 2049–2052. [Google Scholar] [CrossRef]
Species | enP [30] | TMP | UMP [34] | CMP [32] |
---|---|---|---|---|
H2L | 16.11(3) | 15.77(1) | 15.13 | 10.90 |
HL | 10.41(2) | 9.73(1) | 9.50 | 6.42 |
MHL | 13.29(7) | 13.57(3) | - | - |
ML | - | - | 6.03 | 2.71 |
ML(OH) | 0.40(2) | 0.39(2) | −2.82 | −4.26 |
ML(OH)2 | −7.26(4) | −9.24(2) | −13.02 | - |
ML(OH)3 | - | - | −23.64 | - |
Species | pH | λmax (nm) | ε (dm3 mol−1 cm−1) | g‖ | A‖ (10−4 cm−1) | Chromophore |
---|---|---|---|---|---|---|
Cu(HTMP) | 6.0 | 801 | 19 | 2.37 | 157 | {1 O} |
Cu(TMP)(OH) | 7.5 | 711 | 97 | - | {1N, xO} | |
Cu(TMP)(OH)2 | 11.0 | 673 | 56 | - | - | {1N, xO} |
enP | Nucleotide | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
System | pH | C1 | C2 | P | C2 | C4 | C5 | C6 | C1’ | C2’ | C3’ | C4’ | C5’ | CH3 | P |
Cu(II)/TMP | 6.0 | +0.23 | +0.05 | −0.13 | −0.16 | +0.03 | +0.22 | −0.07 | −0.28 | +0.58 | −0.15 | −3.22 | |||
7.5 | −0.08 | +0.12 | +0.14 | +0.16 | −0.25 | −0.26 | +0.05 | +0.23 | −0.72 | −0.10 | −0.67 | ||||
Cu(II)/enP/TMP | 3.5 | −0.85 | −0.96 | −4.70 | 0.00 | +0.02 | +0.01 | −0.01 | 0.00 | 0.00 | +0.02 | 0.00 | −0.04 | −0.01 | −1.06 |
Cu(II)/enP/UMP | 3.0 | −0.94 | −0.94 | −0.92 | +0.01 | +0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.02 | −0.98 | |
5.5 | 0.53 | −0.07 | −4.68 | −0.02 | +0.01 | −0.02 | +0.02 | −0.04 | 0.01 | 0.02 | +0.09 | −0.09 | −3.00 | ||
6.4 | −0.83 | −1.00 | −2.80 | −0.04 | 0.08 | −0.06 | −0.01 | −0.05 | 0.00 | −0.01 | −0.01 | −0.04 | −3.02 | ||
7.1 | −0.93 | −0.98 | −0.82 | −0.15 | +0.12 | +0.07 | 0.00 | −0.15 | +0.30 | −0.01 | −0.01 | +0.05 | −0.98 | ||
9.5 | +0.69 | +0.46 | −1.10 | −0.42 | −0.24 | +1.07 | +0.05 | −0.35 | −0.03 | −0.01 | +0.01 | −0.99 | −0.03 | ||
Cu(II)/enP/CMP | 2.5 | −0.88 | −0.88 | −0.66 | +0.53 | +0.10 | −1.65 | −0.05 | 0.19 | 0.00 | 0.00 | −0.02 | −0.07 | −1.98 | |
5.2 | −0.05 | +0.03 | −2.91 | +0.69 | −0.14 | - | +0.01 | −0.63 | −0.02 | −0.02 | −0.03 | +0.04 | −3.98 | ||
6.0 | −0.97 | −0.94 | −1.84 | +0.48 | −0.05 | - | −0.01 | −0.41 | 0.00 | −0.02 | −0.08 | −0.01 | −2.57 | ||
7.2 | −0.93 | −0.95 | −1.51 | −0.06 | −0.15 | −0.44 | −0.18 | −0.04 | −0.02 | −0.15 | −0.34 | +0.42 | −4.53 | ||
10.0 | −0.85 | −1.34 | −1.06 | +0.99 | +1.01 | +0.98 | +1.00 | +0.97 | +1.00 | +1.00 | +1.00 | +0.98 | −1.22 |
Species | Overall Stability Constants logβ | Reactions | logKe |
---|---|---|---|
Cu(enP)H4(TMP) | 39.04(5) | Cu2+ + (H2enP) + (H2TMP) ⇆ Cu(enP)H4(TMP) | 7.16 |
Cu(enP)H3(TMP) | 33.59(5) | Cu(HenP) + (H2TMP) ⇆ Cu(enP)H3(TMP) | 4.53 |
Cu(enP)H2(TMP) | 27.63(4) | Cu(HenP) + (HTMP) ⇆ Cu(enP)H2(TMP) | 4.61 |
Cu(enP)(TMP)(OH)2 | −5.43 | Cu(TMP)(OH) + enP + H2O ⇆ Cu(enP)(TMP)(OH)2 | 8.04 |
Cu(enP)H4(UMP) | 41.27(2) | Cu2+ + (H2enP) + (H2UMP) ⇆ Cu(enP)H4(UMP) | 10.03 |
Cu(enP)H3(UMP) | 36.15(2) | Cu(HenP) + (H2UMP) ⇆ Cu(enP)H3(UMP) | 7.73 |
Cu(enP)H2(UMP) | 29.85(4) | Cu(HenP) + (HUMP) ⇆ Cu(enP)H2(UMP) | 7.06 |
Cu2(enP)2(UMP) | 29.94(4) | Cu(UMP) + 2 enP + Cu2+ ⇆ Cu2(enP)2(UMP) | 23.91 |
Cu(enP)(UMP) | 15.96(2) | Cu(UMP) + (enP) ⇆ Cu(enP)(UMP) | 9.93 |
Cu(enP)H4(CMP) | 37.80(2) | Cu2+ + (H2enP) + (H2CMP) ⇆ Cu(enP)H4(CMP) | 10.79 |
Cu(enP)H3(CMP) | 32.96(2) | Cu2+ + (HenP) + (H2CMP) ⇆ Cu(enP)H3(CMP) | 11.65 |
Cu(enP)H2(CMP) | 27.42(2) | Cu2+ + (HenP) + (HCMP) ⇆ Cu(enP)H2(CMP) | 10.59 |
Cu(enP)(CMP) | 14.50(2) | Cu2+ + (enP) + (CMP) ⇆ Cu(enP)(CMP) | 14.50 |
Cu(enP)(CMP)(OH) | 5.02(2) | Cu(CMP) + (enP) + H2O ⇆ Cu(enP)(CMP)(OH) + H+ | 16.17 |
Species | pH | λmax (nm) | ε (dm3 mol−1 cm−1) | g‖ | A‖ (10−4 cm−1) | Chromophore |
---|---|---|---|---|---|---|
Cu(enP)H4(TMP) | 2.5 | 801 | 13.9 | 2.39 | 135 | {1O} |
Cu(enP)H3(TMP) | 5.5 | - | - | - | - | - |
Cu(enP)H2(TMP) | 6.5 | - | - | - | - | - |
Cu(enP)(TMP)(OH)2 | 11.0 | - | - | - | - | - |
Cu(enP)H4(UMP) | 3.0 | 798 | 13.39 | 2.41 | 137 | {1O} |
Cu(enP)H3(UMP) | 5.5 | 776 | 15.41 | 2.40 | 146 | {2O} |
Cu(enP)H2(UMP) | 6.4 | - | - | - | - | - |
Cu2(enP)2(UMP) | 7.1 | 698 | 62.89 | - | - | {2N, xO} |
Cu(enP)(UMP) | 9.5 | 685 | 65.36 | 2.38 | 150 | {2N, xO} |
Cu(enP)H4(CMP) | 2.5 | 802 | 11.75 | 2.41 | 141 | {1O} |
Cu(enP)H3(CMP) | 5.2 | 792 | 14.43 | 2.35 | 161 | {2O} |
Cu(enP)H2(CMP) | 6.0 | 751 | 40.79 | 2.33 | 159 | {1N, xO} |
Cu(enP)(CMP) | 7.2 | 680 | 99.41 | 2.30 | 158 | {2N, xO} |
Cu(enP)(CMP)(OH) | 10.0 | 689 | 77.73 | - | - | {2N, xO} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabryel-Skrodzka, M.; Nowak, M.; Teubert, A.; Jastrzab, R. Coordination Chemistry of Phosphate Groups in Systems Including Copper(II) Ions, Phosphoethanolamine and Pyrimidine Nucleotides. Int. J. Mol. Sci. 2022, 23, 13718. https://doi.org/10.3390/ijms232213718
Gabryel-Skrodzka M, Nowak M, Teubert A, Jastrzab R. Coordination Chemistry of Phosphate Groups in Systems Including Copper(II) Ions, Phosphoethanolamine and Pyrimidine Nucleotides. International Journal of Molecular Sciences. 2022; 23(22):13718. https://doi.org/10.3390/ijms232213718
Chicago/Turabian StyleGabryel-Skrodzka, Malwina, Martyna Nowak, Anna Teubert, and Renata Jastrzab. 2022. "Coordination Chemistry of Phosphate Groups in Systems Including Copper(II) Ions, Phosphoethanolamine and Pyrimidine Nucleotides" International Journal of Molecular Sciences 23, no. 22: 13718. https://doi.org/10.3390/ijms232213718
APA StyleGabryel-Skrodzka, M., Nowak, M., Teubert, A., & Jastrzab, R. (2022). Coordination Chemistry of Phosphate Groups in Systems Including Copper(II) Ions, Phosphoethanolamine and Pyrimidine Nucleotides. International Journal of Molecular Sciences, 23(22), 13718. https://doi.org/10.3390/ijms232213718