Transcriptome Alterations Caused by Social Defeat Stress of Various Durations in Mice and Its Relevance to Depression and Posttraumatic Stress Disorder in Humans: A Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. The Search for Studies According to PRISMA Guidelines
2.2. Reanalysis of the Published RNA-seq Data
2.3. Gene Set Enrichment Analysis (GSEA)
2.4. Functional Annotation of the Most Reproducible Genes That Are Associated with SDS
2.5. A Comparison of SDS-Related Genes and Genes Associated with Human MDD and PTSD
3. Results
3.1. Transcriptome Alterations Caused by 10-Day SDS
3.2. Genes Responsible for Susceptibility to SDS
3.3. Transcriptome Alterations Caused by 30-Day SDS
3.4. The Comparison of DEGs Detected after MDD or PTSD in Humans and after SDS in Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.T.; Alloy, L.B. Stress generation in depression: A systematic review of the empirical literature and recommendations for future study. Clin. Psychol. Rev. 2010, 30, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammen, C. Stress and depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Liu, W.; Duan, D.; Bai, H.; Wang, Z.; Xing, Y. Chronic social defeat stress mouse model: Current view on its behavioral deficits and modifications. Behav. Neurosci. 2021, 135, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, J.R.; Fatma, M.; Loh, Y.E.; Traore, S.R.; Stefan, T.; Chen, T.H.; Nestler, E.J.; Labonte, B. Shared Transcriptional Signatures in Major Depressive Disorder and Mouse Chronic Stress Models. Biol. Psychiatry 2020, 88, 159–168. [Google Scholar] [CrossRef]
- Bondar, N.; Bryzgalov, L.; Ershov, N.; Gusev, F.; Reshetnikov, V.; Avgustinovich, D.; Tenditnik, M.; Rogaev, E.; Merkulova, T. Molecular Adaptations to Social Defeat Stress and Induced Depression in Mice. Mol. Neurobiol. 2018, 55, 3394–3407. [Google Scholar] [CrossRef]
- Vinkers, C.H.; Joels, M.; Milaneschi, Y.; Kahn, R.S.; Penninx, B.W.; Boks, M.P. Stress exposure across the life span cumulatively increases depression risk and is moderated by neuroticism. Depress. Anxiety 2014, 31, 737–745. [Google Scholar] [CrossRef]
- Lu, J.; Gong, X.; Yao, X.; Guang, Y.; Yang, H.; Ji, R.; He, Y.; Zhou, W.; Wang, H.; Wang, W.; et al. Prolonged chronic social defeat stress promotes less resilience and higher uniformity in depression-like behaviors in adult male mice. Biochem. Biophys. Res. Commun. 2021, 553, 107–113. [Google Scholar] [CrossRef]
- Nasca, C.; Menard, C.; Hodes, G.; Bigio, B.; Pena, C.; Lorsch, Z.; Zelli, D.; Ferris, A.; Kana, V.; Purushothaman, I.; et al. Multidimensional Predictors of Susceptibility and Resilience to Social Defeat Stress. Biol. Psychiatry 2019, 86, 483–491. [Google Scholar] [CrossRef]
- Golden, S.A.; Covington, H.E., 3rd; Berton, O.; Russo, S.J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 2011, 6, 1183–1191. [Google Scholar] [CrossRef]
- Flandreau, E.I.; Toth, M. Animal Models of PTSD: A Critical Review. Curr. Top. Behav. Neurosci. 2018, 38, 47–68. [Google Scholar] [CrossRef]
- Hare, B.D.; Duman, R.S. Prefrontal cortex circuits in depression and anxiety: Contribution of discrete neuronal populations and target regions. Mol. Psychiatry 2020, 25, 2742–2758. [Google Scholar] [CrossRef]
- Dubin, M.J.; Liston, C.; Avissar, M.A.; Ilieva, I.; Gunning, F.M. Network-Guided Transcranial Magnetic Stimulation for Depression. Curr. Behav. Neurosci. Rep. 2017, 4, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Mayberg, H.S.; Lozano, A.M.; Voon, V.; McNeely, H.E.; Seminowicz, D.; Hamani, C.; Schwalb, J.M.; Kennedy, S.H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kar, S.K. How Electroconvulsive Therapy Works? Understanding the Neurobiological Mechanisms. Clin. Psychopharmacol. Neurosci. Off. Sci. J. Korean Coll. Neuropsychopharmacol. 2017, 15, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Padilla-Coreano, N.; Bolkan, S.S.; Pierce, G.M.; Blackman, D.R.; Hardin, W.D.; Garcia-Garcia, A.L.; Spellman, T.J.; Gordon, J.A. Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Activity and Behavior. Neuron 2016, 89, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Felix-Ortiz, A.C.; Burgos-Robles, A.; Bhagat, N.D.; Leppla, C.A.; Tye, K.M. Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience 2016, 321, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, A.; Lerner, T.N.; Finkelstein, J.; Pak, S.; Jennings, J.H.; Davidson, T.J.; Ferenczi, E.; Gunaydin, L.A.; Mirzabekov, J.J.; Ye, L.; et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature 2015, 527, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, D.; Walsh, J.J.; Friedman, A.K.; Juarez, B.; Ku, S.M.; Koo, J.W.; Ferguson, D.; Tsai, H.C.; Pomeranz, L.; Christoffel, D.J.; et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2013, 493, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Warden, M.R.; Selimbeyoglu, A.; Mirzabekov, J.J.; Lo, M.; Thompson, K.R.; Kim, S.Y.; Adhikari, A.; Tye, K.M.; Frank, L.M.; Deisseroth, K. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 2012, 492, 428–432. [Google Scholar] [CrossRef]
- Bagot, R.C.; Parise, E.M.; Pena, C.J.; Zhang, H.X.; Maze, I.; Chaudhury, D.; Persaud, B.; Cachope, R.; Bolanos-Guzman, C.A.; Cheer, J.F.; et al. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat. Commun. 2015, 6, 7062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.J.; Su, X.; Zhang, L.W.; Zhang, C.Y.; Wang, L.; Li, W.Q.; Yang, Y.F.; Lv, L.X.; Li, M.; Xiao, X. Transcriptomic analyses of humans and mice provide insights into depression. Zool. Res. 2020, 41, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Girgenti, M.J.; Wang, J.; Ji, D.; Cruz, D.A.; Stein, M.B.; Gelernter, J.; Young, K.A.; Huber, B.R.; Williamson, D.E.; Friedman, M.J.; et al. Transcriptomic organization of the human brain in post-traumatic stress disorder. Nat. Neurosci. 2021, 24, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Pena, C.J.; Smith, M.; Ramakrishnan, A.; Cates, H.M.; Bagot, R.C.; Kronman, H.G.; Patel, B.; Chang, A.B.; Purushothaman, I.; Dudley, J.; et al. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat. Commun. 2019, 10, 5098. [Google Scholar] [CrossRef] [Green Version]
- Bagot, R.C.; Cates, H.M.; Purushothaman, I.; Lorsch, Z.S.; Walker, D.M.; Wang, J.; Huang, X.; Schluter, O.M.; Maze, I.; Pena, C.J.; et al. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron 2016, 90, 969–983. [Google Scholar] [CrossRef] [Green Version]
- Laine, M.A.; Trontti, K.; Misiewicz, Z.; Sokolowska, E.; Kulesskaya, N.; Heikkinen, A.; Saarnio, S.; Balcells, I.; Ameslon, P.; Greco, D.; et al. Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. eNeuro 2018, 5. [Google Scholar] [CrossRef]
- Deonaraine, K.K.; Wang, Q.; Cheng, H.; Chan, K.L.; Lin, H.Y.; Liu, K.; Parise, L.F.; Cathomas, F.; Leclair, K.B.; Flanigan, M.E.; et al. Sex-specific peripheral and central responses to stress-induced depression and treatment in a mouse model. J. Neurosci. Res. 2020, 98, 2541–2553. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Wolfgang, V. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, A.T.; Wang, M.; Hauberg, M.E.; Fullard, J.F.; Kozlenkov, A.; Keenan, A.; Hurd, Y.L.; Dracheva, S.; Casaccia, P.; Roussos, P.; et al. Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. Sci. Rep. 2018, 8, 8868. [Google Scholar] [CrossRef] [Green Version]
- Labonte, B.; Engmann, O.; Purushothaman, I.; Menard, C.; Wang, J.; Tan, C.; Scarpa, J.R.; Moy, G.; Loh, Y.E.; Cahill, M.; et al. Sex-specific transcriptional signatures in human depression. Nat. Med. 2017, 23, 1102–1111. [Google Scholar] [CrossRef]
- Pantazatos, S.P.; Huang, Y.Y.; Rosoklija, G.B.; Dwork, A.J.; Arango, V.; Mann, J.J. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: Evidence for altered glial, endothelial and ATPase activity. Mol. Psychiatry 2017, 22, 760–773. [Google Scholar] [CrossRef] [Green Version]
- Ramaker, R.C.; Bowling, K.M.; Lasseigne, B.N.; Hagenauer, M.H.; Hardigan, A.A.; Davis, N.S.; Gertz, J.; Cartagena, P.M.; Walsh, D.M.; Vawter, M.P.; et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 2017, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, A.M.; Goscik, J.; Majewska, A.; Swiergiel, A.H.; Juszczak, G.R. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice. PLoS ONE 2015, 10, e0142195. [Google Scholar] [CrossRef]
- Reshetnikov, V.V.; Kisaretova, P.E.; Ershov, N.I.; Merkulova, T.I.; Bondar, N.P. Social defeat stress in adult mice causes alterations in gene expression, alternative splicing, and the epigenetic landscape of H3K4me3 in the prefrontal cortex: An impact of early-life stress. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110068. [Google Scholar] [CrossRef]
- Xie, L.K.; Yang, S.H. Brain globins in physiology and pathology. Med. Gas Res. 2016, 6, 154–163. [Google Scholar] [CrossRef]
- Wochnik, G.M.; Ruegg, J.; Abel, G.A.; Schmidt, U.; Holsboer, F.; Rein, T. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem. 2005, 280, 4609–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, K.; Holmes, M.; Seckl, J. 11beta-hydroxysteroid dehydrogenases: Intracellular gate-keepers of tissue glucocorticoid action. Physiol. Rev. 2013, 93, 1139–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juszczak, G.R.; Stankiewicz, A.M. Glucocorticoids, genes and brain function. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 82, 136–168. [Google Scholar] [CrossRef] [PubMed]
- Perez-Nievas, B.G.; Garcia-Bueno, B.; Caso, J.R.; Menchen, L.; Leza, J.C. Corticosterone as a marker of susceptibility to oxidative/nitrosative cerebral damage after stress exposure in rats. Psychoneuroendocrinology 2007, 32, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Kipari, T.M.J.; Zhang, Z.; Man, T.Y.; Forster, T.; Homer, N.Z.M.; Seckl, J.R.; Holmes, M.C.; Chapman, K.E. 11beta-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav. Immun. 2018, 69, 223–234. [Google Scholar] [CrossRef]
- Sun, M.; Brady, R.D.; Wright, D.K.; Kim, H.A.; Zhang, S.R.; Sobey, C.G.; Johnstone, M.R.; O’Brien, T.J.; Semple, B.D.; McDonald, S.J.; et al. Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav. Immun. 2017, 66, 359–371. [Google Scholar] [CrossRef]
- Burton, M.D.; Rytych, J.L.; Freund, G.G.; Johnson, R.W. Central inhibition of interleukin-6 trans-signaling during peripheral infection reduced neuroinflammation and sickness in aged mice. Brain Behav. Immun. 2013, 30, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Khantakova, J.N.; Bondar, N.P.; Sapronova, A.A.; Reshetnikov, V.V. Delayed effects of neonatal immune activation on brain neurochemistry and hypothalamic-pituitary-adrenal axis functioning. Eur. J. Neurosci. 2022. [Google Scholar] [CrossRef]
- Williamson, M.R.; Fuertes, C.J.A.; Dunn, A.K.; Drew, M.R.; Jones, T.A. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 2021, 35, 109048. [Google Scholar] [CrossRef]
- Lin, R.C.; Matesic, D.F.; Marvin, M.; McKay, R.D.; Brustle, O. Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol. Dis. 1995, 2, 79–85. [Google Scholar] [CrossRef]
- Nyul-Toth, A.; Suciu, M.; Molnar, J.; Fazakas, C.; Hasko, J.; Herman, H.; Farkas, A.E.; Kaszaki, J.; Hermenean, A.; Wilhelm, I.; et al. Differences in the molecular structure of the blood-brain barrier in the cerebral cortex and white matter: An in silico, in vitro, and ex vivo study. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H1702–H1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, N.; Martin, W. The energetics of genome complexity. Nature 2010, 467, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Wang, E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J. Cell. Biochem. 2007, 100, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Gonskikh, Y.; Polacek, N. Alterations of the translation apparatus during aging and stress response. Mech. Ageing Dev. 2017, 168, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Bisht, K.; Sharma, K.; Tremblay, M.E. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress 2018, 9, 9–21. [Google Scholar] [CrossRef]
- Santini, E.; Huynh, T.N.; MacAskill, A.F.; Carter, A.G.; Pierre, P.; Ruggero, D.; Kaphzan, H.; Klann, E. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 2013, 493, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Adell, A. Brain NMDA Receptors in Schizophrenia and Depression. Biomolecules 2020, 10, 947. [Google Scholar] [CrossRef]
- Tomoda, T.; Hikida, T.; Sakurai, T. Role of DISC1 in Neuronal Trafficking and its Implication in Neuropsychiatric Manifestation and Neurotherapeutics. Neurother. J. Am. Soc. Exp. NeuroTherapeutics 2017, 14, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Barron, J.C.; Hurley, E.P.; Parsons, M.P. Huntingtin and the Synapse. Front. Cell. Neurosci. 2021, 15, 689332. [Google Scholar] [CrossRef]
- Jaaro-Peled, H.; Kumar, S.; Hughes, D.; Sumitomo, A.; Kim, S.H.; Zoubovsky, S.; Hirota-Tsuyada, Y.; Zala, D.; Bruyere, J.; Katz, B.M.; et al. Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit. Mol. Psychiatry 2022, 27, 1805–1815. [Google Scholar] [CrossRef]
- Ray, M.T.; Shannon Weickert, C.; Webster, M.J. Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl. Psychiatry 2014, 4, e389. [Google Scholar] [CrossRef] [Green Version]
- Antontseva, E.; Bondar, N.; Reshetnikov, V.; Merkulova, T. The Effects of Chronic Stress on Brain Myelination in Humans and in Various Rodent Models. Neuroscience 2020, 441, 226–238. [Google Scholar] [CrossRef]
- Matosin, N.; Halldorsdottir, T.; Binder, E.B. Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model. Biol. Psychiatry 2018, 83, 821–830. [Google Scholar] [CrossRef]
- Hernandez-Diaz, Y.; Gonzalez-Castro, T.B.; Tovilla-Zarate, C.A.; Juarez-Rojop, I.E.; Lopez-Narvaez, M.L.; Perez-Hernandez, N.; Rodriguez-Perez, J.M.; Genis-Mendoza, A.D. Association between FKBP5 polymorphisms and depressive disorders or suicidal behavior: A systematic review and meta-analysis study. Psychiatry Res. 2019, 271, 658–668. [Google Scholar] [CrossRef]
- Maes, M.; Song, C.; Yirmiya, R. Targeting IL-1 in depression. Expert Opin. Ther. Targets 2012, 16, 1097–1112. [Google Scholar] [CrossRef]
- Li, M.; Huang, L.; Grigoroiu-Serbanescu, M.; Bergen, S.E.; Landen, M.; Hultman, C.M.; Forstner, A.J.; Strohmaier, J.; Hecker, J.; Schulze, T.G.; et al. Convergent Lines of Evidence Support LRP8 as a Susceptibility Gene for Psychosis. Mol. Neurobiol. 2016, 53, 6608–6619. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Tan, H.; Letourneau, L.; Wang, J.F. Increased thioredoxin-interacting protein in brain of mice exposed to chronic stress. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 88, 320–326. [Google Scholar] [CrossRef]
- Vornholt, E.; Luo, D.; Qiu, W.; McMichael, G.O.; Liu, Y.; Gillespie, N.; Ma, C.; Vladimirov, V.I. Postmortem brain tissue as an underutilized resource to study the molecular pathology of neuropsychiatric disorders across different ethnic populations. Neurosci. Biobehav. Rev. 2019, 102, 195–207. [Google Scholar] [CrossRef]
- Palmer-Aronsten, B.; Sheedy, D.; McCrossin, T.; Kril, J. An International Survey of Brain Banking Operation and Characterization Practices. Biopreserv. Biobank. 2016, 14, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Carlen, M. What constitutes the prefrontal cortex? Science 2017, 358, 478–482. [Google Scholar] [CrossRef]
- Kim, G.S.; Uddin, M. Sex-specific and shared expression profiles of vulnerability and resilience to trauma in brain and blood. Biol. Sex Differ. 2020, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Barko, K.; Paden, W.; Cahill, K.M.; Seney, M.L.; Logan, R.W. Sex-Specific Effects of Stress on Mood-Related Gene Expression. Mol. Neuropsychiatry 2019, 5, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Wicks, B. Sex-specific mechanisms for responding to stress. J. Neurosci. Res. 2017, 95, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seney, M.L.; Glausier, J.; Sibille, E. Large-Scale Transcriptomics Studies Provide Insight Into Sex Differences in Depression. Biol. Psychiatry 2022, 91, 14–24. [Google Scholar] [CrossRef]
- Reshetnikov, V.V.; Ayriyants, K.A.; Ryabushkina, Y.A.; Sozonov, N.G.; Bondar, N.P. Sex-specific behavioral and structural alterations caused by early-life stress in C57BL/6 and BTBR mice. Behav. Brain Res. 2021, 414, 113489. [Google Scholar] [CrossRef]
Animal | Age | Duration of Chronic SDS | Type of Aggressor | Tissue Collection | Coordinates of PFC | Number of DEGs (p < 0.05) | Raw Data Project ID, Ref. | Data ID |
---|---|---|---|---|---|---|---|---|
♂ C57BL/6J | 8–12 weeks | 10 d | ♂ CD1 | PFC, 24 h after last defeat | Cortical area (0.75 to 3.25 mm from the bregma) was dissected out at an angle of approximately 30° | 1273 ↑ 846 ↓ | PRJNA323485 [6] | SRX1811104 SRX1809034 SRX1809033 SRX1809030 SRX1809039 SRX1809037 SRX1809036 SRX1809035 |
♂ C57BL/6J | 6–8 weeks | 10 d | ♂ CD1 | PFC, 4 days after last defeat | N/A | 502 ↑ 443 ↓ | GSE89692 [25] | GSM2386801 GSM2386802 GSM2386803 GSM2386804 GSM2386805 GSM2386806 GSM2386807 GSM2386808 GSM2386809 GSM2386810 |
♂ C57BL/6J | 6–8 weeks | 10 d | ♂ CD1 | PFC, 2 days after last defeat | N/A | 1155 ↑ 1124 ↓ | GSE72343 [26] | GSM3736027 GSM3736055 GSM3736063 GSM3736067 GSM3736073 GSM3736105 GSM3736029 GSM3736041 GSM3736069 GSM3736081 GSM3736107 GSM3736109 |
♂ C57BL/6NCrl | 8 weeks | 10 d | ♂ CD1 | mPFC, 5–8 days after last defeat | mPFC | 556 ↑ 527 ↓ | GSE109315 [27] | GSM2938660 GSM2938661 GSM2938662 GSM2938663 GSM2938664 GSM2938665 GSM2938666 GSM2938667 GSM2938668 GSM2938669 GSM2938670 GSM2938671 GSM2938672 GSM2938673 GSM2938674 GSM2938675 GSM2938676 GSM2938677 |
♂ C57BL/6J | 10 weeks | 10 d | ♂ CD1 | PFC, 5 days after last defeat | N/A | 571 ↑ 511 ↓ | GSE146845 [28] | GSM4407773 GSM4407774 GSM4407775 GSM4407776 GSM4407777 GSM4407782 GSM4407783 GSM4407784 GSM4407785 |
♂ C57BL/6J | 8–12 weeks | 30 d | ♂ CD1 | PFC, 24 h after last defeat | Cortical area (0.75 to 3.25 mm from the bregma) was dissected out at an angle of approximately 30° | 1403 ↑ 1410 ↓ | PRJNA323485 [6] | SRR3607976 SRR3607977 SRR3607964 SRR3607965 SRR3607963 SRR3611865 SRR3607966 SRR3607967 |
♂ C57BL/6J | 8–12 weeks | 30 d | ♂ CD1 | PFC, 24 h after last defeat | Cortical area (0.75 to 3.25 mm from the bregma) was dissected out at an angle of approximately 30° | 1105 ↑ 1104 ↓ | PRJNA846517 | SRR19726009 SRR19726008 SRR19725997 SRR19725992 SRR19725987 SRR19725986 SRR19726007 SRR19726006 SRR19726005 SRR19726004 SRR19726003 SRR19726002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reshetnikov, V.V.; Kisaretova, P.E.; Bondar, N.P. Transcriptome Alterations Caused by Social Defeat Stress of Various Durations in Mice and Its Relevance to Depression and Posttraumatic Stress Disorder in Humans: A Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 13792. https://doi.org/10.3390/ijms232213792
Reshetnikov VV, Kisaretova PE, Bondar NP. Transcriptome Alterations Caused by Social Defeat Stress of Various Durations in Mice and Its Relevance to Depression and Posttraumatic Stress Disorder in Humans: A Meta-Analysis. International Journal of Molecular Sciences. 2022; 23(22):13792. https://doi.org/10.3390/ijms232213792
Chicago/Turabian StyleReshetnikov, Vasiliy V., Polina E. Kisaretova, and Natalia P. Bondar. 2022. "Transcriptome Alterations Caused by Social Defeat Stress of Various Durations in Mice and Its Relevance to Depression and Posttraumatic Stress Disorder in Humans: A Meta-Analysis" International Journal of Molecular Sciences 23, no. 22: 13792. https://doi.org/10.3390/ijms232213792
APA StyleReshetnikov, V. V., Kisaretova, P. E., & Bondar, N. P. (2022). Transcriptome Alterations Caused by Social Defeat Stress of Various Durations in Mice and Its Relevance to Depression and Posttraumatic Stress Disorder in Humans: A Meta-Analysis. International Journal of Molecular Sciences, 23(22), 13792. https://doi.org/10.3390/ijms232213792