Statins as Repurposed Drugs in Gynecological Cancer: A Review
Abstract
:1. Introduction
2. Cervical Cancer and Human Papillomavirus (HPV)
3. Endometrial Cancer and Its Risk Factors
4. Ovarian Cancer and Its Risk Factors
5. Statins, HMG-CoA Reductase Inhibitor (HMGCR) and the Role in the Tumor Microenvironment (TME)
5.1. Statins, Lipid-Lowering Drugs
5.2. Statins in Cancer
5.3. Statins in Immune Cells
5.4. Statins in MSCs
6. Statins as Potential Anti-Cancer Agents in Gynecological Cancers
6.1. Meta-Analysis in EC
6.2. Cohort Studies in EC
7. Meta-Analysis in Ovarian Cancer
Cohort Studies and Case-Control Studies in Ovarian Cancer
8. Cohort Studies in Other Gynecological Cancers
9. The Mechanisms of the Anti-Tumor Effects of Statins on Gynecological Cancer
10. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, V.; Mailankody, S. Research and Development Spending to Bring a Single Cancer Drug to Market and Revenues After Approval. JAMA Intern. Med. 2017, 177, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Matusewicz, L.; Meissner, J.; Toporkiewicz, M.; Sikorski, A.F. The Effect of Statins on Cancer Cells—Review. Tumour Biol. 2015, 36, 4889–4904. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Aragaki, A.K.; Tang, J.Y.; Kurian, A.W.; Manson, J.E.; Chlebowski, R.T.; Simon, M.; Desai, P.; Wassertheil-Smoller, S.; Liu, S.; et al. Statin Use and All-Cancer Survival: Prospective Results from the Women’s Health Initiative. Br. J. Cancer 2016, 115, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alrajjal, A.; Pansare, V.; Choudhury, M.S.R.; Khan, M.Y.A.; Shidham, V.B. Squamous Intraepithelial Lesions (SIL: LSIL, HSIL, ASCUS, ASC-H, LSIL-H) of Uterine Cervix and Bethesda System. Cytojournal 2021, 18, 16. [Google Scholar] [CrossRef]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A Review of Human Carcinogens—Part B: Biological Agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef]
- Clifford, G.M.; de Vuyst, H.; Tenet, V.; Plummer, M.; Tully, S.; Franceschi, S. Effect of HIV Infection on Human Papillomavirus Types Causing Invasive Cervical Cancer in Africa. J. Acquir. Immune Defic. Syndr. 2016, 73, 332–339. [Google Scholar] [CrossRef] [Green Version]
- GlaxoSmithKline Vaccine HPV-007 Study Group; Romanowski, B.; de Borba, P.C.; Naud, P.S.; Roteli-Martins, C.M.; De Carvalho, N.S.; Teixeira, J.C.; Aoki, F.; Ramjattan, B.; Shier, R.M.; et al. Sustained Efficacy and Immunogenicity of the Human Papillomavirus (HPV)-16/18 AS04-Adjuvanted Vaccine: Analysis of a Randomised Placebo-Controlled Trial up to 6.4 years. Lancet 2009, 374, 1975–1985. [Google Scholar]
- Ngan, H.Y.S.; Garland, S.M.; Bhatla, N.; Pagliusi, S.R.; Chan, K.K.L.; Cheung, A.N.Y.; Chu, T.-Y.; Domingo, E.J.; Qiao, Y.L.; Park, J.S.; et al. Asia Oceania Guidelines for the Implementation of Programs for Cervical Cancer Prevention and Control. J. Cancer Epidemiol. 2011, 2011, 794861. [Google Scholar] [CrossRef]
- Brüggmann, D.; Ouassou, K.; Klingelhöfer, D.; Bohlmann, M.K.; Jaque, J.; Groneberg, D.A. Endometrial Cancer: Mapping the Global Landscape of Research. J. Transl. Med. 2020, 18, 386. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Connor, E.V.; Rose, P.G. Management Strategies for Recurrent Endometrial Cancer. Expert Rev. Anticancer Ther. 2018, 18, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Soslow, R.A.; Tornos, C.; Park, K.J.; Malpica, A.; Matias-Guiu, X.; Oliva, E.; Parkash, V.; Carlson, J.; McCluggage, W.G.; Gilks, C.B. Endometrial Carcinoma Diagnosis: Use of FIGO Grading and Genomic Subcategories in Clinical Practice: Recommendations of the International Society of Gynecological Pathologists. Int. J. Gynecol. Pathol. 2019, 38 (Suppl. S1), S64–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.I.; Giugliano, D. Metabolic Syndrome and Endometrial Cancer: A Meta-Analysis. Endocrine 2014, 45, 28–36. [Google Scholar] [CrossRef]
- Rosato, V.; Zucchetto, A.; Bosetti, C.; Dal Maso, L.; Montella, M.; Pelucchi, C.; Negri, E.; Franceschi, S.; La Vecchia, C. Metabolic Syndrome and Endometrial Cancer Risk. Ann. Oncol. 2011, 22, 884–889. [Google Scholar] [CrossRef]
- Barry, J.A.; Azizia, M.M.; Hardiman, P.J. Risk of Endometrial, Ovarian and Breast Cancer in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2014, 20, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Brinton, L.A.; Berman, M.L.; Mortel, R.; Twiggs, L.B.; Barrett, R.J.; Wilbanks, G.D.; Lannom, L.; Hoover, R.N. Reproductive, Menstrual, and Medical Risk Factors for Endometrial Cancer: Results from a Case-Control Study. Am. J. Obstet. Gynecol. 1992, 167, 1317–1325. [Google Scholar] [CrossRef]
- Zucchetto, A.; Serraino, D.; Polesel, J.; Negri, E.; De Paoli, A.; Dal Maso, L.; Montella, M.; La Vecchia, C.; Franceschi, S.; Talamini, R. Hormone-Related Factors and Gynecological Conditions in Relation to Endometrial Cancer Risk. Eur. J. Cancer Prev. 2009, 18, 316–321. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Koshiyama, M.; Matsumura, N.; Konishi, I. Recent Concepts of Ovarian Carcinogenesis: Type I and Type II. Biomed Res. Int. 2014, 2014, 934261. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Miron, A.; Drapkin, R.; Nucci, M.R.; Medeiros, F.; Saleemuddin, A.; Garber, J.; Birch, C.; Mou, H.; Gordon, R.W.; et al. A Candidate Precursor to Serous Carcinoma That Originates in the Distal Fallopian Tube. J. Pathol. 2007, 211, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Coffey, D.M.; Creighton, C.J.; Yu, Z.; Hawkins, S.M.; Matzuk, M.M. High-Grade Serous Ovarian Cancer Arises from Fallopian Tube in a Mouse Model. Proc. Natl. Acad. Sci. USA 2012, 109, 3921–3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian Cancer in the World: Epidemiology and Risk Factors. Int. J. Women’s Health 2019, 11, 287–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyoshi, S.; Sumi, A.; Yoshihara, M.; Kitami, K.; Mogi, K.; Uno, K.; Fujimoto, H.; Miyamoto, E.; Tano, S.; Yoshikawa, N.; et al. Obesity Contributes to the Stealth Peritoneal Dissemination of Ovarian Cancer: A Multi-Institutional Retrospective Cohort Study. Obesity 2022, 30, 1599–1607. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell 2015, 161, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Oryan, A.; Kamali, A.; Moshiri, A. Potential Mechanisms and Applications of Statins on Osteogenesis: Current Modalities, Conflicts and Future Directions. J. Control. Release 2015, 215, 12–24. [Google Scholar] [CrossRef]
- Endo, A. The Origin of the Statins. Atheroscler. Suppl. 2004, 5, 125–130. [Google Scholar] [CrossRef]
- Schonewille, M.; de Boer, J.F.; Mele, L.; Wolters, H.; Bloks, V.W.; Wolters, J.C.; Kuivenhoven, J.A.; Tietge, U.J.F.; Brufau, G.; Groen, A.K. Statins Increase Hepatic Cholesterol Synthesis and Stimulate Fecal Cholesterol Elimination in Mice. J. Lipid Res. 2016, 57, 1455–1464. [Google Scholar] [CrossRef] [Green Version]
- Abd, T.T.; Jacobson, T.A. Statin-Induced Myopathy: A Review and Update. Expert Opin. Drug Saf. 2011, 10, 373–387. [Google Scholar] [CrossRef]
- Di Bello, E.; Zwergel, C.; Mai, A.; Valente, S. The Innovative Potential of Statins in Cancer: New Targets for New Therapies. Front. Chem. 2020, 8, 516. [Google Scholar] [CrossRef]
- Campbell, M.J.; Esserman, L.J.; Zhou, Y.; Shoemaker, M.; Lobo, M.; Borman, E.; Baehner, F.; Kumar, A.S.; Adduci, K.; Marx, C.; et al. Breast Cancer Growth Prevention by Statins. Cancer Res. 2006, 66, 8707–8714. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-T.; Ho, H.J.; Lin, J.-T.; Shieh, J.-J.; Wu, C.-Y. Simvastatin-Induced Cell Cycle Arrest through Inhibition of STAT3/SKP2 Axis and Activation of AMPK to Promote p27 and p21 Accumulation in Hepatocellular Carcinoma Cells. Cell Death Dis. 2017, 8, e2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.; He, Z.; Yi, B.; Xue, L.; Sun, J. Simvastatin Suppresses Human Breast Cancer Cell Invasion by Decreasing the Expression of Pituitary Tumor-Transforming Gene 1. Front. Pharmacol. 2020, 11, 574068. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Gong, Y.; Yan, G.; Wang, D.; Wang, Q.; Qiao, Y.; Hou, J.; Liu, B.; Tang, C. Atorvastatin Treatment Modulates p16 Promoter Methylation to Regulate p16 Expression. FEBS J. 2017, 284, 1868–1881. [Google Scholar] [CrossRef] [Green Version]
- Dongoran, R.A.; Wang, K.-H.; Lin, T.-J.; Yuan, T.-C.; Liu, C.-H. Anti-Proliferative Effect of Statins Is Mediated by DNMT1 Inhibition and p21 Expression in OSCC Cells. Cancers 2020, 12, 2084. [Google Scholar] [CrossRef]
- Forero-Peña, D.A.; Gutierrez, F.R.S. Statins as Modulators of Regulatory T-Cell Biology. Mediat. Inflamm. 2013, 2013, 167086. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, S.K.; Sadeghi, M.; Koushki, K.; Penson, P.E.; Sahebkar, A. Regulatory T Cells: Possible Mediators for the Anti-Inflammatory Action of Statins. Pharmacol. Res. 2019, 149, 104469. [Google Scholar] [CrossRef]
- Ulivieri, C.; Baldari, C.T. Statins: From Cholesterol-Lowering Drugs to Novel Immunomodulators for the Treatment of Th17-Mediated Autoimmune Diseases. Pharmacol. Res. 2014, 88, 41–52. [Google Scholar] [CrossRef]
- Rodríguez-Perea, A.L.; Rojas, M.; Velilla-Hernández, P.A. High Concentrations of Atorvastatin Reduce in-Vitro Function of Conventional T and Regulatory T Cells. Clin. Exp. Immunol. 2019, 196, 237–248. [Google Scholar] [CrossRef]
- Cantini, L.; Pecci, F.; Hurkmans, D.P.; Belderbos, R.A.; Lanese, A.; Copparoni, C.; Aerts, S.; Cornelissen, R.; Dumoulin, D.W.; Fiordoliva, I.; et al. High-Intensity Statins Are Associated with Improved Clinical Activity of PD-1 Inhibitors in Malignant Pleural Mesothelioma and Advanced Non-Small Cell Lung Cancer Patients. Eur. J. Cancer 2021, 144, 41–48. [Google Scholar] [CrossRef]
- Oechsle, C.M.; Showalter, L.E.; Novak, C.M.; Czerniecki, B.J.; Koski, G.K. Statin Drugs Plus Th1 Cytokines Potentiate Apoptosis and Ras Delocalization in Human Breast Cancer Lines and Combine with Dendritic Cell-Based Immunotherapy to Suppress Tumor Growth in a Mouse Model of HER-2pos Disease. Vaccines 2020, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Sarrabayrouse, G.; Pich, C.; Teiti, I.; Tilkin-Mariame, A.F. Regulatory Properties of Statins and Rho Gtpases Prenylation Inhibitiors to Stimulate Melanoma Immunogenicity and Promote Anti-Melanoma Immune Response. Int. J. Cancer 2017, 140, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Gorabi, A.M.; Kiaie, N.; Pirro, M.; Bianconi, V.; Jamialahmadi, T.; Sahebkar, A. Effects of Statins on the Biological Features of Mesenchymal Stem Cells and Therapeutic Implications. Heart Fail. Rev. 2021, 26, 1259–1272. [Google Scholar] [CrossRef] [PubMed]
- Galland, S.; Martin, P.; Fregni, G.; Letovanec, I.; Stamenkovic, I. Attenuation of the pro-Inflammatory Signature of Lung Cancer-Derived Mesenchymal Stromal Cells by Statins. Cancer Lett. 2020, 484, 50–64. [Google Scholar] [CrossRef]
- Chen, Y.; Han, L.; Zheng, A. Association between Statin Use and the Risk, Prognosis of Gynecologic Cancer: A Meta-Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 268, 74–81. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; Sun, Z.; Tang, S.; Wang, L.; Liu, C.; Zhao, W.; Yao, Y.; Sun, C. The Association between Statin Use and Endometrial Cancer Survival Outcome: A Meta-Analysis. Medicine 2018, 97, e13264. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, F.; Song, Z.; Chen, P.; Liu, S.; Ouyang, L. Statin Use and the Risk of Ovarian and Endometrial Cancers: A Meta-Analysis. BMC Cancer 2019, 19, 730. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhu, Q.; Liu, Q.; Wang, Y.; Xie, W.; Hu, L. Statin Use and Endometrial Cancer Risk: A Meta-Analysis. Oncotarget 2017, 8, 62425–62434. [Google Scholar] [CrossRef] [Green Version]
- Yu, O.; Boudreau, D.M.; Buist, D.S.M.; Miglioretti, D.L. Statin Use and Female Reproductive Organ Cancer Risk in a Large Population-Based Setting. Cancer Causes Control 2009, 20, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Yoon, L.S.; Goodman, M.T.; Rimel, B.J.; Jeon, C.Y. Statin Use and Survival in Elderly Patients with Endometrial Cancer. Gynecol. Oncol. 2015, 137, 252–257. [Google Scholar] [CrossRef]
- Sanni, O.B.; Mc Menamin, Ú.C.; Cardwell, C.R.; Sharp, L.; Murray, L.J.; Coleman, H.G. Commonly Used Medications and Endometrial Cancer Survival: A Population-Based Cohort Study. Br. J. Cancer 2017, 117, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Segev, Y.; Gemer, O.; Helpman, L.; Hag-Yahia, N.; Eitan, R.; Raban, O.; Vaknin, Z.; Ben-Arie, A.; Amit, A.; Levy, T.; et al. An Israeli Gynecologic Oncology Group Study of Statin Use and Endometrial Cancer Prognosis. Int J. Gynecol. Obstet. 2020, 148, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arima, R.; Marttila, M.; Hautakoski, A.; Arffman, M.; Sund, R.; Ilanne-Parikka, P.; Kangaskokko, J.; Urpilainen, E.; Läärä, E.; Hinkula, M.; et al. Antidiabetic Medication, Statins and the Risk and Prognosis of Non-Endometrioid Endometrial Cancer in Women with Type 2 Diabetes. Anticancer Res. 2018, 38, 4169–4178. [Google Scholar] [CrossRef]
- Nevadunsky, N.S.; Van Arsdale, A.; Strickler, H.D.; Spoozak, L.A.; Moadel, A.; Kaur, G.; Girda, E.; Goldberg, G.L.; Einstein, M.H. Association Between Statin Use and Endometrial Cancer Survival. Obstet. Gynecol. 2015, 126, 144–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.H.; Miller, C.M.; Tenney, M.E.; Lee, N.K.; Yamada, S.D.; Hasan, Y. Statin Use Significantly Improves Overall Survival in High-Grade Endometrial Cancer. Int. J. Gynecol. Cancer 2016, 26, 1642–1649. [Google Scholar] [CrossRef]
- Sperling, C.D.; Verdoodt, F.; Kjaer Hansen, M.; Dehlendorff, C.; Friis, S.; Kjaer, S.K. Statin Use and Mortality among Endometrial Cancer Patients: A Danish Nationwide Cohort Study. Int. J. Cancer 2018, 143, 2668–2676. [Google Scholar] [CrossRef]
- Feng, J.-L.; Dixon-Suen, S.C.; Jordan, S.J.; Webb, P.M. Is There Sufficient Evidence to Recommend Women Diagnosed with Endometrial Cancer Take a Statin: Results from an Australian Record-Linkage Study. Gynecol. Oncol. 2021, 161, 858–863. [Google Scholar] [CrossRef]
- Desai, P.; Wallace, R.; Anderson, M.L.; Howard, B.V.; Ray, R.M.; Wu, C.; Safford, M.; Martin, L.W.; Rohan, T.; Manson, J.E.; et al. An Analysis of the Association between Statin Use and Risk of Endometrial and Ovarian Cancers in the Women’s Health Initiative. Gynecol. Oncol. 2018, 148, 540–546. [Google Scholar] [CrossRef]
- Irvin, S.; Clarke, M.A.; Trabert, B.; Wentzensen, N. Systematic Review and Meta-Analysis of Studies Assessing the Relationship between Statin Use and Risk of Ovarian Cancer. Cancer Causes Control 2020, 31, 869–879. [Google Scholar] [CrossRef]
- Mohammadian-Hafshejani, A.; Sherwin, C.M.T.; Heidari-Soureshjani, S. Do Statins Play Any Role in Reducing the Incidence and Mortality of Ovarian Cancer? A Systematic Review and Meta-Analysis. J. Prev. Med. Hyg. 2020, 61, E331–E339. [Google Scholar]
- Liu, Y.; Qin, A.; Li, T.; Qin, X.; Li, S. Effect of Statin on Risk of Gynecologic Cancers: A Meta-Analysis of Observational Studies and Randomized Controlled Trials. Gynecol. Oncol. 2014, 133, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, J. Impact of Postdiagnostic Statin Use on Ovarian Cancer Mortality: A Systematic Review and Meta-Analysis of Observational Studies. Br. J. Clin. Pharmacol. 2018, 84, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Majidi, A.; Na, R.; Dixon-Suen, S.; Jordan, S.J.; Webb, P.M. Common Medications and Survival in Women with Ovarian Cancer: A Systematic Review and Meta-Analysis. Gynecol. Oncol. 2020, 157, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Yarmolinsky, J.; Bull, C.J.; Vincent, E.E.; Robinson, J.; Walther, A.; Smith, G.D.; Lewis, S.J.; Relton, C.L.; Martin, R.M. Association Between Genetically Proxied Inhibition of HMG-CoA Reductase and Epithelial Ovarian Cancer. JAMA 2020, 323, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Baandrup, L.; Dehlendorff, C.; Friis, S.; Olsen, J.H.; Kjær, S.K. Statin Use and Risk for Ovarian Cancer: A Danish Nationwide Case-Control Study. Br. J. Cancer 2015, 112, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Urpilainen, E.; Marttila, M.; Hautakoski, A.; Arffman, M.; Sund, R.; Ilanne-Parikka, P.; Arima, R.; Kangaskokko, J.; Puistola, U.; Läärä, E.; et al. The Role of Metformin and Statins in the Incidence of Epithelial Ovarian Cancer in Type 2 Diabetes: A Cohort and Nested Case-Control Study. BJOG-Int. J. Obstet. Gynaecol. 2018, 125, 1001–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-Y.; Wang, Q.; Xu, Q.-H.; Yan, L.; Gao, X.-F.; Lu, Y.-H.; Wang, L. Statin as a Combined Therapy for Advanced-Stage Ovarian Cancer: A Propensity Score Matched Analysis. Biomed Res. Int. 2016, 2016, 9125238. [Google Scholar] [CrossRef] [Green Version]
- Verdoodt, F.; Kjaer Hansen, M.; Kjaer, S.K.; Pottegård, A.; Friis, S.; Dehlendorff, C. Statin Use and Mortality among Ovarian Cancer Patients: A Population-Based Cohort Study. Int. J. Cancer 2017, 141, 279–286. [Google Scholar] [CrossRef]
- Majidi, A.; Na, R.; Jordan, S.J.; De Fazio, A.; Webb, P.M.; OPAL Study Group. Statin Use and Survival Following a Diagnosis of Ovarian Cancer: A Prospective Observational Study. Int. J. Cancer 2021, 148, 1608–1615. [Google Scholar] [CrossRef]
- Habis, M.; Wroblewski, K.; Bradaric, M.; Ismail, N.; Yamada, S.D.; Litchfield, L.; Lengyel, E.; Romero, I.L. Statin Therapy Is Associated with Improved Survival in Patients with Non-Serous-Papillary Epithelial Ovarian Cancer: A Retrospective Cohort Analysis. PLoS ONE 2014, 9, e104521. [Google Scholar] [CrossRef] [Green Version]
- Elmore, R.G.; Ioffe, Y.; Scoles, D.R.; Karlan, B.Y.; Li, A.J. Impact of Statin Therapy on Survival in Epithelial Ovarian Cancer. Gynecol. Oncol. 2008, 111, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Lavie, O.; Pinchev, M.; Rennert, H.S.; Segev, Y.; Rennert, G. The Effect of Statins on Risk and Survival of Gynecological Malignancies. Gynecol. Oncol. 2013, 130, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Couttenier, A.; Lacroix, O.; Vaes, E.; Cardwell, C.R.; De Schutter, H.; Robert, A. Statin Use Is Associated with Improved Survival in Ovarian Cancer: A Retrospective Population-Based Study. PLoS ONE 2017, 12, e0189233. [Google Scholar] [CrossRef] [PubMed]
- Harding, B.N.; Delaney, J.A.; Urban, R.R.; Weiss, N.S. Use of Statin Medications Following Diagnosis in Relation to Survival among Women with Ovarian Cancer. Cancer Epidemiol. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.J.; Goodman, M.T.; Li, A.J.; Jeon, C.Y. Statin Treatment Is Associated with Survival in a Nationally Representative Population of Elderly Women with Epithelial Ovarian Cancer. Gynecol. Oncol. 2017, 146, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Hanley, G.E.; Kaur, P.; Berchuck, A.; Chase, A.; Grout, B.; Deurloo, C.M.; Pike, M.; Richardson, J.; Terry, K.L.; Webb, P.M.; et al. Cardiovascular Medications and Survival in People with Ovarian Cancer: A Population-Based Cohort Study from British Columbia, Canada. Gynecol. Oncol. 2021, 162, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Ahn, H.S.; Kim, H.J. Statin Use and Incidence and Mortality of Breast and Gynecology Cancer: A Cohort Study Using the National Health Insurance Claims Database. Int. J. Cancer 2022, 150, 1156–1165. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-K.; Shin, B.-S.; Ha, C.-S.; Park, W.-Y. Would Lipophilic Statin Therapy as a Prognostic Factor Improve Survival in Patients With Uterine Cervical Cancer? Int. J. Gynecol. Cancer 2017, 27, 1431–1437. [Google Scholar] [CrossRef]
- Schointuch, M.N.; Gilliam, T.P.; Stine, J.E.; Han, X.; Zhou, C.; Gehrig, P.A.; Kim, K.; Bae-Jump, V.L. Simvastatin, an HMG-CoA Reductase Inhibitor, Exhibits Anti-Metastatic and Anti-Tumorigenic Effects in Endometrial Cancer. Gynecol. Oncol. 2014, 134, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Turbov, J.; Rosales, R.; Thaete, L.G.; Rodriguez, G.C. Combination Simvastatin and Metformin Synergistically Inhibits Endometrial Cancer Cell Growth. Gynecol. Oncol. 2019, 154, 432–440. [Google Scholar] [CrossRef]
- Kato, S.; Smalley, S.; Sadarangani, A.; Chen-Lin, K.; Oliva, B.; Brañes, J.; Carvajal, J.; Gejman, R.; Owen, G.I.; Cuello, M. Lipophilic but Not Hydrophilic Statins Selectively Induce Cell Death in Gynaecological Cancers Expressing High Levels of HMGCoA Reductase. J. Cell. Mol. Med. 2010, 14, 1180–1193. [Google Scholar] [PubMed] [Green Version]
- Horiuchi, A.; Kikuchi, N.; Osada, R.; Wang, C.; Hayashi, A.; Nikaido, T.; Konishi, I. Overexpression of RhoA Enhances Peritoneal Dissemination: RhoA Suppression with Lovastatin May Be Useful for Ovarian Cancer. Cancer Sci. 2008, 99, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liang, S.-L.; Kumar, S.; Weyman, C.M.; Liu, W.; Zhou, A. Statins Induce Apoptosis in Ovarian Cancer Cells through Activation of JNK and Enhancement of Bim Expression. Cancer Chemother. Pharmacol. 2009, 63, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martirosyan, A.; Clendening, J.W.; Goard, C.A.; Penn, L.Z. Lovastatin Induces Apoptosis of Ovarian Cancer Cells and Synergizes with Doxorubicin: Potential Therapeutic Relevance. BMC Cancer 2010, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, Y.; Kashima, H.; Wu, R.-C.; Jung, J.-G.; Kuan, J.-C.; Gu, J.; Xuan, J.; Sokoll, L.; Visvanathan, K.; Shih, I.-M.; et al. Mevalonate Pathway Antagonist Suppresses Formation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models. Clin. Cancer Res. 2015, 21, 4652–4662. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, M.; Suzuki, T.; Suzuki, M.; Tanaka, R.; Ito, E.; Saito, T. Statin-Mediated Reduction of Osteopontin Expression Induces Apoptosis and Cell Growth Arrest in Ovarian Clear Cell Carcinoma. Oncol. Rep. 2011, 25, 41–47. [Google Scholar] [CrossRef]
- Robinson, E.; Nandi, M.; Wilkinson, L.L.; Arrowsmith, D.M.; Curtis, A.D.M.; Richardson, A. Preclinical Evaluation of Statins as a Treatment for Ovarian Cancer. Gynecol. Oncol. 2013, 129, 417–424. [Google Scholar] [CrossRef]
- Greenaway, J.B.; Virtanen, C.; Osz, K.; Revay, T.; Hardy, D.; Shepherd, T.; DiMattia, G.; Petrik, J. Ovarian Tumour Growth Is Characterized by Mevalonate Pathway Gene Signature in an Orthotopic, Syngeneic Model of Epithelial Ovarian Cancer. Oncotarget 2016, 7, 47343–47365. [Google Scholar] [CrossRef] [Green Version]
- Stine, J.E.; Guo, H.; Sheng, X.; Han, X.; Schointuch, M.N.; Gilliam, T.P.; Gehrig, P.A.; Zhou, C.; Bae-Jump, V.L. The HMG-CoA Reductase Inhibitor, Simvastatin, Exhibits Anti-Metastatic and Anti-Tumorigenic Effects in Ovarian Cancer. Oncotarget 2016, 7, 946–960. [Google Scholar] [CrossRef]
- Crescencio, M.E.; Rodríguez, E.; Páez, A.; Masso, F.A.; Montaño, L.F.; López-Marure, R. Statins Inhibit the Proliferation and Induce Cell Death of Human Papilloma Virus Positive and Negative Cervical Cancer Cells. Int. J. Biomed. Sci. 2009, 5, 411–420. [Google Scholar]
- Pan, Q.; Xu, J.; Ma, L. Simvastatin Enhances Chemotherapy in Cervical Cancer via Inhibition of Multiple Prenylation-Dependent GTPases-Regulated Pathways. Fundam. Clin. Pharmacol. 2020, 34, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, B.; Song, Y.; Zhang, J.; Li, R.; Wang, Z.; Zhu, X. Atorvastatin Suppresses the Progression of Cervical Cancer via Regulation of Autophagy. Am. J. Transl. Res. 2020, 12, 5252–5268. [Google Scholar] [PubMed]
- Li, Z.; Kang, Y. Lipid Metabolism Fuels Cancer’s Spread. Cell Metab. 2017, 25, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Takeda, T.; Kunitomi, H.; Chiwaki, F.; Komatsu, M.; Nagai, S.; Nogami, Y.; Tsuji, K.; Masuda, K.; Ogiwara, H.; et al. Response Predictive Markers and Synergistic Agents for Drug Repositioning of Statins in Ovarian Cancer. Pharmaceuticals 2022, 15, 124. [Google Scholar] [CrossRef] [PubMed]
Drugs | Property | High Dose | Moderate Dose | Low Dose | Metabolism Pathway |
---|---|---|---|---|---|
Atorvastatin | lipophilic | 40–80 mg | 10–20 mg | CYP3A4 | |
Fluvastatin | lipophilic | 80 mg | 20–40 mg | CYP2C9 | |
Lovastatin | lipophilic | 40 mg | 20 mg | CYP3A4 | |
Pravastatin | hydrophilic | 40–80 mg | 10–20 mg | Sulfation | |
Rosuvastatin | hydrophilic | 20–40 mg | 5–10 mg | CYP2C9 | |
Simvastatin | lipophilic | 20–40 mg | 10 mg | CYP3A4 |
Study Type | Findings in Statin Use Group | Results | References |
---|---|---|---|
Meta-analysis | Decrease risks and mortality of endometrial cancer. | Risk: RR = 0.81, 95% CI 0.70 to 0.94; OS: HR = 0.71, 95% CI 0.64 to 0.80. | [45] |
Meta-analysis | Decrease mortality of endometrial cancer. | Mortality: HR = 0.80, 95% CI, 0.66 to 0.95. | [46] |
Meta-analysis | No protective effect on endometrial cancer. | Risk: RR = 0.88, 95% CI 0.78 to 1.00; long-term use (>5 years) RR = 0.79, 95% CI 0.58 to 1.08. | [47] |
Meta-analysis | No protective effect on endometrial cancer. | Risk: RR = 0.94, 95% CI 0.82 to 1.07. | [48] |
Cohort study | No protective effect on endometrial cancer. | HR = 0.67, 95% CI: 0.39 to 1.17. | [49] |
Cohort study | No protective effect on survival in endometrial cancer. | Mortality: Type I HR 0.92, 95% CI 0.70 to 1.2; type II HR = 0.92, 95%CI 0.65 to 1.29. | [50] |
Cohort study | No protective effect on endometrial cancer. | Risk: HR = 0.83, 95% CI 0.64 to 1.08. | [51] |
Cohort study | No protective effect on endometrial cancer. | Recurrence-free survival (82% vs. 83%); disease-specific survival (86% vs. 84%); and OS (77% vs. 75%). | [52] |
Cohort study | Decrease mortality of endometrial cancer. | Mortality: HR = 0.41, 95% CI 0.20 to 0.82. | [53] |
Cohort study | Decrease mortality of endometrial cancer. | Mortality: HR = 0.80, 95% CI, 0.74 to 0.88. | [3] |
Cohort study | Improve DSS of endometrial cancer, especially concurrent use with aspirin. | DSS: HR 0.63, 95% CI 0.40 to 0.99; concurrent use with aspirin HR 0.25, 95% CI 0.09 to 0.70. | [54] |
Cohort study | Improve OS and PFS of hyperlipidaemic high-grade endometrial cancer. | Mortality: HR = 0.42, 95% CI, 0.20 to 0.87; PFS: HR = 0.47, 95% CI 0.23 to 0.95. | [55] |
Cohort study | Decrease mortality of endometrial cancer. | Mortality: continuing user HR = 0.70, 95% CI 0.53 to 0.92; new users HR = 0.43, 95% CI 0.29 to 0.65. | [56] |
Cohort study | Decrease mortality of type I endometrial cancer and statin new user. | Mortality: type I HR = 0.87, 95% CI 0.76 to 1.00; hydrophilic statins HR = 0.84, 95% CI 0.68 to 1.03; new user HR = 0.75, 95% CI 0.59 to 0.95. | [57] |
Cohort study | Decrease risks of endometrial cancer. | Risk: HR = 0.74, 95% CI 0.59 to 0.94. | [58] |
Study Type | Findings in Statin Use Group | Results | References |
---|---|---|---|
Meta-analysis | No association with risks but decreased mortality of ovarian cancer. | Risk: RR = 0.92, 95% CI 0.85 to 1.00; OS: HR = 0.78, 95% CI 0.73 to 0.83. | [45] |
Meta-analysis | No protective effect on ovarian cancer. | Risk: RR = 0.88, 95% CI 0.76 to 1.03; long-term use (>5 years) RR = 0.73, 95% CI 0.51 to 1.04. | [47] |
Meta-analysis | No protective effect on ovarian cancer, regardless of the statin type, tumor histotypes: serous and clear cells, and long-term user. | Risk: lipophilic RR = 0.88, 95% CI 0.69 to 1.12; hydrophilic RR = 1.06, 95% CI 0.72 to 1.57), histotypes of cancer (serous: RR: 0.95, 95% CI 0.69 to 1.30; clear cells: RR = 1.17, 95% CI 0.74 to 1.86), and long-term user (RR = 0.77, 95% CI 0.54 to 1.10). | [59] |
Meta-analysis | No association with risks but decreased mortality in ovarian cancer. | Risk: RR = 0.88, 95% CI 0.75 to 1.03; OS: RR = 0.76, 95% CI 0.67 to 0.86. | [60] |
Meta-analysis | Decrease risks of ovarian cancer, especially in long-term use group. | Risk: RR = 0.79, 95% CI 0.64 to 0.98; long-term use (>5 years) RR = 0.48, 95% CI 0.28 to 0.80. | [61] |
Meta-analysis | Improve OS and decrease cancer-specific mortality in ovarian cancer. | Mortality: HR = 0.74, 95%CI 0.63 to 0.87; cancer-specific mortality (HR = 0.87, 95% CI 0.80 to 0.95. | [62] |
Meta-analysis | Decrease mortality of ovarian cancer. | Mortality: HR = 0.76, 95% CI: 0.68–0.85. | [63] |
Meta-analysis | * Decrease ovarian cancer risks in genetically proxied HMG-CoA reductase inhibition population as well as in BRCA1/2 carrier. | Risk: OR = 0.60, 95% CI 0.43 to 0.83; BRCA1/2 carrier HR = 0.69, 95% CI 0.51 to 0.93. | [64] |
Cohort study | No protective effect on ovarian cancer. | Risks: HR = 0.69, 95% CI 0.32–1.49. | [49] |
Case-control study | No protective effect on ovarian cancer. | Risks: OR = 0.98, 95% CI 0.87 to 1.10. | [65] |
Case-control study | No protective effect on ovarian cancer. | Risks: HR = 0.99, 95% CI 0.78 to 1.25. | [66] |
Cohort study | Increase the risk of ovarian cancer, especially in pravastatin user. | Risks: HR = 1.30, 95% CI 1.04 to 1.62; pravastatin HR = 1.89, 95% CI 1.24 to 2.88. | [58] |
Cohort study | No protective effect on ovarian cancer. | Mortality: HR = 0.57, 95% CI 0.21–1.51 | [67] |
Cohort study | No protective effect on ovarian cancer | Mortality: HR = 0.90, 95% CI 0.78 to 1.04. | [68] |
Cohort study | No protective effect on ovarian cancer, neither in lipophilic nor hydrophilic statins. | Mortality: HR = 0.90, 95% CI 0.70 to 1.15; lipophilic statins HR = 0.82, 95% CI 0.61 to 1.11; hydrophilic statins HR = 1.04, 95% CI 0.72 to 1.49. | [69] |
Cohort study | No protective effect on ovarian cancer with hyperlipidemia, but the mortality was decreased in non-serous-papillary subtypes. | Mortality: hyperlipidemia HR = 0.80, 95% CI 0.50 to 1.29; non-serous-papillary subtypes HR = 0.23, 95% CI 0.05 to 0.96. | [70] |
Cohort study | Decrease mortality of ovarian cancer | Mortality: HR = 0.45, 95% CI 0.23 to 0.88. | [71] |
Cohort study | Decrease mortality of ovarian cancer | Mortality: HR = 0.47, 95% CI 0.26 to 0.85. | [72] |
Cohort study | Decrease mortality of ovarian cancer | Mortality: HR = 0.81, 95% CI 0.72 to 0.90. | [73] |
Cohort study | Decrease mortality of ovarian cancer | Mortality: HR = 0.74, 95% CI 0.61 to 0.91. | [74] |
Cohort study | Decreases ovarian cancer mortality, both in serous and non-serous types. | Mortality: HR = 0.66, 95% CI 0.55 to 0.81; serous type HR = 0.69, 95% CI 0.54 to 0.87; non-serous type HR = 0.63, 95% CI 0.44 to 0.90. | [75] |
Cohort study | Decrease mortality in all patients and in those who were serous type. | Mortality: HR = 0.76, 95% CI 0.64 to 0.89; serous type HR = 0.80, 95%CI 0.67 to 0.96. | [76] |
Study Type | Findings in Statin Use Group | Results | References |
---|---|---|---|
Cohort study | Decrease risks of cervical cancer; decrease mortality in total gynecological cancer. | Risk: HR = 0.83 (95% CI 0.67 to 0.99; total gynecological cancer HR = 0.70, 95% CI 0.50 to 0.98. | [77] |
Cohort study | Decrease mortality of cervical cancer | Progression-free survival: HR = 0.062, 95% CI 0.008 to 0.517; overall survival: HR = 0.098, 95% CI 0.041–0.459. | [78] |
Treatment | Experiments | Cell Lines | Effects of Statins | Pathway/Mechanism | References |
---|---|---|---|---|---|
Simvastatin | in vitro | ECC-1 and Ishikawa | Anti-proliferative and anti-metastatic effects. | MAPK pathway. | [79] |
Simvastatin + metformin | in vitro | RL95-2, HEC-1B, and Ishikawa | Induce apoptosis; synergized with metformin. | Bim, AMPK/S6. | [80] |
Lovastatin and simvastatin | in vitro | A2780, UCI 101, Ishikawa, and HeLa | Induce apoptosis. | [81] | |
Lovastatin and Pravastatin | in vitro and in vivo | SKOV3 | Anti-metastatic effects, reduce peritoneal dissemination. | RhoA. | [82] |
Lovastatin and atorvastatin | in vitro | Hey 1B and Ovcar-3 | Induce apoptosis. | JNK/Rac1/Cdc42. | [83] |
Lovastatin + doxorubicin | in vitro | A2780 | Induced apoptosis; synergized with doxorubicin. | [84] | |
Lovastatin | in vitro and in vivo | SKOV3 and OVCAR5, mogp-TAg mice | Anti-tumor growth and induce autophagy. | [85] | |
Simvastatin | in vitro and in vivo | RMG-1 and TOV-21G | Induce apoptosis and anti-tumor growth. | Osteopontin (OPN). | [86] |
Simvastatin, atorvastatin, rosuvastatin, lovastatin, fluvastatin, pravastatin | in vitro | A2780, Igrov-1, SKOV-3, Ovcar-4, Ovcar-5 and Ovcar-8 | Induce apoptosis; both activate and block the autophagy. Lipophilic statins were more potent than hydrophilic statins. | Rab7/p62/LC3-II. | [87] |
simvastatin | in vitro and in vivo | SKOV3, OVCAR3, and ID8 | Induce apoptosis and inhibit tumor growth. | [88] | |
simvastatin | in vitro and in vivo | Hey, SKOV3, and KpB mice | Anti-metastatic and anti-tumorigenic effects. | MAPK and AKT/mTOR. | [89] |
Atorvastatin, fluvastatin, simvastatin | in vitro | CaSki, HeLa, and ViBo | Induce apoptosis. | [90] | |
simvastatin + paclitaxel | in vitro and in vivo | SiHa, C33A, HeLa, and ViBo | Induce apoptosis and inhibit tumor growth; synergized with paclitaxel. | Raf, ERK1/2, Akt, mTOR, and prenylated Ras. | [91] |
Atorvastatin | in vitro and in vivo | SiHa and Caski | Induce apoptosis and autophagy and inhibit tumor growth. | AMPK, Akt/mTOR. | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.-H.; Liu, C.-H.; Ding, D.-C. Statins as Repurposed Drugs in Gynecological Cancer: A Review. Int. J. Mol. Sci. 2022, 23, 13937. https://doi.org/10.3390/ijms232213937
Wang K-H, Liu C-H, Ding D-C. Statins as Repurposed Drugs in Gynecological Cancer: A Review. International Journal of Molecular Sciences. 2022; 23(22):13937. https://doi.org/10.3390/ijms232213937
Chicago/Turabian StyleWang, Kai-Hung, Chin-Hung Liu, and Dah-Ching Ding. 2022. "Statins as Repurposed Drugs in Gynecological Cancer: A Review" International Journal of Molecular Sciences 23, no. 22: 13937. https://doi.org/10.3390/ijms232213937
APA StyleWang, K. -H., Liu, C. -H., & Ding, D. -C. (2022). Statins as Repurposed Drugs in Gynecological Cancer: A Review. International Journal of Molecular Sciences, 23(22), 13937. https://doi.org/10.3390/ijms232213937