Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber (Cucumis sativus L.)
Abstract
:1. Introduction
2. Results
2.1. Changes in the Key Environmental Factors in the Plastic Tunnel
2.2. Changes in Fruit Shape and Size during the Fruit Development
2.3. Changes of Fruit Cell Shape in NILs
2.4. The Relative Expression of Genes Related to Fruit Shape
2.5. The Relationship between Cell Size and Fruit Shape and Size
2.6. The Relationship between Gene Expression and Fruit Increment
2.7. The Correlation between Key Environmental Factors and Fruit Shape and Size Increment
2.8. Logistic Regression of the Fruit Shape Based on TEP
2.9. Validation of the Model
3. Discussion
3.1. Cell Division and Expansion in Fruit Shape and Size Morphogenesis
3.2. Effects of Genetic and Environmental Factors on Cucumber Fruit Development
3.3. The Number of Days Needed for the Fruit of Commercial Maturity
4. Material and Methods
4.1. Plant Materials
4.2. Field Experiments
4.3. Methods
4.3.1. Data Collection about the Key Environmental Factors
4.3.2. Measurement of Fruit Length, Diameter and Volume
4.3.3. Measurement of Cell Size during Cucumber Fruit Development
4.3.4. qRT-PCR
4.3.5. Calculation of the Accumulated TEP
4.3.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TEP | thermal effectiveness and photosynthetic active radiation |
QTLs | quantitative trait locus |
Dpa | days post anthesis |
NIL | near-isogenic line |
TE | thermal effectiveness |
PAR | photosynthetic active radiation |
RMSE | root mean squared error |
References
- Ingrassia, M.; Sgroi, F.; Tudisca, S.; Chironi, S. Study of Consumer Preferences in Regard to the Blonde Orange Cv. Washington Navel “Arancia Di Ribera PDO”. J. Food Prod. Mark. 2017, 23, 799–816. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Fanwoua, J.; de Visser, P.H.B.; Heuvelink, E.; Yin, X.; Struik, P.C.; Marcelis, L.F.M. A dynamic model of tomato fruit growth integrating cell division, cell growth and endoreduplication. Funct. Plant Biol. 2013, 40, 1098–1114. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wei, C.; Liu, Q.; Qu, W.; Qi, X.; Xu, Q.; Chen, X. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. Plant Biotechnol. J. 2020, 18, 1598–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colle, M.; Weng, Y.; Kang, Y.; Ophir, R.; Sherman, A.; Grumet, R. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta 2017, 246, 641–658. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Liu, C.; Ding, Y.; Wang, X.; Cheng, Z.; Meng, H. Cucumber Fruit Size and Shape Variations Explored from the Aspects of Morphology, Histology, and Endogenous Hormones. Plants 2020, 9, 772. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Hofman-Eijer, L.R.B. Cell division and expansion in the cucumber fruit. J. Hortic. Sci. 1993, 68, 665–671. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, L.; Che, G.; Pan, Y.; Li, Y.; Hou, Y.; Zhao, W.; Zhong, Y.; Ding, L.; Yan, S.; et al. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber. Plant Cell 2019, 31, 1289–1307. [Google Scholar] [CrossRef]
- Wang, L.; Cao, C.; Zheng, S.; Zhang, H.; Liu, P.; Ge, Q.; Li, J.; Ren, Z. Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Sci. Rep. 2017, 7, 2950. [Google Scholar] [CrossRef]
- Pan, Y.; Liang, X.; Gao, M.; Liu, H.; Meng, H.; Weng, Y.; Cheng, Z. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor. Appl. Genet. 2017, 130, 573–586. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Keyhaninejad, N.; Rodríguez, G.R.; Kim, H.J.; Chakrabarti, M.; Illa-Berenguer, E.; Taitano, N.K.; Gonzalo, M.J.; Díaz, A.; et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat. Commun. 2018, 9, 4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, G.; Zhang, X. Molecular basis of cucumber fruit domestication. Curr. Opin. Plant Biol. 2019, 47, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Xin, T.; Zhang, Z.; Li, S.; Zhang, S.; Li, Q.; Zhang, Z.-H.; Huang, S.; Yang, X. Genetic Regulation of Ethylene Dosage for Cucumber Fruit Elongation. Plant Cell 2019, 31, 1063–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Zhang, H.; Cao, C.; Han, J.; Li, H.; Ren, Z. QTL Mapping for Cucumber Fruit Size and Shape with Populations from Long and Round Fruited Inbred Lines. Hortic. Plant J. 2020, 6, 132–144. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Qin, X.; Zhang, Y.; Zhang, Z.; Wang, J.; Li, J.; Lou, Q.; Chen, J. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom. 2014, 15, 1158. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Colle, M.; Wang, Y.; Yang, L.; Rubinstein, M.; Sherman, A.; Ophir, R.; Grumet, R. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor. Appl. Genet. 2015, 128, 1747–1763. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Yang, Y.; Guo, X.; Feng, Q.; Dong, X.; Chen, S. Genetic analysis and QTL mapping of fruit length and diameter in a cucumber (Cucumber sativus L.) recombinant inbred line (RIL) population. Sci. Hortic. 2019, 250, 214–222. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-Regulated Plant Growth and Development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Léchaudel, M.; Joas, J. An overview of preharvest factors influencing mango fruit growth, quality and postharvest behaviour. Braz. J. Plant Physiol. 2007, 19, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Warrington, I.; Fulton, T.; Halligan, E.; De Silva, H. Apple Fruit Growth and Maturity are Affected by Early Season Temperatures. J. Am. Soc. Hortic. Sci. 1999, 124, 468–477. [Google Scholar] [CrossRef]
- Ali, A.; Kelly, W. Effect of pre-anthesis temperature on the size and shape of sweet pepper (Capsicum annuum L.) fruit. Sci. Hortic. 1993, 54, 97–105. [Google Scholar] [CrossRef]
- Dorais, M.; Gosselin, A.; Trudel, M.J. Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Sci. Hortic. 1991, 45, 225–234. [Google Scholar] [CrossRef]
- Uzun, S. Effect of light and temperature on the phenology and maturation of the fruit of eggplant (Solanum melongena) grown in greenhouses. N. Z. J. Crop Hortic. Sci. 2007, 35, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Izzo, L.G. Increasing efficiency of crop production with LEDs. AIMS Agric. Food 2018, 3, 135–153. [Google Scholar] [CrossRef]
- Palmitessa, O.; Pantaleo, M.; Santamaria, P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy 2021, 11, 835. [Google Scholar] [CrossRef]
- Zhou, T.-M.; Wu, Z.; Wang, Y.-C.; Su, X.-J.; Qin, C.-X.; Huo, H.-Q.; Jiang, F.-L. Modelling seedling development using thermal effectiveness and photosynthetically active radiation. J. Integr. Agric. 2019, 18, 2521–2533. [Google Scholar] [CrossRef]
- Boudon, F.; Persello, S.; Jestin, A.; Briand, A.-S.; Grechi, I.; Fernique, P.; Guédon, Y.; Léchaudel, M.; Lauri, P.; Normand, F. V-Mango: A functional–structural model of mango tree growth, development and fruit production. Ann. Bot. 2020, 126, 745–763. [Google Scholar] [CrossRef]
- Fishman, S.; Génard, M. Biophysical model of fruit growth: Simulation of seasonal and diurnal dynamics of mass. Plant Cell Environ. 2010, 21, 739–752. [Google Scholar] [CrossRef]
- Lescourret, F.; Génard, M.; Habib, R.; Pailly, O. Pollination and fruit growth models for studying the management of kiwifruit orchards. II. Models behaviour. Agric. Syst. 1998, 56, 91–123. [Google Scholar] [CrossRef]
- Bepete, M.; Lakso, A. Apple fruit respiration in the field: Relationships to fruit growth rate, temperature, and light exposure. Acta Hortic. 1997, 451, 319–326. [Google Scholar] [CrossRef]
- Riga, P. Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Hortic. Environ. Biotechnol. 2015, 56, 626–638. [Google Scholar] [CrossRef]
- Chang, L.-Y.; He, S.-P.; Liu, Q.; Xiang, J.-L.; Huang, D.-F. Quantifying muskmelon fruit attributes with A-TEP-based model and machine vision measurement. J. Integr. Agric. 2018, 17, 1369–1379. [Google Scholar] [CrossRef]
- Li, Y.; Luo, W.; Ni, J.; Chen, Y.; Xu, G.; Jin, L.; Dai, J.; Chen, C. Simulation of leaf area, photosynthetic rate and dry matter production in greenhouse cucumber based on product of thermal effectiveness and photosynthetically active radiation. Trans. CSAE 2005, 21, 131–136. [Google Scholar]
- Ando, K.; Grumet, R. Transcriptional Profiling of Rapidly Growing Cucumber Fruit by 454-Pyrosequencing Analysis. J. Am. Soc. Hortic. Sci. 2010, 135, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.Q.; Mao, W.H.; Shi, K.; Zhou, Y.H.; Asami, T.; Yu, J.Q. A role of brassinosteroids in early fruit development in cucumber. J. Exp. Bot. 2008, 59, 2299–2308. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, Y.; Jiang, W.J.; Liu, X.L.; Zhang, X.M.; Yu, H.J.; Huang, S.W.; Liu, G.Q. Characterization and expression profiling of cucumber kinesin genes during early fruit development: Revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. J. Exp. Bot. 2013, 64, 4541–4557. [Google Scholar] [CrossRef] [Green Version]
- Dahan, Y.; Rosenfeld, R.; Zadiranov, V.; Irihimovitch, V. A proposed conserved role for an avocado fw2.2-like gene as a negative regulator of fruit cell division. Planta 2010, 232, 663–676. [Google Scholar] [CrossRef]
- Corelli, L.; Lakso, A.N. Fruit development in deciduous tree crops as affected by physiological factors and environmental conditions. Acta Hortic. 2004, 636, 425–441. [Google Scholar] [CrossRef]
- Zamljen, T.; Zupanc, V.; Slatnar, A. Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agric. Water Manag. 2020, 234, 106104. [Google Scholar] [CrossRef]
- Chen, G.; Wiatrak, P. Soybean Development and Yield Are Influenced by Planting Date and Environmental Conditions in the Southeastern Coastal Plain, United States. Agron. J. 2010, 102, 1731–1737. [Google Scholar] [CrossRef]
- Kim, H.J.; Jung, H.H.; Kim, K.S. Influence of photoperiod on growth and flowering of dwarf purple loosestrife. Hortic. Environ. Biotechnol. 2011, 52, 1–5. [Google Scholar] [CrossRef]
- Rajasekar, M.; Arumugam, T.; Kumar, S. Influence of weather and growing environment on vegetable growth and yield. J. Hortic. For. 2013, 1, 160–167. [Google Scholar] [CrossRef]
- Alsadon, A.; Al-Helal, I.; Ibrahim, A.; Abdel-Ghany, A.; Al-Zaharani, S.; Ashour, T. The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growth. Ecol. Eng. 2016, 87, 305–312. [Google Scholar] [CrossRef]
- Hao, X.; Papadopoulos, A.P. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Sci. Hortic. 1999, 80, 1–18. [Google Scholar] [CrossRef]
- Beyaert, R.P.; Roy, R.C.; Coelho, B.R.B. Irrigation and fertilizer management effects on processing cucumber productivity and water use efficiency. Can. J. Plant Sci. 2007, 87, 355–366. [Google Scholar] [CrossRef]
- Souri, M.K.; Sooraki, F.Y.; Moghadamyar, M. Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Hortic. Environ. Biotechnol. 2017, 58, 530–536. [Google Scholar] [CrossRef]
- Guidarelli, M.; Carbone, F.; Mourgues, F.; Perrotta, G.; Rosati, C.; Bertolini, P.; Baraldi, E. Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathol. 2011, 60, 685–697. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Xiangxiang, W.; QuanJiu, W.; Jun, F.; Lijun, S.; Xinlei, S. Logistic model analysis of winter wheat growth on China’s Loess Plateau. Can. J. Plant Sci. 2014, 94, 1471–1479. [Google Scholar] [CrossRef]
- Nijssen, B.; O’Donnell, G.M.; Lettenmaier, D.P.; Lohmann, D.; Wood, E. Predicting the Discharge of Global Rivers. J. Clim. 2001, 14, 3307–3323. [Google Scholar] [CrossRef]
Genes | Fruit Length Increment | Fruit Diameter Increment | Cell Length Increment | Cell Diameter Increment | Fruit Length Increment | Fruit Diameter Increment | Cell Length Inreament | Cell Diameter Increment |
---|---|---|---|---|---|---|---|---|
Ln35 | Ln37 | |||||||
CsACS2 | 0.726 * | 0.656 * | 0.363 | 0.202 | 0.521 | 0.410 | 0.816 ** | 0.377 |
CsFLU | 0.038 | −0.028 | −0.542 | −0.473 | −0.037 | −0.131 | 0.076 | −0.107 |
CsSUN | −0.323 | −0.284 | −0.353 | −0.291 | −0.324 | −0.272 | −0.178 | −0.176 |
CsFNL | −0.328 | −0.354 | −0.453 | −0.311 | −0.277 | −0.337 | −0.291 | −0.285 |
CsLNG | 0.651 * | 0.547 | 0.506 | 0.686 * | −0.243 | −0.217 | −0.198 | −0.374 |
CsSUP | −0.549 | −0.578 | −0.450 | −0.366 | −0.451 | −0.484 | −0.278 | −0.055 |
Fruit Length | Fruit Diameter | Fruit Length | Fruit Diameter | |
---|---|---|---|---|
Ln35 | Ln37 | |||
TE | 0.967 ** | 0.96 ** | 0.969 ** | 0.953 ** |
PAR | 0.918 ** | 0.907 ** | 0.924 ** | 0.899 ** |
Fruit Traits | Modle | R2 | F | P | RMSE | |
---|---|---|---|---|---|---|
Fruit length | Ln35 | y = 1/(0.005 + 0.930 × 0.832x) | 0.977 | 205.866 | 0 | 12.012 |
Ln37 | y = 1/(0.013 + 0.991 × 0.856x) | 0.976 | 200.464 | 0 | 5.17 | |
Fruit diameter | Ln35 | y = 1/(0.016 + 1.384 × 0.863x) | 0.960 | 117.786 | 0 | 4.338 |
Ln37 | y = 1/(0.014 + 1 × 0.859x) | 0.987 | 422.541 | 0 | 7.082 | |
Fruit volume | Ln35 | y = 1/(0.002 + 522.51 × 0.708x) | 0.981 | 261.447 | 0 | 43.07 |
Ln37 | y = 1/(0.004 + 593.002 × 0.712x) | 0.987 | 418.87 | 0 | 19.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Hong, Y.; Zhang, X.; Yuan, X.; Chen, S. Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber (Cucumis sativus L.). Int. J. Mol. Sci. 2022, 23, 14033. https://doi.org/10.3390/ijms232214033
Zhang T, Hong Y, Zhang X, Yuan X, Chen S. Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber (Cucumis sativus L.). International Journal of Molecular Sciences. 2022; 23(22):14033. https://doi.org/10.3390/ijms232214033
Chicago/Turabian StyleZhang, Tingting, Yuanyuan Hong, Xuan Zhang, Xin Yuan, and Shuxia Chen. 2022. "Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber (Cucumis sativus L.)" International Journal of Molecular Sciences 23, no. 22: 14033. https://doi.org/10.3390/ijms232214033
APA StyleZhang, T., Hong, Y., Zhang, X., Yuan, X., & Chen, S. (2022). Relationship between Key Environmental Factors and the Architecture of Fruit Shape and Size in Near-Isogenic Lines of Cucumber (Cucumis sativus L.). International Journal of Molecular Sciences, 23(22), 14033. https://doi.org/10.3390/ijms232214033