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Abstract: Many proteins and protein segments cannot attain a single stable three-dimensional structure
under physiological conditions; instead, they adopt multiple interconverting conformational states. Such
intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are
involved in various effector functions. This review focuses on different aspects of disordered proteins
and disordered protein regions, which form the basis of the so-called “Disorder–function paradigm” of
proteins. Additionally, various experimental approaches and computational tools used for characterizing
disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their
utility as potential drug targets are explored.
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1. Introduction

The functional aspects of genes have been attributed to RNAs and proteins. Of the two,
proteins are the ones that bring about the majority of diverse cellular effector functions. Two
paradigms concerning the structure and function of proteins have evolved, as shown in
Figure 1 [1–6]. The first paradigm corresponds to the well-established, often assumed as the
default for proteins, ‘structure–function paradigm’, which states that the three-dimensional
native structure under physiological conditions is the prerequisite for a protein to function.
The second paradigm is the recently established ‘disorder–function paradigm’ based on
the proteins that perform cellular functions without attaining a stable three-dimensional
structure under physiological conditions [7]. The naturally occurring, biologically active
proteins that appear to possess a high degree of conformational flexibility have been
referred to as intrinsically disordered proteins (IDPs) [5,8–10]. In most instances, instead of
the whole protein, only some regions in the protein are disordered and functional; such
protein segments are known as intrinsically disordered regions (IDRs) [11–14]. Interestingly,
these intrinsically disordered proteins/regions have endowed proteins with functional
promiscuity [15–18].

1.1. Structure–Function Paradigm

In the early stages, protein research was focused on studying globular (ordered)
proteins; therefore, the principles laid to explain the protein structures were more specific to
globular proteins. These fundamentals defining the protein structures received continuous
experimental support throughout the 20th century from the multitude of protein structures
submitted to repositories, such as that of the Protein Data Bank (PDB) [19]. There was
no doubt about the relatedness of the protein structure and function. Hence, the central
philosophy of structural biology was described as follows: “a protein requires a native
folded structure to perform its biological function”.
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Figure 1. The two paradigms of protein structure and function. According to the well-established 
‘structure–function paradigm’, a three-dimensional native structure under physiological conditions 
is vital for a protein to perform its biological function (for example, enzyme-catalyzed reactions). 
The more recent ‘disorder–function paradigm’ states that a protein can carry out its biological func-
tion without attaining a 3-D stable folded structure under physiological conditions (for example, 
protein binding to other cellular molecules). For representative purpose, residues coding for or-
dered/globular domains are shown in ‘green’ color, and residues coding for disordered pro-
teins/segments are shown in ‘red’. At the proteome level, the structured domains and intrinsically 
disordered regions (IDRs) are two functional building blocks of proteins. 
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flexibility. This “static” view of protein function was supported by one of the best-under-
stood protein functions, catalysis [20]. This static view of proteins led to the assumption 
that the complementarity of shapes at the binding interface and the emerging non-cova-
lent forces between molecules are the major drivers of interactions involving proteins [21]. 
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Figure 1. The two paradigms of protein structure and function. According to the well-established
‘structure–function paradigm’, a three-dimensional native structure under physiological conditions is
vital for a protein to perform its biological function (for example, enzyme-catalyzed reactions). The
more recent ‘disorder–function paradigm’ states that a protein can carry out its biological function
without attaining a 3-D stable folded structure under physiological conditions (for example, protein
binding to other cellular molecules). For representative purpose, residues coding for ordered/globular
domains are shown in ‘green’ color, and residues coding for disordered proteins/segments are shown
in ‘red’. At the proteome level, the structured domains and intrinsically disordered regions (IDRs)
are two functional building blocks of proteins.

Proteins were initially considered as rigid, crystal-like biological molecules with
no flexibility. This “static” view of protein function was supported by one of the best-
understood protein functions, catalysis [20]. This static view of proteins led to the as-
sumption that the complementarity of shapes at the binding interface and the emerging
non-covalent forces between molecules are the major drivers of interactions involving
proteins [21]. After Koshland proposed the “induced-fit model” of catalysis, the theory
of presence of some degree of flexibility in protein structures to carry out their biological
functions was accepted [22].

The three-dimensional native structure of a protein, which is at the center of the
structure–function paradigm, is encrypted in the protein’s amino acid sequence and is
governed by the intricate balance of various physical forces between its atoms [23]. Phys-
ical forces include strong covalent (peptide/amide) bonds, which connect atoms of the
polypeptide sequence, and weaker attractive/repulsive forces between non-bonded atoms.
All of these fundamental interactions act coherently and assist a polypeptide in attaining a
well-defined three-dimensional structure under physiological conditions. A unique 3-D
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structure of a protein ensures a precise spatial arrangement of residues, which provides a
particular physicochemical microenvironment required for the extremely specific catalysis
of chemical reactions, binding of ligands, ion or small molecule translocation, or macro-
molecular complex assembly [24]. Along with the deposition of a large number of protein
structures into the PDB, the availability of the mechanistic details of a protein’s functions,
such as enzyme catalysis, receptors, transporters, membrane channels, etc., also helped the
acceptance of the structure–function paradigm. However, with increasing reports of the
structural/functional data deviating from the classical structure–function paradigm, there
was a need to reassess this well-established paradigm, which, in turn, led to the proposition
of the disorder–function paradigm.

1.2. Disorder–Function Paradigm

The early recognition of the significance of protein structures in their functioning is
generally considered the prime reason for the prolonged negligence of protein disorder.
Unusual behavior of proteins, such as missing electron density in the PDB structures, in-
creased sensitivity to in vitro proteolysis, peculiar behavior during the purification process,
etc., has always been observed, but in the light of the classical structure–function paradigm,
these observations were initially considered as artifacts. This “dark side” of structural biol-
ogy underwent an intensive reassessment against the backdrop of proteins’ considerable
inherent flexibility and peculiar properties, and resulted in the recognition of the intrinsic
structural disorder of proteins as a standard feature across proteomes. Altogether, the
widespread occurrence of intrinsically disordered proteins or protein segments and their
functional relevance has led to the introduction of a new generalization with respect to the
protein structure and function, i.e., the ‘disorder–function paradigm’.

Intrinsically disordered proteins (IDPs) or regions (IDRs) remain unfolded and carry
out their biological role under physiological conditions [25]. Just as in the case of or-
dered/globular proteins, the structural organizations of IDPs/IDRs are also governed by
the same physical forces, albeit with some differences in their balance and emerging protein
structure dynamics [26]. Most of the early concepts regarding the structure of IDPs/IDRs
came from the unfolding/folding reaction studies of globular proteins. At the level of
genome organization, large proportions of gene sequences have also been observed to code
for functional long amino acid stretches, which most likely either attain a non-globular
conformation or exist as unfolded entities in solution as IDPs/IDRs [27].

Over the years, our understanding of the protein structure and function has increased
tremendously. However, with the increasing reports of the involvement of protein disorder
in carrying out cellular functions and the development of computational tools to predict
disordered residues of proteins, there has been an exponential increase in interest in studying
IDPs/IDRs. This review article summarizes various features of intrinsically disordered
proteins/regions that form the basis of this newly established ‘disorder–function paradigm’.

2. Intrinsic Protein Disorder

Repeated occurrences of proteins with intrinsic flexibility and properties different
from those of ordered/globular proteins gradually resulted in the development of the
notion that non-rigid proteins are not exceptions. Around 2000, these naturally flexible
proteins were accepted as a general category of proteins [27–30]. The conformational flexi-
bility of these “non-traditional” proteins was proposed to be the source of their biological
functions [31]. Over the years, various terms have been introduced by different authors to
describe these proteins with inherent flexibility. It was only in recent years that the phrase
“intrinsically disordered proteins” (IDPs) became more widely used than other terms [28].
Most acceptably, “intrinsic protein disorder” defines the biologically active proteins or
protein segments that exist as ensembles of unfolded, collapsed, extended, non-globular
conformations at the secondary or tertiary structural level [27–30,32,33].
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2.1. Natural Abundance of Intrinsically Disordered Proteins

Information about IDPs was very sparse for a very long time. Until the reports on the
experimentally characterized IDPs, it appeared improbable to have such a class of proteins
in abundance [34]. However, computational predictions revealed the possible widespread
occurrence of IDPs and IDRs [35–37]. The exhaustive analysis of 31 genomes spanning
three kingdoms of life revealed that a considerable number of proteins contain regions with
40 or more consecutive disordered residues [28]. The proportion of structural disorder was
also found to increase progressively with genome complexity, from bacteria to archaea,
and then to eukaryotes [28,38]. While 33% of eukaryotic proteins have been reported to
contain at least one functionally relevant long (>30 residues) intrinsically disordered region,
archaean and eubacterial proteins possess only 2.0% and 4.2% of such functional IDRs,
respectively [36]. In viral proteomes, the total intrinsic disorder content is determined by
the nature of the nucleic acid constituting the viral genome, and it decreases successively
with an increase in the size of the viral proteome [39]. Recently, 3133 unique proteins
were experimentally validated to contain functional long disordered regions (at least
30 residues) [40]. Additionally, the degree of disorderedness in proteomes and essential
proteins was estimated for various genomes, and a sharp increase was observed at the
prokaryote/eukaryote boundary [41]. Thus, the natural abundance of disordered proteins
or protein segments across complex genomes suggests that, even though IDPs/IDRs fail to
attain stable three-dimensional structures under physiological conditions, they are of high
functional pertinence [27–30,42–47].

2.2. Sequence Characteristics of Intrinsically Disordered Proteins

The propensity of a protein or protein segment to fold or remain unfolded under
physiological conditions is encrypted in its amino acid sequence [28,30,32,33,45,46]. In
other words, the amino acid sequence composition determines whether a protein would be
an ordered protein with a stable folded 3-D structure or an unfolded intrinsically disordered
protein. Strong electrostatic repulsions due to a higher net charge and a lack of driving
force for compaction due to low mean hydrophobicity are generally considered as the
prime reasons for the unfolded, extended structure of IDPs/IDRs [45].

An in-depth comparative analysis of the sequence composition of ordered and dis-
ordered proteins revealed that residues such as Ala, Arg, Gly, Gln, Glu, Lys, Pro, and
Ser (referred to as disorder-promoting residues) occurred more frequently in IDPs/IDRs.
In contrast, residues such as Asn, Cys, Ile, Leu, Phe, Val, Trp, and Tyr were more com-
mon in the ordered/structured segments of the proteins (referred to as order-promoting
residues) [28,48–50]. Comparative studies of amino acid residues in disordered and or-
dered regions, physicochemical property-based scales (such as the coordination number,
aromaticity, strand propensities, flexibility index, volume, helix propensities, etc.), and
composition-based features (e.g., any combination that has one to four residues in the group)
have led to the distinction between disordered and ordered regions in proteins [28,50].
Compositional bias and sequence characteristics play a significant role in defining the
interactions of disordered proteins/regions [51,52]. Furthermore, the distinct composi-
tional bias of the intrinsically disordered proteins/regions as compared with the ordered
proteins/regions forms the basis for developing many disorder-predicting computational
tools. For instance, tools involving the alignment of IDPs/IDRs use specific amino acid
substitution scoring matrices reflecting the frequency of occurrence of different residues in
the disordered regions of proteins [53–56].

2.3. Structural Aspects of Intrinsically Disordered Proteins

In general, most proteins exist as a combination of both ordered and disordered
segments in different proportions [57–62]. Unlike the ordered regions of proteins, which
exist as stable secondary/tertiary structures, the disordered regions fail to attain a stable
three-dimensional native structure under physiological conditions. However, the structure
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of IDPs/IDRs can be best defined as the ensemble of functionally relevant interconverting
transient structures on a fast time scale.

Several previous studies reported that IDPs/IDRs are enriched with uncharged and polar
amino acids, lacks bulky hydrophobic residues, and exist as dynamic heterogeneous ensembles
of collapsed or extended structures [63–66]. Furthermore, IDPs/IDRs exhibit different degrees
of foldability, ranging from potentially foldable to not foldable at all [59–61,67].

IDPs/IDRs do not possess a precise equilibrium value of the atomic coordinates and
backbone Ramachandran angles over time; as a result, they appear as “protein clouds” [68].
Despite being highly dynamic, the structures of such protein clouds are best described as a
few low-energy conformations [69,70].

In most cases, upon interaction with specific binding partners, a disordered pro-
tein/segment undergoes a disorder to order conformational transition (termed as ‘induced
folding’) [27,28,42–44,47,70–75],. Additionally, a disordered protein can bind to multiple
partners to attain distinct conformations with each of them, which, in turn, enable it to inter-
act with different targets [28,76,77]. Moreover, there is also a “conformational preference”
for the structure attained by IDPs upon binding [78,79]. Post-translational modifications
(PTMs) also enable IDPs/IDRs to attain diverse conformations, thus increasing the total
repertoire of structures resulting from an IDP/IDR sequence [42,72,80–84]. Ensembles of
the conformations resulting from a single sequence make it possible for IDPs to perform
multiple apparently unrelated biological functions (termed as ‘moonlighting’) required for
the maintenance of life [85–89].

2.4. Functional Classification of Intrinsically Disordered Proteins

Several classification schemes have been proposed over the years based on the func-
tions performed by IDPs/IDRs [42,90]. Tompa et al. annotated IDPs/IDRs in six different
functional categories depending on the presence/absence and the strength of the binding
of the disordered proteins/regions to their ligands [29,91]. Later, this stratification was
further extended to define eight functional classes of IDPs, namely entropic chains, modifi-
cation sites, disordered chaperones, molecular effectors, molecular recognition assemblers,
molecular recognition scavengers, metal sponges, and unknown, as shown in Figure 2 [92].
These functional subtypes can be present either alone or in combination within the same
protein if the protein has several disordered regions [59–61]. In the following sections,
different functional classes are described in some detail with relevant examples.

2.4.1. Entropy Chains

Entropic chains take advantage of their conformational flexibility and perform bi-
ological functions without becoming a structured entity [93,94]. Examples of entropic
chains include flexible linkers and spacers [29,91]. Flexible linkers regulate the relative
movement of domains positioned at the two ends of the linkers, whereas spacers specify the
inter-domain distances. In addition to providing a means of distance regulation between
domains/regions within proteins, both flexible linkers and spacers enable extraordinary
freedom for inter-domain orientations. In general, the conformational ensembles generated
through computational simulations and modeling are used to understand the flexibility
and positioning of the domains in multidomain proteins [95].

Several previous studies showed the significance of conformational flexibility for
IDPs/IDRs to function. For instance, a mutation in the flexible linker region connecting light
and heavy chains of multidomain antibody protein reduces the linker’s flexibility, disturbs
the domain’s orientation, and limits their interactions [96]. In another study, disordered
and flexible linker regions of the host proteins have been shown to be the primary targets
of the oncogenic adenoviral Early region 1A (E1A) protein [97]. Replication protein A
subunit (70 kDa) manifests a conserved dynamic behavior regardless of the insignificant
sequence conservation, which is also evidence of the importance of flexibility from the
perspective of functional relevance [98]. The microtubule-associated protein 2 (MAP2)
projection domain facilitates the spacing of cytoskeletal structures by repelling molecules
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that approach microtubules [99]. The disordered regions in the mammalian CIP/KIP
family of proteins act as flexible linkers or spacers, and have a conserved propensity to
remain in the disordered state [100]. Along with the kinetic properties of the binding
partners, the linker flexibility and length are critical factors in determining the processivity
of enzymes [101].
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Figure 2. Functional aspects of IDPs/IDRs. Intrinsically disordered proteins/regions’ functional
classes and elements are described here. The functional class scheme describes eight different
categories into which IDPs/IDRs can be grouped based on their biological function. The different
functional classes include Entropic chains, Modification sites, Disordered chaperones, Molecular
effectors, Molecular recognition assemblers, Molecular recognition scavengers, Metal sponges, and
Unknown. IDPs/IDRs’ functions are mediated mainly through three types of structural elements,
namely Short Linear Motifs (SLiMs), Molecular Recognition Features (MORFs), and Intrinsically
Disordered Domains (IDDS).

2.4.2. Modification Sites

Most of the regulatory and signaling proteins possess IDRs, and the intrinsic flex-
ibility of these regions as display sites affords them an advantage over ordered re-
gions [10,13,36,59,90]. Furthermore, the prevalence of charged side chains and low-
complexity regions in the disordered proteins facilitates their multivalent electrostatic
interactions with the charged lipid head groups in the membranes. Thus, both the
composition of membranes and the disorderedness of IDPs/IDRs fine-tune the signaling
pathways [102]. In several independent studies, approximately 15% of all disordered
proteins have been reported as lipid-binding proteins [103,104].

The flexibility of IDRs helps them to undergo transient, but specific, interactions with
enzymes carrying out various post-translational modifications [105–107]. Moreover, this
intrinsic flexibility of IDRs facilitates the easy entry and recognition of post-translational
modifications within IDRs by effector molecules, leading to subsequent outcomes, such
as protein stability, turnover, and localization within a cell upon binding [102,105,108].
p53, p27, histone protein tails, and the CREB-kinase-inducible domain are a few examples
of well-explored IDPs where PTMs are critical for functioning and regulation [108–110].
Recently, phosphorylation at multiple sites within the disordered regions of four repre-
sentative IDPs (Ash1, E-Cadherin, CTD2, and p130Cas) has been reported to regulate the
IDR-mediated protein–protein interactions through conformational plasticity [111]. Fur-
thermore, site-specific phosphorylation within the intrinsically disordered AF1 domain of
glucocorticoids receptor (GR) generates surfaces appropriate for the interaction of the AF1
domain with coregulatory binding proteins (BP), which, in turn, regulates the transcription
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of the downstream genes involved in GR signaling [112]. Additionally, the methylation of
arginine residues in low-complexity and disordered regions has been shown to regulate
genome integrity, gene transcription, splicing, mRNA–protein complex biology, protein
translation and stability, and phase separation [113].

2.4.3. Disordered Chaperones

Proteins that help RNAs and other protein molecules to attain their functional folded
state are known as chaperones [114,115]. About half of the RNA chaperone sequences
and one-third of the protein chaperones are disordered in nature. The ability of IDRs to
adapt their structures according to different binding partners and increase the lifetime of
the encounter complex during binding supports their chaperone activity [116,117]. Disor-
dered chaperones prevent toxic aggregation by quickly binding and solubilizing misfolded
proteins. In addition, the transient binding of unfolded or misfolded substrate molecules
to disordered chaperone regions helps them to fold/refold correctly in a thermodynam-
ically permissible manner [118]. hnRNP A1, GroEL, α-crystallin, Hsp33, etc. are a few
well-known examples of IDPs with chaperone activity [119,120].

RNA chaperones enriched with positively charged residues promote the compactness
of nucleic acids conformation by acting as a counterion that locally shields repulsive elec-
trostatic repulsions [121]. For instance, the dimerization of the hepatitis C virus genome is
facilitated by its core protein with chaperone activity [121]. Additionally, disorder-enriched
RNA binding proteins (RBP) have been found to stabilize the disorderedness of the interact-
ing IDPs/IDRs and maintain their functional competence, thus making the disordered state
of the human proteome available for drug targeting [122]. Furthermore, IDRs present in
the human chaperones Hsp110s, Hsp105α, and Apg-1 prevent general protein aggregation
and amyloid genesis [123]. With aging, the disordered chaperone-mediated quality control
of intrinsically disordered proteome is lost, leading to the accumulation of protein aggre-
gates responsible for neurodegenerative diseases [124]. In plants, dehydrins, the largest
group of disordered chaperones, are expressed at higher levels under various abiotic stress
conditions, such as drought, osmotic stress, or high temperatures. An intricate interplay
of ordered and disordered segments of these proteins is required for proper cellular pro-
tection [125]. Additionally, disordered chaperones have been reported to lose flexibility
upon binding to a substrate, which helps them to act as a molecular on/off switch, as
characterized in Hsp33 [126–128].

2.4.4. Molecular Recognition Effectors

Effector functional class disordered regions bind permanently to other proteins and
modify their actions. Such IDRs often undergo disorder to order conformational transi-
tion upon binding to their interacting partners, which is known as ‘coupled folding and
binding’ [129–133]. The degree of folding upon the development of intermolecular contacts
may vary significantly. The disordered protein partners may either fold completely or
remain as an extended structure with short flanking ordered regions [134]. Recently, a
ubiquitin-binding domain (referred to as DisUBM) was identified in many proteins that
remained mostly disordered in a free state, and attained an α-helical structure upon bind-
ing to ubiquitin. Such naturally occurring DisUBMs are considered as general affinity
enhancers of IDPs that can bind to fold proteins with a possibility of ubiquitinylation [135].
In general, disordered regions have a kinetic advantage over folded segments, even after
intermolecular interactions are formed during the folding-upon-binding process [136].

Effector-disordered regions can also alter the functioning of the other parts within the
same protein in two different ways: (i) competitive interactions and (ii) allosteric modu-
lation. For example, the disordered GTPase binding domain (GBD) of Wiskott–Aldrich
Syndrome protein (WASP) controls its autoinhibition through competitive binding [137].
Upon binding to cdc42 protein there is an enhanced interaction of the WASP GDB domain
with the actin cytoskeleton regulatory machinery. However, GDB interaction with the
actin machinery is inhibited as it folds back on the other region of WASP. In another study,
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IDRs of general transcription factors and transcriptional regulators were shown to compete
for the folded TAZ1 domain of CREB-binding protein (CBP) in response to various types
of stress stimuli. For instance, under oxygen-deficient conditions, the hypoxia-inducible
transcription factor (HIF-1α) C-terminal transactivation domain drives the transcription
of different critical adaptive genes. One such gene translates to HIF-1α negative feedback
regulator protein CITED2, which represses the transcriptional activity of HIF-1α by directly
competing for CBP’s TAZ1 binding site [138]. Allosteric coupling in disordered regions
can be represented by the binding of adenovirus E1A oncoprotein with retinoblastoma
protein (pRb) and the TAZ2 domain of CBP [139]. The binding of pRb to E1A increases
the probability of CBP binding, whereas the initial binding of CBP to E1A decreases the
possibility of pRb binding. In addition, the globular KIX domain of the CBP is known to
bind cooperatively with CREB kinase-inducible transactivation domain (pKID), the acti-
vation domain of transcription factor c-Myb, and mixed-lineage leukemia (MLL) protein.
The binding of the pKID and c-Myb to the KIX domain is mutually exclusive and regulated
by the allosteric binding of MLL [140–142]. These results also suggest that the allosteric
coupling can also be determined by the stability of the individual protein conformations
achieved when interacting partners are binding [143,144].

2.4.5. Molecular Assemblers

As the name suggests, assemblers interact with multiple binding partners to encourage
the formation of higher-order protein complexes, such as the ribosome, activated T-cell
receptor complexes, and transcription pre-initiation complexes [91,145,146]. An assembly
of various interacting partners of large complexes is feasible due to the multiple types of
disordered functional regions, such as short linear peptide motifs (SLiMs), molecular recog-
nition features (MoRFs), etc. In fact, with an increase in the size of the protein complexes,
the disorder content of the assembler protein increases [147]. Furthermore, upon binding
to their partner proteins, disordered assemblers maintain their open structure, allowing
multiple proteins to bind to a single IDR [148,149]. Therefore, the overall architecture
of assemblies formed by IDPs depends on the disorder content, the available number of
interaction sites, and the nature of the binding molecules [150].

The assembler function of IDPs is an outcome of their multivalency and can be
achieved in two distinct ways. Firstly, IDPs can act as the binder molecule by tether-
ing all of the interacting proteins and stabilizing the complex. For example, ribosome
assembly involves the cooperative binding of proteins enriched with IDRs and RNA [151].
Secondly, IDPs can also regulate the spatiotemporal assembly of the different signaling
partners by acting as a scaffold, such as the IDP-mediated formation of biomolecular con-
densates, nuclear pore complex, and cytoskeletal assemblies [2,152,153]. Among all the
functional categories, the scaffolding regions of the assemblers contain the highest degree
of disorder [149].

2.4.6. Molecular Recognition Scavengers

This functional class of intrinsically disordered proteins/regions stores and neutralizes
small ligands. For example, caseins and other calcium-binding phosphoproteins (SCPPs)
are highly disordered proteins that can act as scavengers by solubilizing calcium phosphate
clusters in milk and other biofluids [154]. The proline-rich salivary gland glycoproteins
also belong to the molecular recognition scavengers class of IDPs; they function by bind-
ing and neutralizing the tannin molecules in digestive tracts [29]. Plant dehydrins are
highly disordered proteins expressed at elevated levels in the late stages of embryogene-
sis. The VviDHN4 isoform of dehydrin acts as a scavenger by removing reactive oxygen
species from the cellular environment [155]. Human peroxiredoxins-4 protein, most highly
expressed and localized exclusively within the endoplasmic reticulum, acts as its major hy-
drogen peroxide scavenger [156]. Other examples of IDPs with scavenger activity include
chromogranin protein A, which is responsible for sequestering adrenaline and ATP in the
medulla of the adrenal gland [154].
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2.4.7. Metal Sponges

IDPs/IDRs that are capable of storing and neutralizing heavy metals belong to the
metal sponges category, such as the sulfonation of catecholamines in humans by cate-
cholamine sulfotransferase enzyme (Sulfotransferase 1A3). This reaction is a detoxification
pathway because it readily forms excretable water-soluble metabolites [157]. Additionally,
the SmbP protein of the ammonia-oxidizing bacterium Nitrosomonas Europaea, binds to
divalent cations, especially copper, to prevent cellular toxicity [158]. Similarly, the crystallin
proteins from the bacteria Yersinia Pestis act as metal sponges by managing the cellular
copper levels [159].

All of the other IDPs/IDRs with no experimental support or evidence proving/disproving
their role in protein function were assigned to the unknown class. Upon functional annotation,
the members of this class are transferred to one of the above-mentioned functional categories.

2.5. Functional Elements of Intrinsically Disordered Proteins

Various functional regions in intrinsically disordered regions have been revealed when
studying different classes of functions carried out by IDRs. In general, the functional
modules within IDRs have been classified into three categories: (i) Short Linear Motifs
(SLiMs), (ii) Molecular Recognition Features (MoRFs), and (iii) Intrinsically Disordered
Domains (IDDs) [78,160–165]. The classification and features of each of these functional
modules are shown in Figure 2. The following sections discuss these functional modules of
disordered proteins/regions interactions.

2.5.1. Short Linear Motifs

Short Linear Motifs (SLiMs), also known as MiniMotifs or Linear Motifs (LMs), are
3–10-residue-long peptide segments that occur within IDPs [160,166,167]. SLiMs typically
comprise a stretch of loosely conserved amino acids interspersed with a few highly con-
served residues [160]. As a consequence, interactions mediated by an individual SLiM
motif have weak affinities. However, multiple SLiMs frequently coordinate to produce
higher-affinity dynamic interfaces. Even though SLiMs are short sequences with transient
binding capabilities, they are indispensable to a protein’s binding precision and functioning.
The Eukaryotic Linear Motif (ELM) initiative aims to characterize and annotate motifs,
mostly focusing on, but not limited to, eukaryote proteins. At present, 1,000,000 SLiMs
have been predicted across the human proteome, but only a small fraction of it has been
explored in detail to date [166,168–171].

Owing to their crucial role in regulating signal transduction and protein–protein in-
teractions, SLiMs are considered as functional in almost every biological pathway. They
can interact with a variety of biological entities, including globular protein domains, intrin-
sically disordered proteins or regions, RNA, lipids, etc. Broadly, SLiMs can be classified
into two distinct groups: modification sites and ligands, with each having multiple sub-
groups [2]. If a linear motif act as a modification site, catalytic domains of enzymes interact
with SLiMs to catalyze cellular processes, such as post-translational processing, the addi-
tion or removal of moieties, and structural alteration of the peptide backbone [172,173].
In contrast, when linear motifs behave as ligands, they act as complex-promoting motifs
required for scaffolding and increasing the avidity of interactions with binding partners.
Additionally, SLiMs can act as a docking motif to increase the specificity and efficiency of
modification events, and as a targeting/trafficking motif to provide stability to proteins
and facilitate their subcellular localization and trafficking [174–179]. For example, in the
family of Rho-activated kinases (Raks), kinase function activation and uniform subcellular
localization is an outcome of cleavage by caspases at SLiMs identified in disordered re-
gions [180]. The binding of the catalytic and regulatory subunits of protein serine/threonine
phosphatases (PPP) and their substrates depends on SLiMs [181]. The interaction of human-
origin recognition complex subunit ORC1 and licensing factor CDC6 during pre-initiation
complex formation and its regulation by CDKs are also mediated by SLiMs [182,183].
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Furthermore, SLiMs can also act as molecular switches by allowing the mutually ex-
clusive binding of different partners at the protein’s same or distinct SLiM sites [184–186].
Such SLiM features are essential to bring about the context-dependent moonlighting functions
of IDPs.

2.5.2. Molecular Recognition Features

Molecular Recognition Features (MoRFs) or Elements (MoREs) are 10–70-residue-
long peptide motifs that can occur in the disordered regions of proteins [163,164]. These
motifs undergo disorder-to-order transition upon binding with their partners (i.e., fold-
ing upon binding) and attain well-defined structures, such as α-helices (α-MoRFs),
β-strands (β-MoRFs), γ-coils (γ-MoRFs), or mixtures of all of these conformations
(complex-MoRFs) [162,163,187]. The final conformation achieved after transition may
occur either due to the conformational preference of unbound MoRFs or the induced
folding after binding [78,130,188]. The structural preorganization of MoRFs is modulated
mainly by the sequence itself [189]. Therefore, sequence analysis of MoRFs from the
structural, conformational, and interaction mechanism aspects will help to understand
the properties of MoRFs [190]. A recent detailed computational investigation of 868 com-
plete proteomes showed that 29% of IDRs of bacteria and archaea and 21% of eukaryotes
harbor MoRFs [191].

p53 protein is a classic example of a protein with multiple MoRFs in a disordered
state attaining multiple conformations upon interaction with different binding part-
ners [163,164,192,193]. MoRF at the N-terminus of p53 protein is the primary binding
site of Mdm2 and the other 40 proteins. The MoRF between residues 40 and 60 is the bind-
ing site of the Mdm2 and RPA70 proteins. C-terminal MoRF binds to multiple proteins,
including S100B and the cdk2–cyclin-A complex. Each of these unique combinations of
MoRF and the interacting proteins results in a distinct conformation of p53.

Moreover, the T-cell surface glycoprotein CD3 zeta chain has two MoRFs, referred to
here as N-terminus and C-terminus MoRF. While tyrosine kinase, tyrosine phosphatase,
and nef protein bind to N-terminal MoRF, the SH2 domain of the SHC protein binds to the
C-terminus MoRF [194]. Additionally, the ethylene response factor in plants has several
identified MoRFs, and the binding of different interacting proteins to these motifs helps
the plants to overcome multiple stresses and adapt to different biological niches [195]. In
conclusion, a single MoRF can bind structurally diverse sets of protein partners to give rise
to multiple distinct conformations.

2.5.3. Intrinsically Disordered Domains

Sequence-based approaches have identified various protein domains that are entirely
or largely disordered both in isolation and solution. They are mostly involved in the DNA,
RNA, and protein binding (e.g., Wiskott–Aldrich syndrome protein (WASP)-homology do-
main 2 (WH2) of actin-binding proteins) [196–198]. In general, the intrinsically disordered
domains are a long region of disorder (>20 residues) with conserved function, conserved
sequence, and conserved disorder [196–199]. Moreover, at the genomic level, the protein
domains acquired during evolution as an outcome of the extension of the existing exons or
exonization of previously non-coding regions tend to be highly disordered [200]. Therefore,
the exonization of the previously non-coding regions could be one way of incorporating
disordered segments into proteins. Some well-known examples of disordered domains
include cell cycle regulatory proteins p21, p27, p57, etc. The disordered domains of these
proteins have been experimentally and computationally verified [201,202].

Interestingly, specific disordered regions have been observed to co-occur frequently
with particular types of structured domains in the same sequence [203,204]. Some globular
domains require the presence of short, disordered regions in their vicinity, while others re-
quire disordered segments at specific locations with respect to the domain boundaries [203].
These findings suggest that the functional module in proteins can comprise either disor-
dered/ordered regions alone or in combination. For example, ER degradation-enhancing
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alpha-mannosidase-like proteins (EDEM) recognize misfolded proteins and direct them
to the ER-associated protein degradation (ERAD) process. EDEM3 degrades the mis-
folded proteins with the help of both structured domains (mannosidase homology domain
(GH47), intermediate (IMD), and protease-associated (PA)) and intrinsically disordered
domains [205]. Furthermore, the Bcl-2 family mediates apoptosis, and the maintenance
of stem-like behavior of glioblastoma multiforme spheres by RBM14 protein also requires
both structured and disordered domains [206,207]. Therefore, studying the co-occurrence
of structured domains and IDRs in the same protein may prove insightful in understanding
the unannotated disordered segments of proteins with respect to their biological role.

3. Experimental Approaches for Assessing Intrinsic Protein Disorder

Intrinsic protein disorder can be recognized and characterized by various direct and
indirect (bio)physical methods. In contrast to direct techniques, which provide structural
information about proteins, indirect approaches do not offer any structural details. Still,
they suggest a behavior from which the disordered nature of the proteins can be inferred.

3.1. Indirect Methods

Early understanding of the intrinsic structural disorders of proteins was based on a few
simple techniques. In general, these indirect intrinsic disorder-identification approaches
can quickly provide ample insight into the structural states of a protein or its segments.

Because of the unusual amino acid composition and lack of a compact hydrophobic
core, disordered proteins are evident during the purification process. Usually, the molecular
mass (Mw) of IDPs estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) is higher by a factor of 1.2–1.8 in comparison with that measured by mass
spectrometry [29]. Indeed, due to the enrichment of acidic residues and extension in
solution, IDPs bind less to SDS and migrate more slowly on the gel in comparison with
globular proteins [208]. The aberrant mobility of IDPs is also observed in size-exclusion
chromatography (SEC) or gel-filtration (GF) experiments, as a result of which the apparent
Mw of proteins with disordered regions is higher [45]. Furthermore, the flexible regions of
proteins are known to have increased sensitivity to proteolytic degradation. IDPs, which
are more affected than ordered proteins, based on limited in vitro proteolysis, exhibit high
inherent flexibility [29,42,45,72].

Other peculiar biochemical behaviors of IDPs/IDRs include insensitivity to high
temperatures and stability under acidic treatment. The resistance of IDPs/IDRs to boiling
temperatures and acidic pH values has been ascribed to their lower contents of hydrophobic
residues and enrichment of polar/charged residues, respectively [209–211]. Neutralizing
acidic groups at lower pH levels reduces the net charge on IDPs/IDRs, leading to their
increased solubility and a more compact structural state [45]. In contrast to IDPs/IDRs, the
aggregation/precipitation of globular/ordered proteins occur at elevated temperatures
and under low-pH conditions. While high-temperature conditions expose the hydrophobic
core of ordered proteins, acidic conditions cause protonation of their negatively charged
side chains, leading to charge imbalances, followed by the disruption of salt bridges and
aggregate formation [29].

3.2. Direct Methods

Several techniques provide both steady-state and dynamic structural information
on IDPs/IDRs at the residue level. These methods capitalize on the significantly distinct
conformational behavior of IDPs compared with that of globular proteins [29]. Some of the
most commonly used direct methods are as follows:

3.2.1. X-ray Crystallography

The diffraction intensity and X-ray pattern scattered by electrons in the protein struc-
ture are used to construct a three-dimensional (3-D) model of electron density, which, in
turn, is used to deduce the atomic nuclei positions in the protein molecule [29]. Disordered
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regions in X-ray structures appear as missing regions [28]. This method can provide protein
structure resolution down to 1Å. Still, additional experimental support is required to be
certain about the structural disorder, as missing electron density regions can also result
from technical failures in crystallography [212].

3.2.2. Circular Dichroism (CD)

Circular dichroism (CD) is an absorption spectroscopy-based approach that relies
on measuring the difference in the absorption spectra of right-handed and left-handed
circularly polarized light. Optically active chiral molecules preferentially absorb either
right-handed or left-handed circularly polarized light. Near-UV (250–350 nm) and far-UV
(190–230 nm) CD signals are generally used to determine different aspects of the structure
of proteins in solutions. The near-UV CD spectrum represents the tertiary structure around
aromatic residues Phe, Tyr, and Trp [213,214]. While intense and detailed spectra character-
ize ordered proteins, those of IDPs are of low intensity and low complexity. The far-UV
CD spectra of the secondary structural elements of proteins are quite distinct; therefore,
they are used to determine the proportion of α-helix, β-sheet, turn, PPII helix, and coil
conformations in proteins [215]. If the far-UV CD spectrum is indicative of predominantly
coil conformations, it indicates the disordered nature of the protein. In the case of proteins
having both disordered and ordered regions, the CD does not provide clear information, as
it lacks residue-specific details [28].

3.2.3. Nuclear Magnetic Resonance (NMR)

NMR is the most common quantitative technique used for studying IDPs. The spinning
ability of the charged atomic nuclei forms the basis of the 3-D structure determination
of proteins in solutions using NMR. The directions of these spins are random, but the
application of the external magnetic field can align these nuclei in directions either parallel
or antiparallel to the applied magnetic field. These two states of nuclei have different
energy levels, a low-energy state and a high-energy state. The low-energy state attains a
high-energy state upon irradiation with electromagnetic radiation, and free inductive decay
(FID) is obtained as the nuclei undergo relaxation. Fourier transformation of FID results in
a NMR spectrum with peaks from different types of nuclei in the molecule, which, in turn,
is used to characterize the local covalent and spatial arrangement of atoms [29,47,216,217].

In a protein, each nucleus of the individual residues experiences a different magnetic
field depending on its microenvironment (referred to as the ‘shielding effect’ or ‘chemical
shift’). The chemical shift of the peptide backbone (1Hα, 13CO, 13Cα, and 13Cβ) can be
used to determine the secondary structure type of the given peptide segment [218,219].
Amino acids in ordered proteins are packed in different kinds of chemical environments,
as a result of which their NMR spectrum resembles a combination of spectra of various
secondary structure elements. In contrast, the NMR spectra of disordered proteins with
extensive conformational averaging appear as a summation of the random coil spectra of
residues of proteins [216,218]. In addition to the fine structural details, NMR also provides
specific information at the residue level [28].

3.2.4. Small-Angle X-ray Scattering (SAXS)

The SAXS technique can quickly define the structural characteristics of proteins of
sizes ranging from a few kilo-Daltons to several giga-Daltons under various experimental
setups [220–223]. Briefly, this method involves exposing samples placed in quartz capillary
tubes to a collimated monochromatic X-ray beam source and capturing scattered photons
with a detector [224]. Comparative analysis of the electron density distributions of the protein
sample and pure solvent/buffer is then conducted to determine various parameters of the
proteins in the solution, such as the molecular mass, volume, radius of gyration, folding
state, etc. [220]. Moreover, SAXS data can also be used to define protein flexibility and the
intrinsically disordered state of proteins in solutions [223,225]. The scattering profiles of
the proteins obtained from SAXS experiments are most commonly represented as Kratky
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plots (s2I(s) as a function of s, where s and I represent the momentum transfer function and
scattering intensity), which are used to obtain structural insights into the protein.

In contrast to globular proteins’ bell-shaped Kratky’s plot with well-defined max-
ima, disordered protein-specific Kratky plots exhibit a plateau for a given range of the
momentum transfer function (s), followed by a monotonic increase [226,227]. Additionally,
the experimentally determined radius of gyration (Rg) of IDPs from the SAXS curve can
be directly compared with the theoretical or experimental Rg values of a globular and
random coil for a given number of residues. The Rg values of IDPs lie between those of
highly compact globular proteins (lowest Rg values) and completely disordered/unfolded
proteins represented by random coils (highest Rg values) [228]. Altogether, this method
offers fast structural characterization of proteins in solutions with a relatively easy sample
preparation protocol and can capture data under near-native conditions [229,230]. As the
sensitivity of SAXS depends on the particle size, prior removal of the macromolecular aggre-
gates during sample preparation using a method such as sedimentation or size-exclusion
chromatography is suggested [231].

Finally, it is worth mentioning that SAXS-based studies of IDPs can use valuable a priori
complementary information from several other experimental and in silico protein structure
determination methods. For instance, X-ray crystallography depicts the structured regions
of a protein, while SAXS defines the protein segments with missing electron density [232].
Similarly, NMR provides information about different domains/complex sub-units during
analyses of bimolecular complexes and multi-domain proteins, and SAXS defines their relative
inter-domain positions [233]. Furthermore, other complementary techniques, such as CD,
spectroscopy, chromatography, etc., and SAXS, can be used for the biophysical characteriza-
tion of IDPs [234]. A low-resolution protein structure defined through the ab initio modeling
of SAXS data alone can be further refined using inputs from protein structure prediction
tools, such as I-TASSER, CORAL, etc. [235,236]. Recently, various protein structure determi-
nation/prediction techniques and SAXS have been used to characterize partially disordered
mycobacterial ESX-secretion-associated protein K (EspK) [237].

3.2.5. Cryo-Electron Microscopy (Cryo-EM)

In the last five years, the research area involving the structural characterization of
proteins and other biological entities has been revolutionized by the development of cryo-
electron-microscopy-based techniques [238–241]. These methods overcome the limitations
of primary methods, i.e., X-ray crystallography and NMR, and allow the structural charac-
terization of relatively large, structurally heterogeneous, flexible, and dynamic assemblies
at sub-nanometer atomic resolution (below 4 Å) [241–243]. Typically, a cryo-EM workflow
contains three main steps: (a) vitrification (rapid cooling without ice crystal formation)
of specimens in an aqueous solution, (b) image acquisition at a low electron dose using
electron microscopy, and (c) 3D model reconstruction and validation. Single-particle anal-
ysis (SPA) and sub-tomogram averaging (STA) models are most commonly used for the
structural annotation of proteins [244]. However, while the globular/ordered/structured
regions of proteins can be structurally resolved using cryo-EM, the predicted intrinsically
disordered regions in the proximity of flexible regions escape structural assignment [245].
Therefore, similar to x-ray crystallography, a high degree of intrinsic disorder restricts
the implementation of cryo-EM techniques. Alternatively, the structure and dynamics of
IDPs/IDRs can be investigated by complementing higher-resolution NMR studies of IDRs
with the modeling capabilities of cryo-EM [246,247]. In conclusion, 3D cryo-EM maps in
conjunction with high-resolution data from NMR can model IDPs under physiologically
relevant conditions and provide insights into their functional behavior [243].

4. Computational Tools for Disorder Prediction

The biased amino acid compositions and peculiar sequence characteristics of IDPs/IDRs
have encouraged the development of various reliable computational tools for studying
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intrinsic protein disorders. As a result, disorder predictors have been grouped into three
distinct classes based on the underlying concepts.

4.1. Propensity-Based Predictors

In principle, a disorder predictor is classified as propensity-based if it depends on
some essential physical or chemical characteristics of residues or on prior knowledge of
the biological background of intrinsic protein disorder. Disorder-predicting tools, such as
FoldIndex, NORSp, GlobPlot, CH plot, and PreLink belong to this category [45,245–251].

4.2. Machine Learning Algorithms (MLAs) Based Predictors

This class of advanced predictors relies on algorithms trained on data sets of experi-
mentally characterized disordered regions and can differentiate disorder and order encod-
ing sequences [29]. Currently, the experimentally characterized disordered proteins are
publicly available on three databases: MobiDB (http://mobidb.bio.unipd.it/; accessed on
7 November 2022), IDEAL (https://ngdc.cncb.ac.cn/databasecommons/database/id/198;
accessed on 7 November 2022), and DisProt (http://www.disprot.org/; accessed on
7 November 2022) [92,252,253]. PONDR, Spritz, DisEMBL, RONN, and DISOPRED are a
few predictors that fit into this category [254–259].

Recently, the field of protein structure prediction has been revolutionized by the de-
velopment of the deep learning-based method AlphaFold [260]. This software generates a
per-residue confidence score (pLDDT) based on the protein’s amino acid sequence. The most
recent version of this tool, i.e., Alphafold2, has been reported to achieve protein structure
prediction accuracy competitive with that of experimental determination [261–263]. However,
this program gives a low confidence score (pLDDT < 50) for intrinsically unstructured or
disordered proteins/regions, and the inconclusive predicted structure resembles a ribbon. In
addition, this method does not anticipate the relative likelihood of diverse IDP conformations
and the folding pathways followed by IDPs/IDRs attaining an ordered structure upon interac-
tion with other biomolecules [70,264]. At present, the AlphaFold Protein Structure Database is
considered as the most complete and precise representation of the human proteome [265,266].

4.3. Inter-Residue Contact-Based Predictors

Predictors based on the idea that IDPs/IDRs are disordered because they cannot
make enough inter-residue contacts required to compensate for the loss of configurational
entropy during folding are grouped together as inter-residue contact-based predictors. The
above conclusions may be derived by either simple statistics involving contact numbers or
through sophisticated techniques of determining the total stabilization energy of a protein.
Computational tools, such as IUPred, FoldUnfold, and Ucon belong to this class [267–270].

At present, there is no “best” disorder prediction computational tool. Therefore, to
avoid the limitations of a given tool, prediction results from different disorder predictors
relying on distinct principles should be combined to provide a consensus prediction, as
implemented by meta-predictors (for example, PONDR-FIT) [271]. Alternatively, publicly
available meta-servers (for example, MeDor and metaPRDOS can also be used for quick
and simultaneous analysis of protein disorder using multiple predictors [272,273].

In several recent articles, extensive comparisons of various computational disorder
prediction methods’ performance and comprehensive online resources useful for studying
IDPs/IDRs were provided [274–276].

5. Evolution of IDPs/IDRs

The evolution of proteins involves changes in the form of insertions, deletions, or
substitutions in their amino acid sequences. Over time, such changes can accumulate in the
proteins, giving rise to taxonomic classes having substantial differences in their amino acid
compositions [277]. In general, the structure and function of proteins are well conserved,
but several exceptions exist. Several previous studies suggested that, even if the protein
sequence diverges extensively, the protein function is well-conserved [278]. Hence, proteins

http://mobidb.bio.unipd.it/
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are generally considered as the ‘chemical fingerprints’ of evolutionary history, as they
manifest the underlying genetic changes as amino acid sequences.

The evolution of intrinsic disorder exhibits a wavy pattern in which highly disordered
primordial proteins with predominantly RNA-chaperone-like activities were slowly re-
placed with highly structured proteins [118,279]. Later, because of its peculiar features
regarding the regulation of complex cellular processes, protein disorder was reinvented at
various succeeding evolutionary stages, resulting in the creation of more complex organ-
isms from the last universal ancestor [280,281].

Several mechanisms, such as de novo generation, horizontal gene transfer, and lateral
gene transfer, can give rise to genes that encode IDPs [57,282]. Approximately 14% of Pfam
domains, predicted to be mostly disordered and shared by many protein families, appear to
have originated from domain duplications and module exchange between genes [196]. The
high frequency of occurrence of tandemly repeated sequences in IDPs/IDRs suggests that
the expansion of internal repeat regions (microsatellite and minisatellite coding regions) is
another possible way by which the IDPs encoding genes arose [283,284]. Looking at the
exceptional functional variability conferred to IDPs/IDRs due to the genetic instability
of repetitive elements, the mechanism of the extension of repeat elements appears as
the frequent method of disorder spread during evolution and rapid genomic changes
in adaptation [36,285,286]. Furthermore, these IDPs/IDRs can also act as hot spots for
mutations, leading to the loss of different functional modalities and thus resulting in various
types of diseases, including cancer [287–289]. Seera and Nagarajaram have recently shown
that the disease-causing missense mutations within IDRs reduce the overall conformation
heterogeneity of the IDRs as compared to their wild type counterparts, and the few ‘locked’
dominant conformations presumably limit their interaction with the cognate partners [290].

Recent studies have shown that disordered protein segments are encoded by GC-
enriched gene regions, which, in turn, directly correspond to the disorderedness of the
encoded proteins [291,292]. This GC enrichment is due to the prevalence of amino acids
coded by GC-rich codons (G, A, R, and P) in the disordered regions of proteins [291].
At the residue level, a relatively higher rate of evolutionary changes in the disordered
regions of proteins was observed compared with that in the ordered/globular domains,
as there were no structural constraints to maintaining a 3-D structure [293]. However, in
certain cases, structured domains and disordered regions of proteins have been observed
to co-evolve at higher rates [294,295]. Despite these rapid changes, the biological functions
of the structured domains and disordered regions are always conserved [296]. Hence, a
deeper understanding of the conformation ensemble–function relationship will help to
decipher the evolutionary trajectory of IDPs.

Based on the conservation of sequences coding for protein disorder, disordered
residues have been classified as constrained (both sequence and disorder are conserved) or
flexible (only protein disorder is conserved). Together, constrained and flexible disorder
residues are known as conserved disorder. On the other hand, if neither disorder nor
the residues encoding it are conserved, such a disorder class is known as non-conserved
disorder [297]. This integrated structural and evolutionary approach has recently been
used to define the determinants of the functional adaptability of the neutrophin family of
proteins involved in neuronal development [298].

Considering that the disordered regions in proteins have a distinct amino acid com-
position and evolutionary rate as compared with that of ordered regions, the substitution
frequencies of residues in the disordered regions must also be distinct from those found in
ordered regions. Thus, identifying the evolutionary and functional features of IDPs/IDRs
has become a computational challenge, as most of the sequence analysis tools and parame-
ter optimization procedures are aimed at ordered/structured regions of proteins. Recently,
methods evaluating disordered proteins’ molecular features and sequence composition in
a position-specific manner have been developed. These advancements have allowed re-
searchers to pursue alignment-based evolutionary studies on IDPs/IDRs without aligning
the residues discretely [299–301].
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6. IDPs/IDRs in Diseases

Like structured proteins, the expression, localization, and interactions of intrinsically
disordered proteins (IDPs) are also highly coordinated and regulated. Multiple checkpoints
at various stages of the expression of IDPs-specific genes (from transcript synthesis to
protein degradation) ensure the availability of IDPs in appropriate quantities and for the
desired duration, preventing any ectopic interactions [302]. Several studies have shown the
role of IDPs/IDRs in different human disorders, including diabetes, cancer, amyloidosis,
neurodegenerative, and cardiovascular diseases [303,304]. Some well-studied examples
of IDPs associated with human disease are p53, Mdm2, PTEN, c-Myc, AF4, BRCA1, EWS,
Bcl-2, c-Fos, HPV oncoproteins, etc. [303,305–307]. Moreover, the deposition of α-synuclein,
tau, and amyloid-β proteins leads to Alzheimer’s disease, the accumulation of α-synuclein
results in Parkinson’s disease, and aggregates of PrPSC cause prion diseases. The expansion
of CAG triplet repeats in disease genes, which introduces disorder, results in the family of
polyQ diseases, such as Kennedy’s disease, Huntington’s disease, etc. [308–314].

In the last two decades, the role of IDPs in human diseases has been actively studied,
giving rise to new mechanistic findings that have led to the formation of the D2 concept
(‘Disorder to Disorders’) [303]. Several comprehensive reviews and thematic series articles
have been published covering the significance of IDPs in diseases [315–317]. For instance,
Coskuner and Uversky described various hypotheses proposed to explain the molecular
mechanisms of the pathogenesis of Alzheimer’s and Parkinson’s diseases and suggested
the need for the development of new techniques through the integration of quantum and
statistical mechanics, thermodynamics, bioinformatics, and machine learning approaches,
which, in turn, may lead to the development of new experimental approaches [318–325].
However, at present, there are several limitations and challenges associated with in silico
studies of IDP-associated neurodegenerative disorders [326,327]. Another study found that
an NADH-stabilized 26S proteasomal complex could degrade IDPs efficiently. Therefore,
the accumulation of disease-causing disordered proteins, such as tau, c-Fos, p53, etc., can be
prevented by the selective degradation of IDPs in an ATP-independent manner [328]. More-
over, the analysis of components of the ATP-dependent ubiquitin-proteasome degradation
system (UPS) revealed the importance of the disorder content and MoRFs of the complex in
neurodegenerative disorders and cancers [329]. However, identifying key mutations, PTM
sites, and functional motifs in the disordered regions, exploring the evolutionary history
of IDPs involved in diseases, understanding the cooperative functioning of ordered and
disordered domains, and dissecting the IDPs’ interactome are some of the many active
research areas involving IDPs/IDRs and diseases [288,330–334].

7. IDPs/IDRs as Drug Targets

With increasing evidence of their involvement in molecular functions complementing
globular domains, essential biological processes, protein–nucleic acid interactions, protein–
protein interactions, and diseases, IDRs/IDPs have emerged as one of the prime targets
for drug discovery or repurposing [142,335–339]. However, IDP characteristics, such as
a lack of a sTable 3D structure, very high flexibility, conformational ensembles, suscepti-
bility to proteolytic cleavage, protein aggregation, etc., limit the application of the most-
established experimental assays and computational methods that would otherwise work for
ordered/globular proteins [340–344]. Therefore, IDP-specific drug screening/development
is mainly a tradeoff between binding affinity/specificity and the alternation in the func-
tioning of disordered proteins with other features, such as solubility, crowding, efflux,
metabolism, etc., a potentially relevant role [345].

Broadly, disordered proteins/regions have been used in drug development procedures
by targeting their conformational changes, interactions, and self-aggregating behavior [346].
For example, the inhibitor 10058F4 of Myc proto-oncogene protein (MYC) binds to MYC
and prevents conformational disorder-to-order transition, which, in turn, blocks MYC-MAX
complex-driven tumorigenesis [33,347–350]. Similarly, Methyl-CpG-binding domain pro-
tein 2 (MBD2) inhibitors restrict the folding of MBD2 upon binding to its partner p66α. This
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MBD2-p66α is known to regulate the Mi-2/NuRD chromatin remodeling complex involved
in promoting metastasis in various cancer cells through epithelial–mesenchymal transition
(EMT) [351,352]. In contrast to ordered proteins, the protein–protein interactions involving
IDPs offer uneven, shorter, compact, and more mimicable surfaces for the tighter binding
of small drug molecules [353–355]. In recent times, potential drug molecules have been
designed to target either the disordered segment or the binding region of the interacting
molecule. For instance, nutlins binding to Mdm2 prevent the interaction of Mdm2 with the
disordered regions of p53, which activates the p53 pathway, leading to apoptosis, cell-cycle
arrest, and the inhibition of the uncontrolled cell growth of human tumor xenografts [356].
Additionally, an FDA-approved compound, trifluoperazine dihydrochloride, was found
to bind to a disordered region of multifunctional protein nuclear protein 1 (NUPR1) and
arrest pancreatic ductal adenocarcinoma (PDAC) development [357]. Moreover, the disor-
dered proteins from pathogens can also be targeted to interrupt their interaction with host
proteins, which they utilize for their survival and pathogenesis [358]. In a recent review,
Santofimia et al. comprehensively described targeting IDPs in various protein–protein
and protein–nucleic acid interactions involved in cancer [359]. Furthermore, compounds,
such as curcumin, rosmarinic acid, ferulic acid, and safranal, have also been reported to
prevent the aggregation of α-synuclein protein by binding to monomers, thus inhibiting the
polymerization of these proteins, which results in various neuronal malignancies [360,361].
In summary, deciphering the sequence–ensemble–function relationship of IDPs/IDRs and
the development of efficient computational modeling approaches will help to unravel the
enormous potential of disordered proteins as drug targets.

8. Conclusions

The spread and versatility of proteins’ functions carried by intrinsically disordered
regions within them are phenomenal. The overview of the protein structure–function rela-
tionship presented in this review with a focus on various aspects of intrinsically disordered
proteins/regions can be very helpful in understanding the fundamentals of biologically
active structureless proteins. It also offers a novel perspective for characterizing proteins
with unknown functions.

Over the past two decades, the research field of protein disorder has witnessed a
revolution with respect to the understanding of various aspects of IDPs/IDRs such as
sequence, abundance, structure, function, regulation, evolution, etc. However, there is still
a requirement for new theoretical, experimental, and computational models specific to
intrinsically disordered regions in proteins that can explain both the diversifying behavior
of IDPs and the unifying principle of protein structure–function relationships.
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