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Abstract: Spring cold stress (SCS) compromises the reproductive growth of wheat, being a major
constraint in achieving high grain yield and quality in winter wheat. To sustain wheat productivity
in SCS conditions, breeding cultivars conferring cold tolerance is key. In this review, we examine how
grain setting and quality traits are affected by SCS, which may occur at the pre-anthesis stage. We
have investigated the physiological and molecular mechanisms involved in floret and spikelet SCS
tolerance. It includes the protective enzymes scavenging reactive oxygen species (ROS), hormonal
adjustment, and carbohydrate metabolism. Lastly, we explored quantitative trait loci (QTLs) that
regulate SCS for identifying candidate genes for breeding. The existing cultivars for SCS tolerance
were primarily bred on agronomic and morphophysiological traits and lacked in molecular investiga-
tions. Therefore, breeding novel wheat cultivars based on QTLs and associated genes underlying the
fundamental resistance mechanism is urgently needed to sustain grain setting and quality under SCS.

Keywords: Triticum aestivum L.; spring frost; spikelet development; grain set and quality; QTLs

1. Introduction

Wheat provides approximately 20% of the food energy and protein produced for
human consumption [1], and grain quality is an important indicator due to market value
and consumer acceptance [2,3]. Wheat grain quality is a complex combination of various
traits, mainly controlled by genotypic and environmental factors [4]. Climate change is
causing a temperature shift and ecological landscapes that negatively impact wheat yield
and quality [5]. During the last several decades, it has been reported that spring cold stress
(SCS) has caused severe losses in wheat production and grain quality. For example, in
Australia, the SCS events that frequently occurred at wheat reproductive stage typically
resulted in yield losses of 10%, and it’s more than 85% in various farmlands [6,7]. Nearly
85% of China’s total area planted with winter wheat experiences widespread SCS [8,9].
Reports from North America and Europe indicated that late frost spells are one of the
most economically damaging agricultural climate hazards, causing substantial economic
losses in 2017 [10,11]. Consequently, the abiotic stress of SCS threatens the safety of crop
production systems worldwide. Wheat growth and development have been subjected to
more frequent cold stress as climate change continues [12].

The SCS events often occur during the reproductive development in winter wheat [13].
The reproductive development is composed of floral initiation, pollen grain and embryo
development, pollination, fertilization and grain setting, etc. [14]. When wheat suffers from
frost during the reproductive growth period, it causes the wheat spike cells to lose water
and wither, affecting the young spike’s normal development and increasing the young
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spike’s mortality [15,16]. Malfunctions and irreversible abortion of male and female repro-
ductive organs and gametophytes are the main reasons for cold-induced male and female
infertility [17]. During SCS, the anthers display irregular hypertrophy and vacuolation
of the tapetum, an unusual accumulation of starch and protein in the plastids, and poor
pollen tube development [18,19]. Zhang et al. (2021) stated that low-temperature stress
significantly reduced the expression and activity of the sucrose invertase (CWINV) coding
gene in young ears at the booting stage, inhibited the transport of sucrose to pollen sac,
and then hindered the normal development of pollens [20]. Occurrence of SCS at late
reproductive growth resulted in smaller dark-colored seeds with a wrinkled epidermis,
poor seed setting and quality [21].

Wheat responds to cold stress by regulating key physiological, biochemical, and molec-
ular mechanisms [22]. Under cold stress, a wide range of chemicals or protective proteins
are produced, including soluble carbohydrates, proline, and cold-resistance proteins [23],
which are involved in regulating osmotic potential, preventing ice crystal formation, the
stability of cell membranes and reactive oxygen species (ROS) scavenging [24]. At the
molecular level, estimates of phenotypic plasticity were used to identify loci associated
with stress tolerance. Candidate genes involved in phytohormone-mediated processes for
stress tolerance were proved to be involved in cold stress responses [25]. Cold acquisition
of freezing tolerance requires the orchestration of disparate physiological and biochemical
changes, and these changes are mainly mediated through the differential expression of
genes [26,27]. Some of these genes encode effector molecules directly involved in stress
mitigation, and others encode proteins for signal transduction or transcription factors that
control gene pool expression [26]. Genes involved in plant metabolism were differentially
expressed to avoid injury and damage associated with SCS; it includes the encodings of
Ca2+ binding proteins, protein kinases, and inorganic pyrophosphatase [28].

Understanding the potential regulatory mechanisms behind SCS tolerance is necessary
to create wheat breeding varieties with improved grain setting and quality under cold stress.
In this review study, we further summarized the consequences of SCS and explored the
potential mechanisms to sustain wheat grain setting and quality under SCS. The objectives
of this study are to (i) make clear the physiological and molecular mechanism in controlling
grain setting and quality under SCS, and (ii) propose breeding strategies in combatting SCS
during reproductive stage.

2. Effects of SCS on Grain Number and Quality in Wheat

Under varying climatic conditions, the SCS events have become more frequent, intense,
and prolonged. The SCS events often occur during the reproductive stage of winter wheat,
which is critical for the establishment of the panicle [29]. The SCS compromises the
development of young spike and floret; nutrient distribution is altered, and floret stunting
(or sterility) occurs, resulting in poor grain set and quality (Figure 1).
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Figure 1. A schematic diagram visually demonstrating the impacts of SCS initiated at tetrad stage 
(A) on subsequent wheat growth and development at booting stage (B), anthesis stage (C) and mat-
uration stage (D). (F) Indicates young spikelet development at tetrad stage. (G) Indicates tapetum 
degeneration and pollen sterility in the developing anthers at booting stage. (H) Indicates reduced 
pollen viability and thus spikelet fertility. (I) Indicates reduced grain-filling rate and period and 
enhanced grain abortion, and thus less grain number and quality (E). 

2.1. Grain Number 
Grain number is a significant factor in determining wheat grain yield [30]. The stages 

from jointing to flowering are critical to prevent florets from degenerating and increase 
the grain setting rate [31–33]. Under SCS conditions, the lower spike number per plant 
and grain number per spike were primarily responsible for reduced grain production (Ta-
ble 1; Figure 2) [34]. Compared with spring wheat cultivars, semi-winter wheat has 
stronger cold resistance. For example, under low temperature of −2–6 °C for 3 days at the 
jointing stage, the grain number per spike was lowered by 1.3–4.4% in Yangmai16 (spring 
wheat), while decreased by 0.6–1.0% in Xumai30 (semi-winter wheat) [35]. Meanwhile, 
cold stress led to different yields of different genotypes at the reproductive stage [36]. 
Compared with the control, low temperature led to zero harvest of diploid genotypes, and 
the yield of tetraploid genotypes decreased significantly, while hexaploid genotypes ac-
quired relatively high maintenance rate of grain yield among three species [36]. Addition-
ally, the yield loss caused by SCS also depends on the intensity of the low temperature 
and its duration [37]. Ji et al. (2017) exposed two wheat cultivars at the booting stage to 
freezing temperature at 2, −2, −4 and −6 °C for 2–6 d in a convective freezing chamber, 
causing 13.9–85.2% grain yield reduction in spring wheat, while resulting 3.2–85.9% grain 
yield loss in semi-winter wheat [35]. With the temperature declined to −5 °C and −7 °C at 
the vegetative growth stage, the grain yield decreased by 10–100% [38]. In each case, the 
SCS events during the reproductive development significantly affected the growth and 
development of younger spikes and florets, causing pollen infertility and poor grain set-
ting [39], thereby resulting in a decrease in the number of grains. 

  

Figure 1. A schematic diagram visually demonstrating the impacts of SCS initiated at tetrad stage
(A) on subsequent wheat growth and development at booting stage (B), anthesis stage (C) and
maturation stage (D). (F) Indicates young spikelet development at tetrad stage. (G) Indicates tapetum
degeneration and pollen sterility in the developing anthers at booting stage. (H) Indicates reduced
pollen viability and thus spikelet fertility. (I) Indicates reduced grain-filling rate and period and
enhanced grain abortion, and thus less grain number and quality (E).

2.1. Grain Number

Grain number is a significant factor in determining wheat grain yield [30]. The stages
from jointing to flowering are critical to prevent florets from degenerating and increase the
grain setting rate [31–33]. Under SCS conditions, the lower spike number per plant and
grain number per spike were primarily responsible for reduced grain production (Table 1;
Figure 2) [34]. Compared with spring wheat cultivars, semi-winter wheat has stronger cold
resistance. For example, under low temperature of −2–6 ◦C for 3 days at the jointing stage,
the grain number per spike was lowered by 1.3–4.4% in Yangmai16 (spring wheat), while
decreased by 0.6–1.0% in Xumai30 (semi-winter wheat) [35]. Meanwhile, cold stress led
to different yields of different genotypes at the reproductive stage [36]. Compared with
the control, low temperature led to zero harvest of diploid genotypes, and the yield of
tetraploid genotypes decreased significantly, while hexaploid genotypes acquired relatively
high maintenance rate of grain yield among three species [36]. Additionally, the yield loss
caused by SCS also depends on the intensity of the low temperature and its duration [37].
Ji et al. (2017) exposed two wheat cultivars at the booting stage to freezing temperature at
2, −2, −4 and −6 ◦C for 2–6 d in a convective freezing chamber, causing 13.9–85.2% grain
yield reduction in spring wheat, while resulting 3.2–85.9% grain yield loss in semi-winter
wheat [35]. With the temperature declined to −5 ◦C and −7 ◦C at the vegetative growth
stage, the grain yield decreased by 10–100% [38]. In each case, the SCS events during the
reproductive development significantly affected the growth and development of younger
spikes and florets, causing pollen infertility and poor grain setting [39], thereby resulting in
a decrease in the number of grains.
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Table 1. Effects of SCS treatment at different stages on grain number per spike in wheat.

Cultivars Period Duration Low Temperature Grain Number Drop Percentage (%) Reference

Xinong979 Booting stage 12 h
15 ◦C/20 ◦C 42.2 -

[40]

−3.5 ◦C/20 ◦C 24.8 41.2
−5.5 ◦C/20 ◦C 13.1 67.0

Changhan58 Booting stage 12 h
15 ◦C/20 ◦C 40.7 -
−3.5 ◦C/20 ◦C 32.3 20.6
−5.5 ◦C/20 ◦C 17.5 57.0

Yangmai15 Stem elongation
stage 3 d

5 ◦C/10 ◦C 40.9 -
[41]−3 ◦C/0 ◦C 34.3 16.1

Yangmai16

Jointing stage 3 d

6 ◦C/16 ◦C/11 ◦C 40.7 -

[35]

−2 ◦C/8 ◦C/2 ◦C 40.2 1.3
−4 ◦C/6 ◦C/1 ◦C 39.2 3.6
−6 ◦C/4 ◦C/−1 ◦C 38.9 4.4

Booting stage 3 d

6 ◦C/16 ◦C/11 ◦C 40.0 -
−2 ◦C/8 ◦C/2 ◦C 37.2 7.0
−4 ◦C/6 ◦C/1 ◦C 36.4 8.9
−6 ◦C/4 ◦C/−1 ◦C 14.4 63.9

Xumai30

Jointing stage 3 d

6 ◦C/16 ◦C/11 ◦C 36.4 -
−2 ◦C/8 ◦C/2 ◦C 36.2 0.6
−4 ◦C/6 ◦C/1 ◦C 36.2 0.6
−6 ◦C/4 ◦C/−1 ◦C 36.1 1.0

Booting stage 3 d

6 ◦C/16 ◦C/11 ◦C 36.4 -
−2 ◦C/8 ◦C/2 ◦C 32.5 10.7
−4 ◦C/6 ◦C/1 ◦C 31.1 14.6
−6 ◦C/4 ◦C/−1 ◦C 21.1 42.1

XM21 Jointing stage 5 d

Approximately 8
◦C lower than the
ambient
temperature

- 4.6–5.9

[42]

XZ24 Jointing stage 5 d

Approximately 8
◦C lower than the
ambient
temperature

- 12.3–13.9

DM22 Jointing stage 39 d
15 ◦C/20 ◦C 14.0 -

[36]

5 ◦C/15 ◦C 8.4 40.0

DM31 Jointing stage 39 d
15 ◦C/20 ◦C 21.0 0
5 ◦C/15 ◦C 4.0 81.0

L8275 Jointing stage 39 d
15 ◦C/20 ◦C 19.0 0
5 ◦C/15 ◦C 17.0 10.5

MO1 Jointing stage 44 d
15 ◦C/20 ◦C 10.4 0
5 ◦C/15 ◦C 0 100

MO2 Jointing stage 44 d
15 ◦C/20 ◦C 13.6 0
5 ◦C/15 ◦C 0 100
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Figure 2. The photos of spikes (A,C) and grains (B,D) in wheat under the control (A,B) and spring 
cold stress (C,D) −2 °C for 6 h. The photo visually shows the effect of cold stress on the size and 
color of spike and grain number. 
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width (L/W) for 0.4–14.2% while decreasing the equivalent diameter in 0.9–11.0% and 
grain area in 1.6–20.2% [45]. Compared to the cold-tolerant genotype, the grain width and 
L/W of the sensitive wheat genotype were more susceptible to low temperatures [46]. It 
also reported that the grain width is more sensitive to low temperatures than the grain 
length [46]. 

In addition to affecting morphological appearance, the quality of grain nutrition is 
adversely affected by SCS [47]. For wheat grain nutrition quality, protein content is of key 
significance [48]. It has been noted that SCS limits the production of nitrogen compounds 
and nonstructural carbohydrates, which decreases the transit of protein and total soluble 
sugar from stems into grains, resulting in a decline in wheat quality [36]. Under low tem-
peratures at the booting stage, the mean accumulation of total protein decreased by 4.8–
6.9%, albumin by 5.8–9.6%, globulin by 8.4–15.4%, gliadin by 13.2–18.4%, and glutenin by 
17.8–29.1% [49]. In addition to this, reductions in the concentrations of amylose, amylo-
pectin and total starch were also observed under different low-temperature levels [46]. 
According to a recent report, the total starch in wheat grains, as well as the rate of accu-
mulation of straight-chain and branched-chain starch, were closely related to the activities 
of starch branching enzyme (SBE), soluble starch synthase (SSS), granule-bound starch 
synthase (GBSS) and adenosine diphosphate glucose pyrophosphorylase (AGPase) [50], 
while the activity of essential starch synthesis enzymes is particularly sensitive to SCS 
during grain development [51]. The low temperature during the reproductive stage de-
creased the activities of crucial starch synthesis enzymes (AGPase, SSS, GBSS, and SBE) 

Figure 2. The photos of spikes (A,C) and grains (B,D) in wheat under the control (A,B) and spring
cold stress (C,D) −2 ◦C for 6 h. The photo visually shows the effect of cold stress on the size and
color of spike and grain number.

2.2. Grain Quality

Grain quality is primarily based on appearance and nutritional quality [43]. It is well
known that mostly spring cold stress events are often encountered during the reproductive
period in wheat, which seriously affects the absorption and distribution of nutrients [39].
Grain quality relative to its appearance refers to external morphological characteristics,
including grain length, width, and aspect ratio [44]. For example, wheat responds to SCS
(−4 ◦C for 12 h) at the jointing stage by increasing the ratio between grain length and width
(L/W) for 0.4–14.2% while decreasing the equivalent diameter in 0.9–11.0% and grain area
in 1.6–20.2% [45]. Compared to the cold-tolerant genotype, the grain width and L/W of the
sensitive wheat genotype were more susceptible to low temperatures [46]. It also reported
that the grain width is more sensitive to low temperatures than the grain length [46].

In addition to affecting morphological appearance, the quality of grain nutrition is
adversely affected by SCS [47]. For wheat grain nutrition quality, protein content is of key
significance [48]. It has been noted that SCS limits the production of nitrogen compounds
and nonstructural carbohydrates, which decreases the transit of protein and total soluble
sugar from stems into grains, resulting in a decline in wheat quality [36]. Under low
temperatures at the booting stage, the mean accumulation of total protein decreased by
4.8–6.9%, albumin by 5.8–9.6%, globulin by 8.4–15.4%, gliadin by 13.2–18.4%, and glutenin
by 17.8–29.1% [49]. In addition to this, reductions in the concentrations of amylose, amy-
lopectin and total starch were also observed under different low-temperature levels [46].
According to a recent report, the total starch in wheat grains, as well as the rate of accumu-
lation of straight-chain and branched-chain starch, were closely related to the activities of
starch branching enzyme (SBE), soluble starch synthase (SSS), granule-bound starch syn-
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thase (GBSS) and adenosine diphosphate glucose pyrophosphorylase (AGPase) [50], while
the activity of essential starch synthesis enzymes is particularly sensitive to SCS during
grain development [51]. The low temperature during the reproductive stage decreased the
activities of crucial starch synthesis enzymes (AGPase, SSS, GBSS, and SBE) in the grain,
thereby reducing the accumulation of starch, resulting in a decreasing grain quality [52].

3. Physiological Mechanism of Controlling Wheat Resistance to Cold Stress
3.1. Protective Enzymes for Oxidation

Cold stress often leads to excess accumulation of reactive oxygen species (ROS) such as
superoxide radical (O2−) and hydrogen peroxide (H2O2), which causes oxidative damage
to DNA, proteins, and lipids, leading to the inhibition of wheat seed development [53,54].
Hence, the balanced ROS production level was achieved at the intracellular level which
promotes the normal growth, development, and cellular metabolism (Figure 3) [55].

The activation of subcellular antioxidant mechanisms can provide some resistance to
SCS in wheat while also decreasing oxidative burst in the photosynthesis machinery [56].
Activities of antioxidant enzymes, such as peroxidase (POD), superoxide dismutase (SOD),
and catalase (CAT), play an essential role in protecting plants from oxidative damage by
ROS scavenging [57,58]. Several studies have reported that alterations in the activity of
numerous antioxidant defense system enzymes help plants to handle oxidative stress in
wheat [59,60]. For example, cold stress (4 ◦C and −4 ◦C) increased the activity of SOD
by 6.8–68.3%, POD by 16.6–69.4%, CAT by 6.0–53.8% in a wheat spikelet, compared to
optimum temperature (16 ◦C) [61]. Furthermore, antioxidant chemicals, including proline,
glutathione (GSH) and ascorbic acid (AsA), also play critical roles in protecting plants from
ROS damage caused by cold stress [62]. Under SCS, the accumulation of proline eliminates
oxygen free radicals, which balances the osmotic pattern in the cell, and maintains the
normal state of the membrane [63]. For example, the application of exogenous proline
improved wheat’s cold tolerance, due to the increased accumulation of free proline and
sucrose, by coordinating carbon and nitrogen metabolism [64]. It is noted that the AsA–GSH
cycle, including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), and glutathione reductase (GR), are very effective in
improving wheat cold tolerance, particularly to ROS stress [65]. For example, AsA could
induce the up-regulation of diverse antioxidants (super oxide dismutase (SOD), peroxidase
(POD), and catalase (CAT)), thus offsetting the adverse effects of cold stress at early and
reproductive stages of wheat [66].

Another key mechanism in plant cold stress responses is the regulation of transcription
by endogenous hormones and ROS [67]. Once induced by cold stress, hormones change
the ROS levels due to increasing transcription or talking about post-translational modi-
fication/activation of proteins and transforming ROS signaling [68]. For instance, it has
been demonstrated that the ROS generated by RBOHs mediates an interaction between
ABA and BRs, enhancing cold tolerance in Arabidopsis [69]. According to a recent study, the
application of exogenous BRs increased antioxidant capability, directing the reduction of
oxidative damage caused by ROS bursts [70].
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Figure 3. Overview of wheat responses to spring cold stress, which induces several protective
measures to regulate grain setting and quality. Firstly, cold stress triggers multiple channel activation
leading to the increased ABA, Ca2+ and ROS concentrations in the cytosol. The main components in
the core ABA signaling transduction pathway include ABA receptor TaPYL5, TaPP2C, TaSnRKs, and
the Ca2+ signaling transduction pathway include TaCDPKs, TaCML, TaCaM, which have a positive
regulation of cold stress. Secondly, component changes in the MAPK cascade pathway were influenced
by the activation of the ABA, ROS and Ca2+ pathway. Thirdly, cold stress response-induced signal
transduction leads to the activation of multiple transcription factors, thereby regulating the metabolic
hormone, protein, sucrose and antioxidant pathway. These alterations mitigate cell membrane damage
and regulate intracellular osmotic balance, preventing the loss of grain yield and quality.

3.2. Carbohydrate Metabolism

Carbohydrate metabolism plays an essential role in energy availability for plant
development and also has a role in temperature acclimation [71]. In plants, several soluble
sugars, such as sucrose, glucose, sucrose, fructose, raffinose and trehalose, act as biofilm
protectors by interacting with the lipid bilayer. This interaction has a role in reducing
membrane damage, as the sugars function as osmoprotectants and provide adaption to the
cold environment [72,73].

The soluble sugars sucrose, glucose, trehalose, and fructose start accumulating in re-
sponse to cold stress, enhancing cold tolerance during the reproductive stage of crops [74].
For instance, the buildup of soluble sugars under SCS can raise the amount of proline, which
controls osmotic pressure, scavenges reactive oxygen species, and stabilizes biomolecule
structure, reducing low-temperature damage [75,76]. Fructans, which are highly water
soluble, act as osmoregulatory substances to prevent the formation of ice crystals in the
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cytoplasm and improve biofilm stability, enhancing crop cold tolerance [77]. Recent re-
search has confirmed a high correlation between fructan accumulation and cold tolerance
due to increasing transcript levels of the Cor (cold-responsive)/Lea (late-embryogenesis-
abundant), C-repeat-binding factor (CBF), and fructan biosynthesis-related genes in the
wheat family [77]. Trehalose has been found to act as an osmoprotectant, and stabilizes
protein integrity in plants [78]. Importantly, exogenous trehalose prevented floret degener-
ation under low-temperature conditions and increased floret fertility in young spikelets,
minimized any loss in grain number per spike [43].

Recently, the Sugars Will Eventually be Exported Transporters (SWEETs) have been
reported to regulate abiotic stress tolerance, sugar transport, plant growth and develop-
ment [79]. The SWEETs also play vital roles in oxidative and osmotic stress tolerance [80].
In wheat, the genome-wide analysis revealed 105 SWEETs, and 59% exhibited significant
expression changes under abiotic stresses [81]. Importantly, AtSWEET16 and AtSWEET17
are two bidirectional vesicular fructose transporters that maintain glycan homeostasis and
promote the accumulation of fructose in vacuoles, which may be beneficial in stress toler-
ance responses [82,83]. A further understanding of sugar metabolism and transport will
be key in reducing any sugar starvation in crop reproductive development and enhancing
seed setting rate.

3.3. Hormones and Ca2+ Signals

Plants adapt to environmental changes in low-temperature settings by a sequence
of cellular reactions triggered by signaling molecules (e.g., hormone signals, Ca2+ signal),
which result in plant defense and adaptability to adverse conditions [84,85]. Plant hor-
mones, such as abscisic acid (ABA) [86], jasmonic acid (JA) [87], and salicylic acid (SA) [88],
have been reported to play a significant role in regulating grain quality. Past findings
revealed that many plants experience higher endogenous ABA levels in response to cold
stress [89,90]. In wheat, the application of exogenous ABA is reported to enhance cold
tolerance by increasing the activities of antioxidant enzymes and reducing H2O2 contents
under cold stress [91]. In particular, ABA-dependent gene expression, which includes the
ABA receptors, protein phosphatases type-2C (PP2Cs), Snf1-related kinase 2s (SnRK2s),
and AREB/ABF regulon, controlled by the raised ABA levels, helped plants adapt to abiotic
stress cold stress [92]. According to Zhang et al. (2018), the significant up-regulation of
the SnRK2.11, serine/threonine-protein kinase and serine/threonine-protein phosphatase
PP1-like was considered to be a significant reason for improving cold tolerance in wheat
during the reproductive stage [28]. These genes were believed to function in ABA signaling
in guard cells.

Additionally, JA also plays a mediating role in synthesis and signaling to mediate
low-temperature tolerance [93]. For instance, endogenous JA levels were found to be
increased in wheat [94], rice [95], and Arabidopsis [96], enhancing the frost resistance of
crops. JA functions as an upstream signal of the ICE-CBF pathway, positively modulating
freezing responses [97]. JAZ1 and JAZ4 are JA signaling negative regulators interacting
with ICE1 and ICE2 to repress their transcriptional activity [98]. Subsequently, they regulate
the expression of CBF and other low-temperature responsive genes, thus affecting wheat
cold resistance [97].

It is well known that SA plays a vital role in responding to abiotic stresses, apart
from regulating crop growth, ripening and development [98,99]. SA activates the active
oxygen species before low-temperature exposure; it promotes an increase in antioxidant
enzyme activity and higher mRNA content of TaFeSOD, TaMnSOD, TaCAT gene transcripts,
and free Proline after SCS [100]. Freezing stress during the reproductive stage shows
salicylic acid-primed wheat up-regulated the expression level of the WRKY gene (WRKY19),
heat shock transcription factor (HSF3), mitochondrial alternative oxidase (AOX1a), and
heat shock protein (HSP70), which contributes to increasing of antioxidant capacity and
protection of photosystem in parallel with lower malonaldehyde content, superoxide radical
production as compared with non-primed wheat [101]. Further research has demonstrated
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that SA treatment reduces ice nucleate and induces anti-freezing protein, which inhibits
the formation of ice crystals in plant cells [88].

Ca2+ is an essential secondary messenger in plants in response to cold stress [102].
Ca2+ sensors such as calmodulins (CaMs), CaM-like proteins (CMLs), Ca2+-dependent
protein kinases (CPKs/CDPKs), and calcineurin B-like proteins (CBLs) are the primary
transmitters of the Ca2+ signal that is induced by cold stress [103–105]. For example,
OsCPK27, OsCPK25, and OsCPK17 activated MAPK, ROS, and nitric oxide pathways in
response to cold stress [85,106]. Recently, genome-wide identification and expression
analysis also show that 18 TaCaM and 230 TaCML gene members were identified in the
wheat genome, and TaCML17, 21, 30, 50, 59 and 75 were identified related with responses
to cold stress in wheat [107].

3.4. Transcription Factors

Wheat genomes contain a large number of transcription factors that play impor-
tant roles in cold-stress biological processes, including CBF [108], basic leucine zipper
(bZIP) [109], MYB [110], and NAC [111].

The ICE-CBF-COR signaling pathway is widely recognized as essential for cold adap-
tation [112]. The receptor protein detects cold stress and initiates signal transduction,
activating and regulating the ICE gene, which up-regulates the transcription and expres-
sion of the CBF gene [113]. In wheat, five ICE genes, 37 CBF genes and 11 COR genes were
discovered in the wheat genome database [114]. Wheat CBF genes have been demonstrated
to improve cold tolerance in other plants, as shown with transgenic barley containing
TaCBF14 and TaCBF15 genes [115]. A vast variety of transcription factors are also important,
such as CBF1, CBF2, and CBF3 [116] and C-type repeats (CTR) [117], which play crucial
roles in the biological processes of abiotic stressors in wheat. Previous studies reported
that cold-regulated transcriptional activator CBF3 positively regulates cold stress responses
in wheat [118]. The RNA-seq data and qRT-PCR revealed that the ICE, CBF, and COR
genes have varying expression patterns in different wheat organs, with ICE genes mainly
up-regulated in the grain, CBF in the root and stem, and COR in the leaf and grain [114].
All these results show that the ICE–CBF–COR cascade plays a crucial role in the response
of wheat to cold stress (Figure 3).

The bZIP genes are involved in important regulatory processes of plant growth and
physiological metabolisms, such as promoting anthocyanin accumulation [119] and other
signals [120]. Similarly, the bZIP gene also has a variety of biological functions under abiotic
stress, and 187 bZIP genes have been predicted in wheat [121]. And the majority of bZIPs
linked to frost tolerance in plants are positive regulators [122]. For example, phenotypic
analysis and related physiological indicators of cold resistance showed that overexpression
of TaABI5 could enhance cold resistance [109]. In recent years, 15 bZIP genes with variable
expression were found in early wheat spikes, and most showed an increase in in expression
in response to SCS [123]. Furthermore, the bZIP genes are involved in ABA signaling and
play a role in responding to freezing stress in the later stage of wheat [109]. Similarly, MYB
and NAC are crucial in controlling plant growth and cold stress responses [110,124].

4. Breeding Strategies to Develop SCS-Resistant Wheat

Superior wheat genotypes are needed for SCS resistance, which will be made possible
by breeding cold-resistant cultivars that maintain yield stability and high quality [125].
Appropriate measures need to be taken to cope with the consequences of SCS in wheat
during the reproductive stage, to improve crop yield and quality. Strategies to strengthen
SCS resistance include selecting cold-tolerance cultivars, identifying QTL/genes, and
exploiting closely linked markers in wheat.

4.1. QTLs Associated with Cold Resistance

Genetic components such as QTLs have great potential to accelerate traditional breed-
ing processes [126]. QTLs related to cold tolerance and the underlying molecular mecha-
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nisms have been thoroughly studied in wheat [127,128]. There are loci for cold resistance
on 1B, 1D, 2B, 2D, 4D, 5A, 5D, and 7A, with 5A and 5D suspected to carry significant genes
of interest [129,130]. Wheat chromosome 5A plays a key role in cold acclimation and frost
tolerance [119]. Three key genes responsible for SCS tolerance, Fr-1 (e.g., Fr-A1, Fr-B1) and
Fr-2 (e.g., Fr-D1), were located on chromosomes 5A, 5B, and 5D [131,132], with two loci
being mapped within a distance of approximately 30 cM [118]. The Fr-1 maps close to
the vernalization locus Vernalization-1 (Vrn-1), so they showed highly homologous [133].
The Vrn1 acts as a positive regulator of vernalization and regulates the transition from
vegetative to reproductive growth in wheat [134]. The Fr-Am2 locus is made up of a group
of eleven CBF genes that are activated during vernalization, which in turn activate the COR
genes necessary for enhanced cold tolerance of wheat [135,136].

Genome-wide association studies (GWAS) of traits related to wheat resistance and
tolerance are essential to understanding their genetic structure for improving breeding
selection efficiency [137]. 23 QTL regions located on 11 chromosomes (1A, 1B, 2A, 2B, 2D,
3A, 3D, 4A, 5A, 5B and 7D) were detected for frost tolerance in 276 winter wheat genotypes
by GWAS, eight novel QTLs were discovered on chromosomes 1B, 2D, 3A, 3D, 4A and
7D [129]. Eighty SNP loci distributed in all the 21 chromosomes were associated with the
resistance of SCS with 16.6–36.2% phenotypic variation by GWAS, six loci of these were
stable loci with more than two traits, and multiple superior alleles were obtained from the
associated loci related to SCS traits [138]. Nevertheless, the majority of the QTL intervals
for low-temperature tolerance reported by GWAS are still huge, and there are too many
candidate genes; the causal genes for cold tolerance are still challenging to find.

Of the different genome editing approaches, CRISPR/Cas9 genome editing module
has evolved as a successful tool in modulating genes essential for developing high-stress
resistance of crops [139]. Meanwhile, CRISPR/Cas9 allows the manipulation of the wheat
genome for improved agronomic performance, resistance to biotic and abiotic stresses,
higher yields, and better grain quality [140]. For example, Tian et al. (2013) [141] cloned
TaSnRK2.3, then further determined its expression patterns under freezing stresses in wheat
emerging and characterized its function in Arabidopsis. Overexpression of TaSnRK2.3
significantly enhanced tolerance to freezing stress, enhancing the expression of cold stress-
responsive genes and ameliorating physiological indices [141]. Additionally, it showed that
overexpressing TaFBA-A10 led to the increased activity of FBA, as well as regulating key
enzymes in the Calvin cycle and the glycolysis rate to enhance cold tolerance of wheat [142].
Therefore, acceptance and utilization of new plant breeding technologies involving genome
editing confer opportunities for sustainable agriculture and ensure global food security.

4.2. Cultivars for SCS Resistance Based on Agronomic Traits

Wheat yield is associated with several agronomic traits which have been used to
make better cultivars, increasing the yield and quality of wheat [143]. Given the high
heritability of the traits and the relevance of wheat yield, agronomic traits can be used as
selection criteria in breeding and cultivar development (Table 2) [144]. Cold stress affects
agronomic traits at every developmental stage, but the reproductive stages are relatively
more sensitive [145]. Specifically, cold stress affects the development of young spikes
and flowers, grain characteristics and quality [146,147]. Some researchers have classified
inversions into five major categories based on the degree of damage to the spikelet: grade
1 for no apparent frost damage, grade 2 for frost damage less than 1/3, grade 3 for frost
damage between 1/3 and 1/2, grade 4 for frost damage greater than 1/2, and grade 5 for
all young spikes that died from freezing [148]. Similarly, frost damage also impaired stem
development, resulting in lower plant height and a decrease number of spikes [149]. For
example, using the dead stem rate to classify 120 wheat cultivars into five classes of very
strong, moderate, weak and very weak, and determining the criteria for categorizing wheat
spring frost resistance evaluation classes [150].
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Table 2. Tolerant and sensitive wheat genotypes and their performances in response to spring cold stress.

Selected
Indicators Cold Stress Method Growth Phase Tolerant Genotypes Performance of Tolerant

Genotypes Sensitive Genotypes Performance of
Sensitive Genotypes References

Agronomic traits
Cryogenic incubator
and solar thermal
chamber

The anther
seperation stage

Shannong 7859,
Beijing 841, Jinmai 47,
Xinmai 9, Yumai 49.

TSR ≥ 0.90
Neixiang 188,
Zhengmai 7698,
Xinong 889

TSR < 0.70 [138]

Agronomic traits Field nature
identification 1th to 15th in March

Yannong 5158,
Huaimai 28, Huaimai
33, Jinan 17, Fanmai
5, Yannong 19,
Xumai 35

Higher plant height (PH),
larger grain number of main
stem spike (GNMSS), GYPP,
heavier grain yield per plant,
stronger cold resistance, and
better comprehensive
agronomic traits

Jimai22, Huaimai22,
Jinan17, Guomai9
Liangxing66,
Zhoumai27, SXM208

Fewer GNMSS, lighter
TKW, lower GYPP, weak
cold resistance, and poor
comprehensive
agronomic traits

[151]

Agronomic traits Field nature
identification 5th to 7th in April Bainong 207, Xinong

511

Low frozen spikelet rate, and
high rate of seed setting of
frozen spikelet

Zhengmai 366,
Fengdecunmai 5

High frozen spikelet rate,
and low rate of seed
setting of frozen spikelet

[148]

Agronomic traits Artificial chamber 3th in April Yannong19

The correlation between GBSS
activity, the starch content and
the thousand kernel weight
was highly significant

Yangmai18

The correlation between
GBSS activity, the starch
content and the
thousand kernel weight
was not significant

[52]

Agronomic traits Artificial chamber

From pistil and
stamen primordia
differentiation stage
to anthesis stage

Jimai22, Yannong19 Low dead stem rate and few
residual spikes

Zhengmai8329,
Wanmai50,
Zhengmai366, Xian8

High rate of dead stems
and many residual
spikes

[147]

Physiological
traits

Intelligent
biochemical
incubator

Jointing and booting
stage Taishan 6426

Photosynthesis rate (Pn),
Transpiration rate (Tr) and
Stomatal conductance (Gs)
were decreased, and Internal
CO2 concentration (Ci)
increased

Taishan 4033, Jimai22

Pn, Tr and Gs decreased,
and Ci were significantly
decreased, and Ci
increased significantly
overall, and Fv/Fm
decreased significantly

[152]

Physiological
traits

Cryogenic incubator
and solar thermal
chamber

The young
microspore stage Young

Control the unsaturated lipid
levels to maintain membrane
fluidity

Wyalkatchem [13]
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Moreover, biomass accumulation is also a significant source of grain yield and a growth
process sensitive to cold stress [150]. The SCS has adverse effects on several wheat metrics,
including the mean leaf area index (MLAI), mean net assimilation rate (MNAR), harvest index
(HI), biomass per plant (BPPM), and grain yield per plant (GYPP) [35]. These metrics can be
utilized in wheat breeding programs to assist in developing cold-tolerant varieties.

4.3. Cultivars for SCS Resistance Based on Molecular Traits

It is critical for breeding to understand the physiological features linked to genetic
improvements in yield and quality [153]. When SCS harms wheat, a variety of compli-
cated physiological and biochemical changes take place inside the plant that has an impact
on yield and quality. Reactive oxygen [154], MDA content, antioxidant enzyme activ-
ity [56], carbohydrates [155], osmoregulatory substances [87], hormone content [91], starch
content [156], and photosynthesis [157] are often used as physiological and biochemical
indicators for wheat inversion identification (Table 2). According to Zhang et al. (2019),
the quantity of wheat-bearing grain can be considered to determine POD activity, SOD
activity, and MDA level as indices of wheat cold resistance [158]. To determine the extent of
freezing damage, Wang et al. (2022) used principal component-affiliate function-stepwise
regression analysis to screen seven important physiological indicators: chlorophyll a, leaf
water content, proline, Fv/Fm, soluble protein, MDA, and SOD. The equation coefficient of
determination between the predicted value of the integrated index of freezing damage and
yield established from this reached 0.898 [159]. Following an abrupt temperature drop, it
was discovered that in cold-tolerant wheat cultivars, the expression of genes encoding an-
tioxidant enzymes increased, antioxidant enzyme activity was improved, and ROS content
was decreased, whereas ROS content was higher, and some leaves died in cold-sensitive
wheat cultivars [160].

To enhance wheat tolerance to SCS and improve sustainability, many researchers
focus on understanding the key molecular targets, regulatory pathways and signaling
designed for genotype–environment interactions [161,162]. As an important research
tool for functional genes, transcriptome sequencing has been employed in regulatory
network investigations of plants under abiotic stress [163]. In wheat, 450 genes were
found to have altered transcript abundance following 14 low-temperature treatments,
including 130 candidates for transcription factors, protein kinases, ubiquitin ligases, GTP,
RNA, and Ca2+ binding proteins genes [164]. Transcriptome sequencing of cold stress
during reproductive stages in wheat identified 562 up-regulated, and 314 down-regulated
differentially expressed genes, and these genes were mainly involved in photosynthesis,
lipid and carbohydrate synthesis, amino acid and protein accumulation [165]. According
to transcriptomics and metabolomics analysis, the ABA/JA phytohormone signaling and
proline biosynthesis pathways play an important role in regulating cold tolerance in
wheat [94]. Transcription is only part of the response; many researchers also employ
proteomics for in-depth analysis of protein changes, offering global analysis of protein
accumulation [166]. Proteomic analysis has been carried out in wheat under SCS [167], with
various proteins being identified as having a role in cold tolerance, providing protection
against cold damage [168]. For instance, the proteomic analysis of wheat under low
temperatures revealed an upregulation of the expression of proteins involved in signal
transduction, carbohydrate metabolism, stress and defense responses, and phenylpropane
biosynthesis [169].

5. Conclusions and Future Perspectives

SCS incidents more often occur under changing climatic conditions, causing a serious
threat to wheat reproductive tissues and grain production. The SCS is detrimental to the
development of the floret and spikelet in wheat; thus, compromising the grain number and
quality. A premium cultivar tolerating SCS is a prerequisite for sustaining wheat farming.
The review shows that the protection of young, tender spikelet issues in wheat from cold
stress impacts was mainly dependent on the collective contribution of antioxidant enzyme
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activity, carbohydrate accumulation, hormone signaling and transcriptional regulation. The
effort of breeding cultivars with simple agronomic and morpho-physiological traits has
been made in coping with cold stress, which should be improved by identifying novel SCS-
tolerant QTLs or genes with regards to floret and spikelet development in new breeding
strategies which embrace fundamental mechanisms. Further studies on multi-omics, from
genomics to phenomics, to identify the genes regulating cold tolerance will be necessary
for future breeding programs.
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