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Abstract: To mitigate the dependence on fossil fuels and the associated global warming issues,
numerous studies have focused on the development of eco-friendly energy conversion devices such
as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into
electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs)
should have high proton conductivity and outstanding physicochemical stability during operation.
Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based
PEMs composed of rationally designed polymer structures are found to meet these criteria, there
is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical
PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the
methods shown to be effective for controlling target PEM properties including thermal stability,
mechanical properties, and physical stability, as well as proton conductivity. Functionalization of
organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in
significant improvements to PEM properties. This review focused on the structural engineering
of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties.
Newly constructed composite membranes were compared to composite membrane containing non-
functionalized fillers or pure polymer matrix membrane without fillers.

Keywords: polymer electrolyte membrane fuel cell; polymer electrolyte membrane; organic/inorganic
composite membrane; composite materials; carbon nanotubes; graphene oxides; silica

1. Introduction

The polymer electrolyte membrane fuel cell (PEMFC) is considered one of the most
promising fuel cell systems due to its high efficiency and fast start-up [1]. During the
operation of PEMFCs, hydrogen as a fuel, is oxidized to protons and electrons at the anode,
and the electrons then move through an external circuit to generate electricity. At the
same time, protons are transported through a polymer electrolyte membrane (PEM) to
the cathode, and water is produced by a reduction reaction with oxygen fed at the cath-
ode (Figure 1) [2]. Among the PEMFCs components, PEMs which serve as separators as
well as an electrolyte that selectively transports protons from the anode to the cathode,
have been considered a key component. To achieve outstanding PEMFC performance
during long-term operation, PEMs need to have high proton conductivity and superior
physicochemical stability. Currently, perfluorinated sulfonic acid (PFSA)-based PEMs,
such as Nafion® (DuPont), Gore-Select® (Gore), Flemion® (Asahi Glass), Aciplex® (Asahi
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Chemical), Aquivion® (Solvay), and Fumapem® (Fumatech) have been applied in commer-
cial PEMFC systems [3–5]. The reasons underlying the use of PFSA polymers (shown in
Figure 2) are; (1) the hydrophobic perfluoro backbone with strong C-F bonding force, allows
high physicochemical stability under harsh operating conditions; and (2) the flexible side
chains containing highly acidic fluorosulfonic acid groups lead to high proton conductivity
even under low humidity conditions by facilitating ionic cluster formation through a phase
separated structure between the hydrophobic polymer backbone and hydrophilic side
chain [6,7]. Despite these attributes, these PEMs have a number of shortcomings including
limited operating temperatures due to their low glass transition temperatures, significant
manufacturing costs, and severe gas cross-over [8,9].
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A number of studies are underway to address these drawbacks, including some that
are investigating the application of hydrocarbon-based PEMs to PEMFCs. Hydrocarbon-
based PEMs are found to have high thermal stability and mechanical strength because
the chemical structures of the polymer backbones are similar to well-known engineering
plastics and are revealed to have low gas permeability given their high crystallinity [10–12].
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Furthermore, the synthetic process is relatively simple compared to that of the PFSA poly-
mers, and the polymer structure can be easily functionalized, allowing tunable structures
while keeping the manufacturing costs low. However, sulfonated poly(arylene ether sul-
fone) (SPAES), sulfonated poly(ether ether ketone) (SPEEK), and sulfonated polyimide
(SPI), which are well-known hydrocarbon polymers, are composed primarily of aromatic
rings, and their respective main chains are not flexible enough to form ionic clusters by
chain segmental motion (Table 1) [2]. In addition, since the proton conducting groups of
those polymers (i.e., sulfonic acid groups) are directly attached to the stiff main chains,
the formation of ionic clusters by the hydrophobic/hydrophilic phase separation is more
difficult, and thus the proton conductivity of the hydrocarbon-based PEMs is relatively
lower than that of PFSA-based PEMs. Accordingly, research has been conducted to improve
proton conductivity by increasing the degree of sulfonation (DS) of the hydrocarbon poly-
mers. However, water uptake of PEMs increases with the DS, which leads to degradation
of physical stabilities (e.g., dimensional stability and mechanical strength) and to limit
their application in PEMFCs due to the excessive swelling-deswelling behavior under
actual operating conditions [13,14]. Another downside to hydrocarbon-based PEMs is low
chemical stability due to the chemically unstable heteroatoms located in polymer backbones
which are prone to attack by reactive oxygen species (ROS) produced during the fuel cell
operation [15,16].

Table 1. Representative hydrocarbon-based polymer used in polymer electrolyte membrane fuel cells.
Adapted with permission from [2]. Copyright 2020, KoreaScience.
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To resolve the aforementioned issues associated with both PFSA- and hydrocarbon-
based PEMs, various studies have reported on the control of respective polymer architec-
tures, the introduction of pore-filling or cross-linking concepts during the PEM fabrication,
and the incorporation of organic/inorganic composite materials for the development of
composite membranes [17–22]. Among these, the incorporation of composite materials
is regarded as one of the simpler and more effective strategies for enhancing the original
properties of respective pure PFSA-based or hydrocarbon-based PEMs. The incorporation
of carbon nanomaterials, such as carbon nanotubes (CNTs), graphene, and graphene oxides
(GOs) has also been reported as a means of creating alternative composites to improve
the physicochemical and thermal stability of their corresponding polymer matrix mem-
branes [23–28]. Furthermore, composite membranes using inorganic composites including
silica (SiO2), titanium dioxide (TiO2), cerium dioxide (CeO2), zirconium dioxide (ZrO2), and
montmorillonite (MMT) into the polymer matrix have been also reported to increase the
water absorption and retention behavior, as well as physical stability of the pure polymer
matrix membranes [29–38].
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Nevertheless, the dispersion characteristics of the composites are still problematic.
When the chemically or physically non-functionalized composites are introduced into the
polymer matrix, the agglomerated domains of composites are easily observed due to the
low compatibility between the non-functionalized composites and the polymer matrix,
resulting in impairment of PEM properties including mechanical strength, chemical stability,
and proton conductivity [39]. To resolve these problems, studies have been conducted
on the surface modifications to the composites via chemical treatment and/or grafting of
functional groups or polymers. The aim being to increase the interfacial compatibility with
the polymer matrix, resulting in enhanced PEM properties by synergistically increasing
the interfacial interaction (Figure 3) [40–45]. Therefore, this review focused on recent
trends in the development of high-performance composite membranes used in PEMFCs
through incorporating functionalized fillers. The detailed modification procedures of
functionalized CNT, GO, and SiO2 were also described. To the best of our knowledge, this
is the first review to summarized the respective strategies for the development of PFSA- and
hydrocarbon-based composite membranes by incorporating functionalized composites.
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2. Composite Membranes Used in PEMFCs
2.1. Composite Membranes with Functionalized Carbon Nanotubes

Carbon isotopes have been gaining significant attention in various fields given their
abundant availability, easy processability, excellent stability, and environmental adapt-
ability [46]. In particular, CNT, graphene, and GO are widely used as functional fillers
to improve the performance of polymer composites [47]. CNTs have a structure, in
which carbon atoms form a long cylindrical shape through the sp2 covalent bonding
with graphite/graphene sheets rolled into tubes with nano scale diameters [48]. Depending
on the number of sheets, CNTs can be classified as single-walled carbon nanotubes (SWC-
NTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes
(MWCNTs) [49]. CNTs exhibit excellent thermal, mechanical, and electrical properties,
and low weight density [50,51]. Given these characteristics, they have been extensively
tested for use as fillers for polymer composites to improve performances in various applica-
tions [52–60]. However, since the aspect ratio of CNTs is very high, the Van der Waals forces
between intermolecular CNTs is significant. Therefore, CNTs without physical or chemical
treatment tend to aggregate with each other, resulting in low dispersion behavior and
poor compatibility with polymer matrices when they are introduced in polymer composite
systems [61–64]. To solve this problem, a number of organic functional groups or functional
polymers have been introduced to the CNT surfaces to improve not only compatibility
with the polymer matrix, but also PEM properties including proton conductivity, physical
stability, and chemical stability [65–75].

2.1.1. PFSA-Based Composite Membranes with Functionalized Carbon Nanotubes

To address the limitations of pure PFSA-based PEMs in PEMFC systems as described
in the introduction, studies have reported improvements in performance and durability
characteristics by preparing composite membranes with functionalized CNTs. Represen-
tatively, N. J Steffy et al. fabricated Nafion/sulfonated multi-walled carbon nanotube
(sMWCNT) composite membranes using sMWCNT as a proton conducting filler prepared
by grafting 4-benzendiazonium sulfonic acid onto the surfaces of MWCNT (Figure 4) [76].
The chemical structure and the content of sulfonic acid groups of sMWCNT were confirmed
by X-ray powder diffraction (XRD), raman spectroscopy, energy dispersive X-ray spec-
troscope (EDS), field emission scanning electron micro-scope (FE-SEM) and transmission
electron microscopy (TEM). The Nafion/sMWCNT composite membrane (23.0 mS cm−1)
showed 11-fold higher proton conductivity value than recast Nafion (2.0 mS cm−1) under
high-temperature and low relative humidity conditions of 80 ◦C and 20% RH (Table 2). This
was due to the incorporation of additional sulfonic acid groups in sMWCNT increasing
the water absorption behavior, while sMWCNT promotes the formation of ion conduct-
ing channels with the sulfonic acid groups in the Nafion matrix. When the content of
sMWCNT was increased to greater than 0.5 wt.%, however, both the water uptake and
proton conductivity values of the composite membranes were smaller than those of the
recast Nafion, due to the agglomeration behavior of sMWCNT. These results indicated
that the addition of an optimized content of sMWCNT containing the aryl sulfonic acid
groups could enhance the PEM properties of Nafion-based composite membrane system
by increasing the compatibility and thereby forming effective proton conducting channels.
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Table 2. Water uptake and proton conductivity of membranes. Adapted with permission from [76].
Copyright 2018, Elsevier.

Sample Water Uptake a

(%)

Proton Conductivity b (mS cm−1)

20% RH 80% RH

Nafion/sMWCNT (0.125 wt.%) 17.2 8.0 180
Nafion/sMWCNT (0.25 wt.%) 29.3 23.0 198
Nafion/sMWCNT (0.5 wt.%) 16.4 6.0 165

Recast Nafion 15.8 2.0 160
a Measured at room temperature. b Proton conductivity at 60 ◦C.

Mahdi Tohidian et al. introduced imidazole and sulfonic acid groups on the surface
of MWCNTs, respectively, to prepare imidazole-MWCNT (MWCNT-Im) and sulfonated-
MWCNT (MWCNT-SO3H). Each of these composites was added to Nafion dispersions to de-
velop Nafion/MWCNT-Im and Nafion/MWCNT-SO3H composite membranes (Figure 5) [77].
The water uptake and proton conductivity of the Nafion/MWCNT-SO3H composite mem-
branes were higher than those of the recast Nafion due to the additional sulfonic acid groups.
Although the basic imidazole groups possibly decrease the ion exchange capacity (IEC) of
the membrane introduced in the composite membrane system, the Nafion/MWCNT-Im
composite membrane revealed better proton conductivity than the recast Nafion due to
enhanced proton transportation by the acid-base interaction between the positively charged
imidazole groups on the surface of the MWCNT and the negatively charged sulfonic acid
groups in Nafion forming proton hopping channels through the Grotthuss mechanism.
Notably the Nafion/MWCNT-Im composite membrane showed the highest proton con-
ductivity and physical stability (e.g., swelling ratio and mechanical strength) among the
prepared samples. These results demonstrated that well-dispersed basic functional groups
in an acidic polymer matrix using MWCNT can effectively increase the proton conductivity
but also physical stability.
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2.1.2. Hydrocarbon-Based Composite Membranes with Functionalized Carbon Nanotubes

The major problems with hydrocarbon-based PEMs in PEMFC applications are the
rapid drop of proton conductivity under low RH conditions (≤50% RH) and the dete-
rioration of physicochemical properties (e.g., mechanical strength, swelling ratio, and
oxidative stability) as the degree of sulfonation is increase. In order to improve these
PEM properties, many studies have been conducted on the incorporation of function-
alized carbon-based fillers into the hydrocarbon-based polymers. Representatively, In
Hyouk Sung et al. reported the effect of a hydrophilic oligomer grafted CNT on sulfonated
hydrocarbon-based composite membrane used in a PEMFC system [78]. A hydrophilic
oligomer, sulfonated poly(arylene ether sulfone) with DS of 100 mol% (SPAES100), was syn-
thesized by condensation polymerization using sulfonated dihalo monomer and biphenol.
Then, SPAES100 was grafted on CNT by nucleophilic substitution to prepare hydrophilic
oligomer-graft-CNT (HNT) (Figure 6). SPAES with DS of 50 mol% (SPAES50) was prepared
as the hydrocarbon-based polymer matrix in the composite membrane system, and the
HNT impregnated composite membrane (SPAES/HNT) was prepared by general solvent
casting method via dispersing the optimal weight content of HNT in the SPAES50 solution.
Since the SPAES100 oligomer in HNT has a similar structure with the polymer matrix
(SPAES50), the compatibility issues inducing decrements in PEM properties were not found
in SPAES/HNT membrane compared to the SPAES/CNT membrane. Furthermore, the
low proton conductivity of general hydrocarbon-based PEMs at high temperature and low
RH condition is improved considerably by the addition of HNT. The proton conductivity
value of the SPAES/HNT membrane was about 38% larger than that of the pure SPAES50
membrane at 80 ◦C and 50% RH by forming additional ion conducting channels between
HNT and SPAES50. The increased water uptake of the SPAES/HNT membrane also sup-
ported better formation of ionic clusters compared to the pure SPAES50 membrane. These
results demonstrated that preparation of functional fillers having a similar structure to the
polymer matrix can effectively increase the dispersity and thus enhance PEM properties.
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Ae Rhan Kim et al. prepared amine-functionalized CNT (ACNT) by grafting 3-
aminopropyltriethoxysilane onto CNT with high carboxylic acid content (CCNT), through
a condensation reaction. Then, two different types of SPEEK-based composite membranes
were prepared by using ACNT and CNT as fillers to investigate the effect of ACNT on
hydrocarbon-based composite membrane systems (Figure 7) [79]. As expected, CNT with-
out any modification was found to aggregate due to the strong intermolecular Van der Waals
forces [80,81]. On the other hand, ACNTs exhibited high dispersity when prepared in apro-
tic solvents due to the electrostatic repulsion caused by the amine (-NH2) groups [82]. The
presence of electrostatic interactions between the amine groups of ACNT and the sulfonic
acid groups of the SPEEK matrix, further improved the compatibility in the SPEEK/ACNT
composite membrane compared to the SPEEK/CNT composite membrane. Therefore, the
SPEEK/ACNT composite membrane showed much improved thermal and mechanical
stability compared to the pure SPEEK membrane, although the SPEEK/CNT composite
membrane exhibited worse properties. Furthermore, as described for MWCNT-Im in
Section 2.1.1, similar proton conductivity behavior was observed when ACNT with basic
amine groups introduced. The addition of ACNT improved the proton conductivity of the
SPEEK-based PEM about 2-fold under high temperature and low RH conditions (80 ◦C and
20% RH) by creating and an additional proton hopping site that can reduce the activation
energy for proton transport. These results indicated that the incorporation of CNT with
basic functional groups was also an effective strategy for hydrocarbon-based composite
membrane systems. The representative PEM properties including IEC, water uptake and
proton conductivity of the composite membranes described in above are summarized in
Table 3.



Int. J. Mol. Sci. 2022, 23, 14252 9 of 24

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 26 
 

mechanical stability compared to the pure SPEEK membrane, although the SPEEK/CNT 
composite membrane exhibited worse properties. Furthermore, as described for 
MWCNT-Im in Section 2.1.1, similar proton conductivity behavior was observed when 
ACNT with basic amine groups introduced. The addition of ACNT improved the proton 
conductivity of the SPEEK-based PEM about 2-fold under high temperature and low RH 
conditions (80 °C and 20% RH) by creating and an additional proton hopping site that can 
reduce the activation energy for proton transport. These results indicated that the incor-
poration of CNT with basic functional groups was also an effective strategy for hydrocar-
bon-based composite membrane systems. The representative PEM properties including 
IEC, water uptake and proton conductivity of the composite membranes described in 
above are summarized in Table 3. 

 
Figure 7. Preparation of SPEEK/ACNT composite membrane. Adapted with permission from [79]. 
Copyright 2020, Elsevier. 

Table 3. Functionalization method of CNT via different reagents, and representative PEM proper-
ties of corresponding composite membranes. 

Composite  
Membrane 

(Matrix/Filler) 

Filler  
Content 
(wt. %) 

Functionalization of CNTs Water  
Uptake a 

(%) 

IEC b 

(meq g−1) 

Proton Conductivity c 
(mS cm−1) Ref. 

Reagent Method 20% RH 80% RH 
Nafion/CNT 5.0 - - 20.7 0.8 1.0 40.0 [53] 

Nafion/sMWCNT d 0.25 
4-benzendiazonium  

sulfonic acid 
Grafting 29.3 - 

2.3 
(60 °C)  

198 
(60 °C) 

[76] 

Nafion/MWCNT-SO3H e 0.5 1,3-propanesultone  34.5 0.9 - 150 [77] 

Nafion/MWCNT-Im f 0.5 4-imidazolecarboxylic acid 
Dehydration 

reaction 
28.0 0.9 - 210 [77] 

SPEEK/CNT 1.5 -  - - 2.8 47.0 [79] 

SPAES/HNT g 1.0 
SPAES 100 hydrophilic  

oligomer 
Nucleophilic 
substitution 

58.0 - 0.7 
237 

(100% RH) 
[78] 

Figure 7. Preparation of SPEEK/ACNT composite membrane. Adapted with permission from [79].
Copyright 2020, Elsevier.

Table 3. Functionalization method of CNT via different reagents, and representative PEM properties
of corresponding composite membranes.

Composite
Membrane

(Matrix/Filler)

Filler
Content
(wt. %)

Functionalization of CNTs Water
Uptake a

(%)

IEC b

(meq g−1)

Proton Conductivity c

(mS cm−1) Ref.

Reagent Method 20% RH 80% RH

Nafion/CNT 5.0 - - 20.7 0.8 1.0 40.0 [53]

Nafion/sMWCNT d 0.25 4-benzendiazonium
sulfonic acid Grafting 29.3 - 2.3

(60 ◦C)
198

(60 ◦C) [76]

Nafion/MWCNT-SO3H e 0.5 1,3-propanesultone 34.5 0.9 - 150 [77]

Nafion/MWCNT-Im f 0.5 4-imidazolecarboxylic
acid

Dehydration
reaction 28.0 0.9 - 210 [77]

SPEEK/CNT 1.5 - - - 2.8 47.0 [79]

SPAES/HNT g 1.0 SPAES 100 hydrophilic
oligomer

Nucleophilic
substitution 58.0 - 0.7 237

(100% RH) [78]

SPEEK/ACNT h 1.5 3-aminopropyl
triethoxysilane

Condensation
reaction 17.5 1.2 7.3 115 [79]

a Measured at room temperature. b Determined by titration at 25 ◦C. c Proton conductivity at 80 ◦C. d,e Sulfonic
acid group grafted multi-walled carbon nanotube. f Imidazole group grafted multi-walled carbon nanotube.
g Sulfonated poly(arylene ether sulfone) hydrophilic oligomer grafted carbon nanotube. h Amine group grafted
carbon nanotube.

2.2. Composite Membranes with Functionalized Graphene Oxides

GO, which is a chemically functionalized graphene having sp2-hybridized structures
and two-dimensional monolayer lattices can be applied in PEMFC systems due to its high
rigidity and thermal stability as well as the radical scavenging effect produced by the
presence of lattice defects such as reactive oxygen functional groups [83]. Furthermore,
since GO has hydrophilic oxygen functional groups with a large surface area, a better
proton conductivity of the GO-based composite membranes could be obtained when GO
was well-dispersed [25,84–86]. Nevertheless, many studies have reported on the poor
dispersion problem associated with pure GO when using organic solvent, resulting in
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agglomeration of GO into the polymer matrix even at low GO content (<1 wt.%) [87,88].
This phenomenon rather interferes with the formation of proton conductive channels
and may degrade the physical properties of the composite membrane. To resolve this
problem, research has been conducted to improve compatibility with the polymer matrix
by attaching various functional groups including proton conducting acid groups on the
GO surfaces, or by grafting polymers having similar structures to the polymer matrix to
fabricate high-performance GO-based composite membranes [89–95].

2.2.1. PFSA-Based Composite Membranes with Functionalized Graphene Oxides

Hadis Zarin et al. prepared functionalized GO (F-GO) via grafting 3-mercaptopropyl
trimethoxysilane (MPTMS) on GO surfaces followed by sulfonation using 30 wt.% hydrogen
peroxide solution. (Figure 8). Then, F-GO was impregnated into Nafion at different weight
ratios to fabricate a series of Nafion/F-GO composite membranes [84]. The water uptake of
the Nafion/F-GO composite membranes was 6.0% higher than that of recast Nafion due
to the increase in the hydrophilic properties as the F-GO content increased. The proton
conductivity of the Nafion/F-GO composite membranes was also larger than that of recast
Nafion. In particular, due to the formation of additional proton conducting channels by
the addition of F-GO, the proton conductivity of the composite membrane (8.0 mS cm−1)
exhibits 4-fold higher than that of recast Nafion (2.0 mS cm−1) at 80 ◦C and 20% RH. Since
F-GO with grafted sulfonic acid groups were well-dispersed in Nafion, the Nafion/F-GO
membrane showed better overall PEM properties including physical stability, mechanical
strength and proton conductivity, compared to the recast Nafion.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 26 
 

 
Figure 8. Schematic diagram of tortuous pathways of protons through Nafion/F-GO membrane [84]. 

Mohanraj Vinothkannan et al. synthesized sulfonated graphene oxide (S-GO) by 
grafting sulfanilic acid on the surface of GO, and then Fe3O4 containing a lot of hydrophilic 
hydroxyl (-OH) groups were dispersed in S-GO to develop Fe3O4-SGO. After that, a 
Nafion/Fe3O4-SGO composite membrane was prepared (Figure 9) [96]. The thermal stabil-
ity and mechanical strength of the composite membrane were better than those of pure 
Nafion due to the strong interfacial interaction between the functional moieties of Fe3O4-
SGO including -OH, epoxy (-O-), carboxylic acid (-CO2H), and sulfonic acid (-SO3H) 
groups and the hydrophilic linkages of Nafion as well as the introduction of thermo-me-
chanically stable inorganic Fe3O4 [97,98]. Furthermore, the composite membrane revealed 
better proton conductivity than the pure Nafion at high temperature over the entire range 
of RH conditions. In particular, the composite membrane revealed 4.6-fold higher proton 
conductivity than pure Nafion (2.5 mS cm−1) at 120 °C and 20% RH. Better performance 
arises because the sulfonic acid groups on S-GO effectively increased the bound water con-
tent at low RH conditions, thereby increasing the number of protons transported in the com-
posite membranes through the Grotthuss mechanism, while the hydroxyl groups in Fe3O4 
increase the free water content that can facilitate proton transport through the Vehicle mech-
anism [99–101]. The cell performance of membrane electrode assemblies (MEAs) with the 
composite membrane was about 1.9-fold larger than that with pure Nafion (0.11 W cm−2) at 
120 °C and 25% RH due to the improved proton conductivity and decreased hydrogen 
cross-over as a consequence of the enhanced thermomechanical stability. 

Figure 8. Schematic diagram of tortuous pathways of protons through Nafion/F-GO membrane [84].

Mohanraj Vinothkannan et al. synthesized sulfonated graphene oxide (S-GO) by
grafting sulfanilic acid on the surface of GO, and then Fe3O4 containing a lot of hydrophilic
hydroxyl (-OH) groups were dispersed in S-GO to develop Fe3O4-SGO. After that, a
Nafion/Fe3O4-SGO composite membrane was prepared (Figure 9) [96]. The thermal sta-
bility and mechanical strength of the composite membrane were better than those of pure
Nafion due to the strong interfacial interaction between the functional moieties of Fe3O4-
SGO including -OH, epoxy (-O-), carboxylic acid (-CO2H), and sulfonic acid (-SO3H) groups
and the hydrophilic linkages of Nafion as well as the introduction of thermo-mechanically
stable inorganic Fe3O4 [97,98]. Furthermore, the composite membrane revealed better
proton conductivity than the pure Nafion at high temperature over the entire range of RH
conditions. In particular, the composite membrane revealed 4.6-fold higher proton conduc-
tivity than pure Nafion (2.5 mS cm−1) at 120 ◦C and 20% RH. Better performance arises
because the sulfonic acid groups on S-GO effectively increased the bound water content
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at low RH conditions, thereby increasing the number of protons transported in the com-
posite membranes through the Grotthuss mechanism, while the hydroxyl groups in Fe3O4
increase the free water content that can facilitate proton transport through the Vehicle mech-
anism [99–101]. The cell performance of membrane electrode assemblies (MEAs) with the
composite membrane was about 1.9-fold larger than that with pure Nafion (0.11 W cm−2)
at 120 ◦C and 25% RH due to the improved proton conductivity and decreased hydrogen
cross-over as a consequence of the enhanced thermomechanical stability.
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Figure 9. Preparation of Nafion/Fe3O4-SGO membrane. Adapted with permission from [96]. Copy-
right 2018, Royal Society of Chemistry.

2.2.2. Hydrocarbon-Based Composite Membranes with Functionalized Graphene Oxides

Xiang Qiu et al. prepared sulfonated reduced graphene oxide (SRGO) by grafting
benzenesulfonic acid to reduced GO with diazonium salt through arylation (Figure 10),
which was then added as a filler to sulfonated poly(ether ether ketone) (SPEEK) to develop
the SPEEK/SRGO composite membrane [102]. The composite membrane exhibited three
times higher proton conductivity than the pure SPEEK membrane at 80 ◦C and 50% RH
condition. This occurs because, (1) the increased content of sulfonic acid groups from
incorporation of SRGO allowed more absorption of water molecules to the composite
membrane, and (2) well-dispersed SRGO with large sulfonic acid group content effectively
reduces the proton transport barrier by forming additional proton conducting channels
(Figure 11). In addition, the composite membrane exhibited 1.2-fold higher water uptake
than the pure SPEEK membrane, but the swelling ratio was 4-fold smaller in the composite
membrane due to the formation of hydrogen bonds between SRGO and SPEEK [103]. These
results indicated that SRGO is one of the more effective fillers for resolving the problems of
conventional hydrocarbon-based PEMs by increasing the proton conductivity at low RH
conditions as well as increasing the physical stability of the composite membrane.
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Figure 11. Formation of additional proton conducting channels between polymer matrix (SPEEK)
and SRGO. Adapted with permission from [102]. Copyright 2016, Elsevier.

Jusung Han et al. synthesized sulfonated polytriazole graphene oxide (SPTA-GO)
through the azide-alkyne click reaction between GO with azide groups (N3-GO) and
ethynyl-terminated sulfonated polytriazole (E-SPTA) (Figure 12). Then, a sulfonated
poly(arylene ether sulfone) (SPAES)/SPTA-GO composite membrane was prepared by use
of the well-known mixing process with SPTA-GO and SPAES [104]. The introduction of
SPTA-GO was found to improve various PEM properties of the SPAES/SPTA-GO compos-
ite membrane. The oxidative stability of the composite membrane is better than that of
the pure SPAES membrane due to the inherent radical scavenging effect of GO [105,106].
The mechanical strength of the composite membrane is also superior to that of the pure
SPAES membrane due to the intermolecular ionic cross-linking between the basic triazole
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moieties in SPTA-GO and acidic sulfonic acid groups in SPAES. Notably, the elongation
behavior of the composite membrane is also improved by the toughing effect from the
acid-base interaction between the SPTA-GO and SPAES [107]. The proton conductivity
of the composite membrane is larger than that of the SPAES membrane over the entire
range of RH conditions due to the formation of additional proton conducting channels
by the incorporation of basic triazole groups, which can function as proton donors and
acceptors [108,109]. Since the physicochemical properties as well as the proton conductivity
of the SPAES membrane was improved by the addition of SPTA-GO, outstanding MEA
performance with the SPAES/SPTA-GO membrane (1.58 W cm−2) was obtained at operat-
ing condition (80 ◦C and 100% RH). The PEM properties of the above-described composite
membranes with functionalized GOs are summarized in Table 4.
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Table 4. Functionalization method of GO via different reagents, and representative PEM properties
of corresponding composite membranes.

Composite
Membrane

(Matrix/Filler)

Filler
Content
(wt. %)

Functionalization of GOs Water
Uptake a

(%)

IEC b

(meq g−1)

Proton Conductivity c

(mS cm−1) Ref.

Agent Method 20% RH 80% RH

Nafion/GO 5.0 - - 57.5 0.8 2.0 79.0 [110]

Nafion/F-GO 10 3-mercaptopropyl
trimethoxysilane Oxidation 28.8 1.0 8.0 110 [84]

Nafion/Fe3O4-SGO 3.0 Sulfanilic acid, Fe3O4
Arylation,
Dispersion

35.6
(60 ◦C) 1.4 7.0 125

(100% RH) [96]

SPAES/GO 1.0 - - 27.8 1.6 1.6
(50% RH)

114
(90% RH) [111]

SPEEK/SRGO 1.0 4-aminobenzensulfonic
acid Arylation 31.1

(80 ◦C) 1.7 8.6
(50% RH)

147
(95% RH) [102]

SPAES/SPTA-GO 1.0 Ethynyl-terminated
sulfonated polytriazole

Azide-alkyne
click reaction 57.0 2.5 20

(40% RH) 250 [104]

a Measured at room temperature. b Determined by titration at 25 ◦C. c Proton conductivity at 80 ◦C.

2.3. Composite Membranes with Functionalized Silica Composites

Numerous studies have been conducted on the incorporation of hygroscopic inorganic
fillers such as SiO2, TiO2, CeO2, ZrO2, and MMT to the polymer matrix to improve water
retention/management as well as proton conductivity of composite membranes used in
PEMFCs operating at high temperature and low RH condition [112–116]. In particular, SiO2-
based fillers for PEM applications have been studied intensively due to their hygroscopic



Int. J. Mol. Sci. 2022, 23, 14252 14 of 24

nature, high thermal stability and relatively lower unit price compared to other inorganic
particles [117–121]. Since the SiO2-based fillers are found to have high surface areas that
possibly absorb and retain water molecules effectively, the great advantage of these fillers
is preventing moisture evaporation to some extent even at high temperature and low RH
conditions [122]. However, limited dispersion problems have been also reported when SiO2
without physical or chemical modifications were added to various polymer matrices used
in PEMFCs [123]. In addition, when the particle size of non-functionalized SiO2 is larger
than the size of ionic clusters formed by the hydrophilic/hydrophobic phase separation of
the polymer matrix, the proton conducting channels were blocked by SiO2 resulting in the
degradation of proton conductivity of the corresponding composite membranes [124]. To
address these problems, many approaches have been investigated for functionalization of
SiO2 [125–127].

2.3.1. PFSA-Based Composite Membranes with Functionalized Silica

G. Ganna Kumar et al. synthesized silica sulfonic acid with particle sizes of 3, 90, and
1000 nm, respectively, through the general sulfonation reaction using chlorosulfonic acid.
Then, the fillers were introduced into Nafion dispersions to develop Nafion/silica sulfonic
acid membranes (NSSH-X, with X indicating the size of the silica sulfonic acid, X = 3, 90,
1000 nm) [128]. Nafion membranes containing non-functionalized silica with the same
particle sizes of silica sulfonic acid (NS-X) were also prepared for comparison. The rank
order for water uptake of the membranes was found to be NSSH-X > NS-X > pure Nafion
due to the hygroscopic and porous characteristic of the silica-based fillers. Comparing
each of the composite membranes, the NSSH-X membranes showed 1.2-fold larger water
uptake values than the NS-X membranes when they contained the same size particles
due to the enhanced IECs through the addition of the acid-containing silica. Therefore,
the conductivity of the NSSH-X membranes was found to be better than that of the NS-X
membrane over the entire range of RH conditions, due to the increased IEC and better
formation of ion-conducting channels by sulfonic acid groups in silica when the composite
membranes contained the same size particles. However, the proton conductivities of each
type were highly affected by the particle size. As the size increased, the proton conductivity
of the corresponding composite membranes decreased even though the silica sulfonic acid
was incorporated. For example, the proton conductivity of NSSH-90 was lower than that of
pure Nafion because particle sizes of 90 nm may block the 4–5 nm ionic clusters formed
by the hydrophilic/hydrophobic separation of Nafion. For the NSSH-1000 membrane,
the deterioration of proton conductivity was even larger than that seen with NSSH-90.
However, under high temperature and low RH conditions of 80 ◦C and 30% RH, the proton
conductivity of the NSSH-3 membrane (49.1 mS cm−1) was 12-fold better than that of
pure Nafion (4.2 mS cm−1) due to the hygroscopicity of the silica-based filler. This study
systematically investigated the importance of the size of inorganic fillers for application in
PEMs (Table 5).

Table 5. Water uptake, ion exchange capacity and proton conductivity of membranes. Adapted with
permission from [128]. Copyright 2009, Elsevier.

Sample
(SiO2 Particle Size) Nomenclature

Water Uptake
(%)

IEC
(meq g−1)

Proton Conductivity a

(mS cm−1)

30% RH 80% RH

Nafion 117 N 23.0 0.9 4.2 108
Nafion/SiO2

(3 nm) NS-3 28.0 0.9 - -

Nafion/SiO2
(90 nm) NS-90 25.0 0.9 - -

Nafion/SiO2
(1000 nm) NS-1000 21.0 0.7 - -

Nafion/SiO2-O-SO3H
(3 nm) NSSH-3 32.2 1.5 49.1 193

Nafion/SiO2 SiO2-O-SO3H
(90 nm) NSSH-90 30.0 1.3 30.9 180

Nafion/SiO2 SiO2-O-SO3H
(1000 nm) NSSH-1000 23.3 0.9 0.4 54.4

a Proton conductivity at 80 ◦C.
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In a similar study, Kwangjin Oh et al. prepared sulfonated silica (SSA) as a functional
filler for PFSA-based PEM. SSA was synthesized via hydrolysis of orthosilicate (TEOS)
followed by sulfonation using chlorosulfonic acid. The chemical structure and the content
of sulfonic acid groups of SSA were confirmed by fourier transform infrared (FT-IR), X-ray
photoelectron spectroscopy (XPS), and TEM. The product was then dispersed in PFSA
dispersion, and a general solution casting method was conducted to fabricate PFSA/SSA
composite membranes [122]. The incorporation of SSA into PFSA increased the mechanical
strength while decreasing the elongation behavior of the composite membrane because
the SSA inorganic filler inhibited the segmental motion of polymer chains. AS well, the
issue of low thermal stability of PFSA-based PEMs could be addressed by adding SSA,
due to the high thermal stability of SSA as well as the barrier effect of SSA on heat transfer
in the composite membrane system. The proton conductivity was also improved by the
addition of SSA, due to the formation of additional proton conducting channels with PFSA
(Table 6). These results indicated that SSA is an effective inorganic filler for PFSA-based
PEMs through its ability to increase both the physicochemical stability and the proton
conductivity, simultaneously.

Table 6. Ion exchange capacity, water uptake and proton conductivity of Nafion-SSA composite
membranes. Adapted with permission from [122]. Copyright 2019, Elsevier.

Sample IEC
(meq g−1)

Water Uptake
(%)

Proton Conductivity a

(mS cm−1)

20% RH 80% RH

Nafion/SSA (0.5 wt.%) 1.2 22.0 5.9 151
Nafion/SSA (1.0 wt.%) 1.3 24.1 8.8 230
Nafion/SSA (1.5 wt.%) 1.1 20.0 5.5 143

Recast Nafion 1.0 17.3 5.0 111
a Proton conductivity at 80 ◦C.

2.3.2. Hydrocarbon-Based Composite Membrane with Functionalized Silica

Taeyun Ko et al. synthesized vinyl silica (vinyl Si) from vinyltrimethoxysilane through
a hydrolysis reaction and then radical polymerization was conducted using each of 4-
styrensulfonic acid sodium salt hydrate (SSANa) and 4-vinylpyridine (4VP) to prepare
two different types of core–shell silica particles with poly(4-styrenesulfonic acid) (PSSA)
and poly(4-vinylpyridine) (P4VP) in the shell layer, respectively. The acidic PSSA and
basic P4VP grafted core–shell silica particles were named S-Si and P-Si, respectively
(Figure 13) [126]. Following this, the SPAES based composite membranes with 5 wt.%
of S-Si and P-Si were fabricated to investigate the effect of these functionalized fillers on
PEM properties. As observed in most organic/inorganic composite membranes, the me-
chanical strength of the SPAES/S-Si and SPAES/P-Si composite membranes were greater
than that of the pure SPAES membrane. Of note, the mechanical strength of the P-Si filler
was demonstratively better than that of the S-Si filler due to the presence of ionic cross-
linking between the basic P4VP in the shell layer of P-Si and the acidic sulfonic acid groups
of the SPAES matrix [129]. Although the water uptake of the SPAES/S-Si and SPAES/P-Si
composite membranes were lower than that of pure SPAES membrane, the proton conduc-
tivity of both composite membranes was larger than that of the SPAES membrane for two
different reasons. For the SPAES/S-Si membrane, the enhanced proton conductivity could
be ascribed to the increased sulfonic acid content, resulting in additional proton conducting
channels with the sulfonic acid groups in the SPAES matrix. The increased IEC value
calculated by acid-base titration method and change of hydrophilic domain size measured
by small-angle x-ray scattering (SAXS), supported the enhanced proton conductivity of
the SPAES/S-Si composite membrane. In contrast, the SPAES/P-Si membrane showed
2-fold better proton conductivity than the SPAES membrane (1.1 mS cm−1) at 80 ◦C and
40% RH due to the formation of additional proton hopping channels by the acid-based
interactions between the pyridine groups in P-Si and the sulfonic acid groups in the SPAES
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matrix, resulting in the formation of protonation-deprotonation loops [109,130,131]. The
calculation of activation energy of proton transport by Arrhenius plots, and comparison
of SAXS data of SPAES/P-Si and pure SPAES membranes, also supported the enhanced
proton conductivity of the SPAES/P-Si membrane.
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Jihye Won et al. prepared rod-shaped mesoporous silica (SBA-15) by using tetraethyl
orthosilicate (TEOS) as a mechanical framework precursor and poly(ethylene glycol)-block-
poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic® p-123) to form rod-shaped
micelles as a mesopore-forming template for developing mesoporous structures [132].
Subsequently, they introduced a sulfonic acid moiety using mercaptopropyl trimethoxysi-
lane (MPTMS) and H2O2 via condensation method followed by oxidation. Finally, the
Pluronic® p-123 template was removed from the synthesized material by washing with
ethanol. The structure and acid content of rod-shaped mesoporous silica with sulfonic
acid groups (named SM-SiO2) was confirmed by FT-IR, TEM, FE-SEM, XRD, and EDS.
SM-SiO2 was incorporated into the sulfonated poly(phenylsulfone) (SPPSU) matrix to
prepare SPPSU/SM-SiO2 composite membranes (Figure 14) with a weight ratio of SPPSU
to SM-SiO2 of 95: 0.5. Although the water uptake of the SPPSU/SM-SiO2 composite mem-
brane was larger than the pure SPPSU membrane, the proton conductivity value at 100%
RH of the composite membrane was lower than that of the pure membrane due to the
barrier effect of inorganic particles which interrupted the excessive swelling under fully
hydrated condition [133]. The authors explained that the pure SPPSU membrane could
be completely hydrated and contain excessive water at 100% RH conditions, therefore the
proton-conducting hydrophilic domains could easily be connected, allowing protons to
move quickly, while in the case of the SM-SiO2 composite membrane, the inorganic SM-
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SiO2 particles could block the connecting of hydrophilic domains by excess water, resulting
in interruptions to proton conduction via a winding proton pathway. However, SM-SiO2
had positive effects on proton conductivity when observed under low RH conditions of
50% RH). The proton conductivity value of the SPPSU/SM-SiO2 composite membrane
was 6.0 mS cm−1, Which is 1.6-fold larger than the proton conductivity value of the pure
SPPSU membrane at 50% RH. This occurs because, (1) the mesoporous structure in addition
to the sulfonic acid groups of the SM-SiO2 particles effectively attracted water molecules
and then maintained the absorbed water molecules for an extended period; (2) chemically
bound water molecules presented in the cylindrical hexagonal-mesopores of SM-SiO2
could effectively form proton-hopping channels under low RH conditions. This result
indicates that rational design of inorganic fillers through control of physical structures, can
effectively complement the disadvantages of hydrocarbon-based PEMs, including those
of poor proton conductivity at low RH and excessive swelling when fully hydrated. The
PEM properties of the above-described composite membranes with functionalized SiO2 are
summarized in Table 7. Based on the literature studies, the optimized composite materials
including types and content for PEMs were found to be highly dependent on the operating
conditions of PEMFCs. For example, the functionalized SiO2-based composites effectively
increased the proton conductivity of the corresponding composite membranes, especially at
high temperature and low RH (≤40% RH) conditions due to the inherent water absorption
and retention behavior of SiO2. Meanwhile, the functionalized GO-based composites led
to the highest proton conductivity of the PEMs due to the highest compatibility with the
polymer matrix preventing the excessive swelling under high RH conditions. To enable the
PEMFC operation under a wide range of conditions that are off-limits for existing PFSA- or
hydrocarbon-based PEMFCs, the novel organic/inorganic hybrid composite PEMs should
be developed. One of the effective strategies for developing novel composites is to have
complex structures of functionalized GO-SiO2 showing each advantage of organic and
inorganic. In addition, the development of multifunctional fillers providing additional
proton conducting channels as well as forming the covalently bonded framework with
polymer matrices should be considered. The development of functionalized covalent or-
ganic frameworks having much larger surface areas and lots of functional groups than
the commercialized fillers also could be a candidate to develop composite PEMs showing
operational flexibility.

Table 7. Functionalization method of SiO2 via different reagents, and representative PEM properties
of corresponding composite membranes.

Sample
(Matrix/Filler)

Filler
Content
(wt. %)

Functionalization of SiO2 Water
Uptake a

(%)

IEC b

(meq g−1)

Proton Conductivity c

(mS cm−1) Ref.

Agent Method 20% RH 80% RH

Nafion/SiO2 2.0 - - 35.6 - 7.5 80.0 [134]
Nafion/Silica sulfonic

acid - Chlorosulfonic acid Sulfonation 32.2 1.5 40.0 175 [128]

Nafion/SSA d 1.0 TEOS, Chlorosulfonic
acid

In situ sol-gel
methods 24.1 1.3 8.8 230

(100% RH) [122]

SPAES/SiO2 5.0 - - 36.7 1.7 1.0
(40% RH)

102
(90% RH) [126]

SPAES/S-Si e 5.0 4-styrensulfonic acid
sodium salt hydrate

Radical poly-
merization 40.9 1.7 1.3

(40% RH)
140

(90% RH) [126]

SPAES/P-Si f 5.0 4-vinylpyridine Radical poly-
merization 34.3 1.6 2.3

(40% RH)
146

(90% RH) [126]

SPPSU/SM-SiO2
g - 3-mercaptoproyl

trimethoxysilane
Condensation,

oxidation 17.0 2.0 6.0
(50% RH)

183
(100% RH) [132]

a Measured at room temperature. b Determined by titration at 25 ◦C. c Proton conductivity at 80 ◦C. d Silica
sulfonic acid. e Poly(4-styrenesulfonic acid) grafted core-shell silica particles. f Poly(4-vinylpyridine) grafted
core-shell silica particles. g Sulfonated SBA-15 mesoporous silica
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3. Conclusions

Incorporation of functionalized organic/inorganic materials into PFSA and hydrocarbon-
based polymer matrices is a promising way of increasing the proton conductivity and
physicochemical stability of PEMs used in PEMFCs. Functionalization of composite ma-
terials using various strategies should be prioritized when considering the improvement
of target PEM properties as well as the enhancement of filler dispersity into the polymer
matrix. Therefore, this review focused on both the design and the synthetic strategies
underlying functionalized organic/inorganic fillers such as CNTs, GOs, and SiO2 and the
development of their corresponding composite membranes that demonstrate improved
PEM properties. For carbon-based fillers, most of the functionalization can be performed
using the oxidated 1D or 2D carbon materials having unsaturated defects such as CNTs and
GOs. The modification of oxygen functional groups in the CNTs and GOs through various
chemical reactions has been mainly used for functionalizing and grafting the functionalized
polymer onto the fillers. Since the optimized content of functionalized carbon-based fillers
to PFSA and hydrocarbon-based polymer matrices is different than for non-functionalized
composites due to the enhanced filler dispersity, highly improved PEM properties including
thermal stability, mechanical strength, dimensional stability, and proton conductivity of the
composite membranes are observed. In particular, the functionalized fillers effectively im-
prove the proton conductivity of PEMs by forming additional proton conducting channels
with the ionic domains of the polymer matrix. Therefore, the MEA performances employ-
ing these composite membranes are better than those employing the composite membranes
containing non-functionalized fillers or pure polymer matrix membranes under various
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operating conditions. Considering the inorganic-based fillers, functionalized SiO2-based
fillers have been widely used as effective composite materials for PEMs due to the inex-
pensive cost of the raw materials and simple modification processes. The hydrolysis of the
silica precursor is mainly used for introducing functional groups on the SiO2 surfaces, while
the various chemical reactions and pore-forming agents were used to increase the surface
area of the fillers for increasing the degree of functionality. Acidic and basic functional
groups were commonly introduced to the surface of the SiO2 based fillers to increase the
water retention properties and proton conductivity of the composite membranes without
deterioration of physical stability. The grafting of functionalized polymer containing both
acidic and basic groups was also studied and found to increase the proton conductiv-
ity and physicochemical stability simultaneously, by forming protonation-deprotonation
loops with the polymer matrix through enhanced intermolecular interactions. Based on
this review of existing literature, we believe that functionalization of organic/inorganic
fillers beginning with the synthetic process is an effective and facile way to tune the PEM
properties of both PFSA and hydrocarbon-based PEMs for practical and wide application
of PEMFCs.
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