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Abstract: Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophos-
phorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. How-
ever, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated
the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin
keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent
decrease in HaCaT cell viability after exposure to 1.56–400 µg/mL for 24 h, with an IC50 of 275 µg/mL.
TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered
DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus.
Furthermore, the cell cycle was arrested at the G1 phase at 100 µg/mL by upregulation of the mRNA
expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both
the senescence-associated-β-galactosidase activity and related proinflammatory cytokine IL-1β and
IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the
p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that
flame-retardant exposure may be a key precipitating factor for human skin aging.

Keywords: TCPP; human skin keratinocytes (HaCaT); DNA damage; cell cycle arrest; cellular
senescence; human skin aging

1. Introduction

Tris (1-chloro-2-propyl) phosphate (TCPP) as an organophosphorus flame retardant
(OPFR) has been widely used in various consumer products, building materials, and baby
products [1,2]. Due to its material characteristics, the lack of covalent bonding makes it easy
for TCPP to leach out of products over time to pollute the environmental media, like dust,
and enter humans. TCPP has been frequently detected in indoor dust, with concentrations
being 270–39,300 ng/g [3]. In addition, it has been observed in human serum, breast milk,
and urine [4–6]. Therefore, the toxicity of TCPP has attracted the scientific community.
Studies have been demonstrated that skin absorption may be an important route for human
exposure to OPFR, including TCPP [7,8]. However, the adverse effects of TCPP on human
skin are largely unknown.

The human skin is the largest body organ of the integumentary system, with a surface
area of about 2 m2 and weighing about 5 kg in adult people [8]. However, unlike other
organs, the skin is in direct contact with outside environmental factors, which may age
as a result of environmental damage [9]. Skin aging is a complex process caused both
by intrinsic and extrinsic factors [10]. The external skin aging process is mainly induced
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by a variety of factors, including ultraviolet rays, air pollution, oxidative stress, DNA
damage, and chemical substances [11]. Environmental pollution is a recognized risk
extrinsic factor for skin aging [12] and may involve any one of the thousands of chemicals,
including TCPP. The outermost cell layer of human skin (epidermis) mainly consists of
keratinocytes, which act as a barrier to protect the vascular dermis from exposure to
contaminants. Keratinocytes are the major cell type impacted by TCPP penetrating the
epidermis. The contaminants, including TCPP invading the epidermal cells (keratinocytes),
could increase the generation of intracellular reactive oxygen species (ROS) and promote
aging-related signal transduction, leading to cellular senescence. Cellular senescence is
characterized by irreversible cell cycle arrest along with cell enlargement and vacuolation,
up-regulation of involved genes, and secretion of proteins leading to the development of
inflammation [10]. In addition, most of those actions were regulated by p53/p21 and/or
p16-Rb pathway [13,14].

Mounting evidence demonstrated that flame retardant exposure may induce cellular
senescence. Behnia et al. (2015) found that exposure to polybrominated diphenyl ethers
(PBDEs) flame retardant could induce primary amnion cell senescence [15]. Furthermore,
TCEP-induced cellular senescence via activation of the p21Waf1/Cip1-Rb pathway was
also observed in the human L02 hepatocytes [16]. In addition, cellular senescence is also a
source of inflammatory factors. The secretion of several bioactive molecules (e.g., Il-6) in
senescent cells is known as senescence-associated secretory phenotype (SASP), and those
bioactive molecules play an important role in the progress of senescence [17]. However, the
adverse effects of TCPP exposure on human skin cells and its underlying mechanism are
largely unknown.

In this study, to better understand its toxicity, normal human skin keratinocytes
(HaCaT) were employed, and the changes of cell viability, morphology, reactive oxygen
species (ROS), DNA damage factor Phosphorylated histone H2A.X (γH2A.X), cell cycle
arrest, and senescence-associated-β-galactosidase activity (SA-β-gal) were determined after
TCPP exposure. Additionally, the mRNA and protein expression of senescence markers
was detected to uncover the underlying mechanism of TCPP-induced of skin aging.

2. Results and Discussion
2.1. TCPP Suppressed Cell Viability and Altered Cell Morphology

The skin is in direct contact with outside environmental factors, which usually leads to
age at a cellular level as a result of environmental damage [12]. Changes in cellular viability
and morphology have all been postulated to contribute to the aging process [18]. Cell
viability is an important assay to screen cellular responses to contaminants, which is widely
used to quantify cell proliferation and metabolic activities, and to assess cell senescence
after exposure [10]. Based on the detected concentrations of TCPP in the environmental
samples, including indoor dust with concentrations from 270 to 39,300 ng/g [3]. The
effects of TCPP on the viability of HaCaT cells were determined using the CCK-8 assay
according to our previous study [19]. After 24 h exposure, a toxic effect on HaCaT cell
viability was observed at TCPP > 50 µg/mL (Figure 1A). At 100–200 µg/mL TCPP, cell
viability was inhibited by 12–28% (Figure 1A), which was consistent with a previous study
that TCPP at 164 µg/mL suppressed the cell viability up to 47.7% after 24 h exposure in
human peripheral blood mononuclear cells [20], indicating that human skin epidermal
cells were more susceptible to TCPP than human blood mononuclear cells [21]. Moreover,
when TCPP exposure concentrations increased to 400 µg/mL, there was a sharp decrease
in viable cells (74%), suggesting that exposure to TCPP at high concentrations could result
in serious damage to human skin. The fitted curve shows that the IC50 concentrations of
TCPP at 275 µg/mL (Figure 1B), which was lower than that of human peripheral blood
mononuclear cells (328 µg/mL), consistent with lower toxicity of TCPP in human peripheral
blood mononuclear cells [20].
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warranted to confirm our hypothesis that TCPP exposure may trigger cellular senescence. 
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Figure 2. The morphology change (A–H) of HaCaT cells after exposure to 1.56–400 μg/mL TCPP for 
24 h. Images were recorded under an inverted phase contrast microscopy at 200×magnification. 
Scale bar 50 μm. 

  

Figure 1. Cytotoxicity of TCPP on HaCaT cells after exposure to 1.56–400 µg/mL TCPP for 24 h
(A) and logarithmic transformation of TCPP concentrations and cell viability data to determine IC50

(B). ** p < 0.01.

In addition to cell viability, cellular morphology change is an important indicator of
dysfunction of physiological function and cellular senescence [10]. The typical cobblestone
and polygonal appearance of HaCaT cells were clear in the control (Figure 2A) and those
exposed to TCPP at <100 µg/mL (Figure 2B–F). At ≥200 µg/mL, an irregular shape and an
increased number of round and floating cells were observed (Figure 2G,H), implicating
cellular senescence and death [22]. Taken together, our data implied that TCPP perturbed
the monolayer morphology and inhibited cell proliferation of HaCaT cells, which is likely
associated with cellular senescence (Figure 2F–H). However, further studies were warranted
to confirm our hypothesis that TCPP exposure may trigger cellular senescence.
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Figure 2. The morphology change (A–H) of HaCaT cells after exposure to 1.56–400 µg/mL TCPP
for 24 h. Images were recorded under an inverted phase contrast microscopy at 200×magnification.
Scale bar 50 µm.

2.2. TCPP Increased Intracellular ROS, Induced DNA Damage and Cell Cycle Arrest in
HaCaT Cells

In addition to changes in cell viability and morphology, oxidative stress is also a crucial
mechanism of flame retardants-induced cellular senescence [23], and oxidative stress is
caused by excess ROS [24]. Saquib et al. (2019) found that flame retardants (6-OHBDE-47)
can disrupt the mitochondrial potential, which promotes intracellular ROS generation
in HepG2 cells [25]. Given that, we evaluated the levels of intracellular ROS after TCPP
exposure at 1.56–100 µg/mL using the flow cytometer analysis with DCFH-DA fluorescent
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probe (Figure 3A). We found that the levels of intracellular ROS significant increase after
exposure to TCPP at >1.56 µg/mL (Figure 3B). The ROS levels were elevated to 149–178%
compared to the control after exposure to 6.25–100 µg/mL TCPP (Figure 3B), which is
similar to Yang et al. (2022) showing that flame retardant (PBDEs) exposure increased ROS
levels in J774A.1 cells [26].
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DNA damage is another extensive feature of cellular senescence and aging [27]. It
is well known that ROS-mediated DNA damage activates the p53 pathway, resulting in
cellular senescence [28]. Accumulation of DNA damage, including γ-H2AX, is a major
driver of premature senescence. To assess whether possible induction of DNA damage,
we used a marker phosphorylated histone H2A.X (γH2A.X). H2A.X is a member of the
histone H2A family; at its C-terminus, there is a highly conserved homologous sequence
consisting of 22 residues, which can be phosphorylated after DNA damage occurs in
somatic cells [29,30]. Subsequently, γH2A.X gathers in double-stranded breaks to form
a large number of γ-H2A.X foci. Therefore, the foci assay of γH2A.X is a well-known
indicator to evaluate the levels of DNA damage [31].

In this study, we used immunofluorescence to detect γ-H2A.X fluorescence after
exposing TCPP at 1.56–100 µg/mL in HaCaT cells. We found that HaCaT cells exhibited
elevated green fluorescence intensity in TCPP-treated cells in a concentration-dependent
manner compared to the control (Figure 4). The percentage of fluoresced green reached
21 ± 5.8, 31 ± 3.2, 47 ± 6.3, and 73 ± 9.3% in HaCaT cells at 1.56, 6.25, 25, and 100 µg/mL
(Figure 4), which was associated with the percentage of viability inhibition (Figure 1) and
cell cycle arrest (Figure 5). The effect of TCPP on γH2AX expression showed a similar
pattern to the decrease of cell viability in HaCaT cells, which is consistent with Yang et al.
(2012), who showed that Di (2-Ethylhexyl) phthalate induced DNA damage in HepG2
cells [32].
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for 24 h. The green fluorescence intensity of γ-H2AX (green) was elevated by increasing TCPP
concentration in HaCaT cells, suggesting aggravation of DNA damage. DAPI counterstains the nuclei
(blue), 200×magnification. Scale bar 20 µm.

In addition, cell cycle arrest is an important indicator of cell aging, so it has also been
used for identifying cell aging [33]. The cell cycle consists of G1, S, and G2/M phases,
and the activation of each phase depends on the correct progress and completion of the
previous phase. Cui et al. (2020) showed that exposure to OPFR tris (1,3-dichloro-2-propyl)
phosphate (TDCPP) at 16 µg/mL caused cell cycle arrest at the G1 phase in HaCaT cells [34].
However, it is unknown if this was the case with TCPP. The results show that the cell cycle
of HaCaT cells did not change when TCPP at 1.56, 6.25, and 25 µg/mL (Figure 5A–D). At
100 µg/mL, HaCaT cells showed 76% were arrested in the G1 phase (Figure 5E,F), which
was higher than the control at 67% (Figure 5A). Moreover, S-phase cells were reduced
from 10 to 5% after exposing them to 100 µg/mL TCPP for 24 h (Figure 5E,F). The data
suggest that TCPP induced cell cycle arrest at TCPP ≥ 100 µg/mL, which was consistent
with the result of cell viability data (Figure 1A) and consistent with a previous report
that TCPP treatment induced an obvious G1 phase cell cycle arrest in HepG2 cells in a
concentration-dependent manner [35], indicating it may trigger skin aging.
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Figure 5. Cell cycle arrest was measured by flow cytometry after exposure to 1.56–100 µg/mL TCPP
for 24 h (A–E) and the change of cell population induced by TCPP (F). TCPP caused a marked G0/G1
cell cycle arrest, evidenced by a higher number of cells residing in the G0/G1 phase and reducing S
phase entry, especially at 100 µg/mL (* p < 0.05).

2.3. TCPP Enhanced Cellular SA-β-Gal Activity in HaCaT Cells

Cellular senescence is defined as an irreversible cell growth arrest that occurs in
response to cellular stressors, including the decrease of cell viability, changes in cellular
morphology, or DNA damage [36]. The most widely used assay for senescent and aging cell
phenotypes is the histochemical detection of senescence-associated beta-galactosidase (SA-
β-gal), which is known as SA-β-Gal activity. The SA-β-gal activity causes by an elevated
transcription of GLB-1, the gene encoding the lysosomal beta-galactosidase (β-gal) [37].
The upregulation of the GLB-1 gene results from an increase in the number and activity of
lysosomes, which is attributed to the accumulation of dysfunctional macromolecules in
aging cells. The SA-β-gal activity was significantly related to the aging cells; however, it
was not observed in terminally differentiated cells or quiescent cells [38]. Behnia et al. (2015)
pointed out that flame retardant, polybrominated diphenyl ether-exposed cells exhibited
morphologic changes with higher SA β-gal-stained cells than the control [15]. Zhang et al.
(2017) demonstrated that flame retardant Tris (2-chloroethyl) phosphate (TCEP) exposure
induced a senescence-like phenotype of hepatocytes, with an elevation of the percentage of
SA-β-gal positive cells [16]. To validate whether TCPP at 1.56–100 µg/mL induced HaCaT
cell senescence, the cellular SA-β-gal activity was detected after 24 h treatment. As shown
in Figure 6A–F, TCPP triggered HaCaT cell senescence in a dose-dependent manner, as
evidenced by strongly enhanced SA-β-gal activity, the percentages of SA-β-Gal positive
cells were increased from 21–39% in TCPP-treated groups, which was in accord with a
previous study that TCEP elevated the ratio of SA-β-Gal positive cells in hepatocytes from
20–37% with increased exposure levels (3.12–200 µg/mL) [16].
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activity) in cultured HaCaT cells (A–E) after exposure to 1.56–100 µg/mL TCPP for 24 h (A–E), and
the percentage of SA-β-Gal positive cells (blue color) was shown in (F). The senescence phenotype
was seen as blue staining cells. 200×magnification. Scale bar 100 µm. * p < 0.05.

2.4. TCPP Altered Gene Expression of Senescence Markers

To better understand the underlying molecular mechanisms of cell senescence, we
determined the transcriptional expression of important mediators in the cell senescence
process. The mounting evidence demonstrated that p53/p21 pathway has a key role in
cellular senescence in various human cell lines, responding to a range of cellular damage
signals [39–41]. It is known that cellular senescence was regulated by p53, a biomarker of
DNA damage that responds to stressful stimuli through the p53 pathway. Studies show
that p53 plays a key role in DNA damage response [42]. Its activation in response to
DNA damage causes cell cycle arrest and cell growth inhibition, inducing cells to enter
senescence [43]. In addition, p53 induces gene expression related to senescence, such as
p21, preventing cell growth through cyclin-dependent kinase (CDK), leading to cell cycle
arrest [13,44]. Therefore, up-regulation of p53/p21 mRNA expression may be an important
mechanism for contaminant-induced cellular senescence in human cells, including HaCaT
cells. In this study, TCPP did not affect the mRNA expression of p53 and p21 at≤25 µg/mL;
however, when concentration increased to 100 µg/mL TCPP, the expression of p53 and p21
was increased to 3.4 and 2.2 folds, while cyclinD1 and CDK4 were decreased to 0.45 and
0.59 folds (Figure 7A). The data suggest that TCPP elicited G1 phase arrest in HaCaT cells
via enhancing p53 and p21 and suppression of cyclin D1 and CDK4 expression.

In addition, senescence is also characterized by the secretion of cytokines known as the
senescence-associated secretory phenotype (SASP) [17]. Cellular senescence is mediated by
SASP involving proinflammatory cytokine secretion [45]. IL-1β and IL-6 are the main SASP
proinflammatory cytokine for cellular senescence [16]. The exposure to 6.25–100 µg/mL
TCPP enhanced IL-1β (2.1–2.3 folds) and IL-6 (2.1–3.3 folds) mRNA levels. Additionally, we
further detected protein levels of IL-1β and IL-6 using commercial ELISA kits, and the result
showed the levels of IL-1β (1.7–1.8 ng/L) and IL-6 (5–5.6 ng/L) were significantly increased
compared with that of the control (IL-1β, 1.5 ng/L) and (IL-6, 3.7 ng/L) (Figure 7B–E).
Taken together, our results indicated that TCPP exposure induces cellular senescence in
HaCaT cells may be via the p53/p21 pathway.
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3. Materials and Methods
3.1. Chemicals and Reagents

Tris (1-chloro-2-propyl) phosphate (TCPP, 99% purity) was from Dr. Ehrenstorfer
GmbH (Augsburg, Germany). The cell counting Kit-8 kit was purchased from GlpBio
Technology, Ltd. (Montclair, NJ, USA). The cell cycle testing kit, apoptosis detection kit,
SYBR green qPCR master mix, and Total RNA Extraction Reagent were from Yi Fei Xue
Biotech Co. (Nanjing, China). The cDNA synthesis kit was from TaKaRa Biotech, Ltd.
(Dalian, China). Senescence β-Galactosidase Staining Kit was from Beyotime Biotechnology
(Shanghai, China), DAPI was from Sigma Aldrich, and Phosphorylated histone H2A.X
(γH2A.X) antibody was from Abcam (Cambridge, UK). Roswell Park Memorial Institute
(RPMI) 1640 medium and fetal bovine serum (FBS) were from Procell Life Science &
Technology Co., Ltd. (Wuhan, China); Penicillin-streptomycin (PS) and 0.25% trypsin-
EDTA were from HyClone (Logan, UT, USA).

3.2. Cell Culture and Treatment

The human skin keratinocytes (HaCaTs) were from American Type Culture Collection
and cultured with RIPM1640 medium supplemented with 10% FBS and 1% PS in an
incubator at 37 ◦C and 5% CO2. HaCaT cells were subcultured twice a week. Before
exposure to TCPP, HaCaT cells were seeded in 96-well or 6-well plates overnight. The cells
were then treated with 1.56, 6.25, 25, 50, 100, 200, or 400 µg/mL of TCPP for 24 h. TCPP
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was dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA), and the
final concentration of DMSO in each treatment was ≤0.1% (v/v), with 0.1% DMSO solution
being set as the control.

3.3. Cell Viability Analysis

The effect of TCPP on cell viability was measured using the CCK-8 assay. Briefly, the
HaCaT cells were seeded to 96-well plates at the density of 1 × 104 cells/100 µL/well.
Following overnight incubation, the cells were treated with different concentrations (1.56,
6.25, 25, 50, 100, 200, or 400 µg/mL) of TCPP for 24 h. Then cells were incubated with
10 µL of CCK-8 solution for 2 h at 37 ◦C in a 5% CO2 incubator. The absorbance at 450 nm
was recorded using a microplate reader (Molecular Devices LLC, San Jose, CA, USA).
Additionally, the cell morphology was observed by an inverted microscope (TS100, Nikon,
Tokyo, Japan).

3.4. Measurement of Intracellular Reactive Oxygen Species (ROS)

The level of intracellular ROS was examined using a ROS assay kit (Yi Fei Xue Biotech
Co., Ltd., Nanjing, China) according to the manufacturer’s instructions. Briefly, the HaCaT
cells were seeded to 6-well plates and incubated overnight at 37 ◦C in a 5% CO2 incubator
at the density of 1 × 106 cells/mL. Based on the median inhibitory concentration (IC50)
at 275 µg/mL, the cells were treated with TCPP at 1.56–100 µg/for 24 h. Then, the cells
were incubated with 10 µM DCFH-DA-containing serum-free medium for 20 min at 37 ◦C.
Cells were washed three times with PBS. Subsequently, the level of intracellular ROS was
detected using a flow cytometer (CyFlow®Cube 6, Patec, Nuremberg, Germany). Data
were collected from 10,000 cells and analyzed by the FlowJo v10.6.2 software (FlowJo LLC,
Ashland, OR, USA).

3.5. Immunofluorescence Staining

For immunofluorescence staining, the HaCaT cells were seeded on 24-well plates
and cultured at the density of 5 × 104 cells/mL overnight; then, the cells were exposed
to 1.56–100 µg/mL TCPP for 24 h at 37 ◦C. Subsequently, HaCaT cells were fixed with
4% paraformaldehyde for 30 min and permeabilized with 0.5% Triton X-100 for 15 min.
After being blocked with 1% BSA for 1 h at room temperature, samples were incubated
with γH2AX primary antibody (ab81299, abcam, Cambridge, UK, 1:500) overnight at 4 ◦C.
Cells were washed 3 times with ice-cold PBS and incubated with secondary antibodies
(ab150077, abcam, Cambridge, UK, 1:200) for 1 h at room temperature. Nuclei were stained
blue with 4′,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis, MO, USA). The
fluorescence images were captured with an inverted microscope (Olympus IX73, Tokyo,
Japan). The nuclear γH2AX fluorescence intensity was quantified using Image J software
(NIH, Bethesda, MD, USA).

3.6. Cell Cycle Analysis

For cell cycle analysis, the HaCaT cells were seeded to 6-well plates at the density of
1 × 106 cells/mL. Following overnight incubation, the cells were exposed to 1.56–100 µg/mL
TCPP for 24 h, and then they were detected [34]. Briefly, HaCaT cells were collected and
fixed in ice-cold 70% ethanol overnight at 4 ◦C. Afterward, they were incubated with 500 µL
staining buffer containing 10 µL of RNaseA and 12.5 µL of propidium iodide (PI) for 30 min
at 37 ◦C in the dark. The cell cycle was analyzed with a CyFlow®Cube 6 flow cytometer
(Patec, Nuremberg, Germany). Data were collected from 10,000 cells and analyzed by the
FlowJo v10.6.2 software (FlowJo LLC, Ashland, OR, USA).

3.7. Senescence β-Galactosidase Staining

Senescenceβ-Galactosidase Staining was performed using the Senescenceβ-Galactosidase
Staining Kit (Beyotime Biotechnology, Shanghai, China) according to the manufacturer’s in-
structions. Briefly, HaCaT cells were seeded to 6-well plates overnight at 5 × 105 cells/well.
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After exposing them to TCPP for 24 h, they were washed with PBS and fixed in 1 mL
β-galactosidase stain for 15 min at room temperature. Then, they were washed three times
with PBS and subsequently incubated overnight with 1 mL staining solution mix (10 µL
β-galactosidase staining solution A, 10 µL β-galactosidase staining solution B, 930 µL
β-galactosidase staining solution C and 50 µL X-gal solution) at 37 ◦C. Then, the stained
positive cells (blue color) were observed via inverted microscopy (TS-100, Nikon, Tokyo,
Japan). The number of SA-β-Gal positive cells was counted using Image Pro-Plus 6.0
software (Olympus, Tokyo, Japan). The percentage of senescent cells was calculated from
five individual fields.

3.8. Total RNA Extraction and Quantitative Real-Time PCR (qRT-PCR) Assay

After exposure to TCPP for 24 h, the total RNA of HaCaT cells was isolated using
TRIzol reagent (Yi Fei Xue Biotech Co., Ltd., Nanjing, China). First-strand cDNA was
synthesized with Takara PrimeScript™ RT Master Mix (Dalian, China). The qRT-PCR anal-
ysis was performed using an SYBR Green qPCR Master Mix and Roche LightCycler 480II
Real-Time PCR system. The amplification conditions were as follows: pre-denaturation at
95 ◦C for 15 min, followed by 40 cycles of 2-step amplification (95 ◦C for 15 s and 60 ◦C for
1 min). The β-Actin gene served as an internal control. The relative expression level was
calculated by the 2−∆∆CT method, with primers listed in Table 1.

Table 1. The primer sequences used for the RT-qPCR.

Gene Forward Primer (5′–3′) Reserve Primer (5′–3′)

P53 CAGCACATGACGGAGGTTGT TCATCCAAATACTCCACACGC
P21 TGTCCGTCAGAACCCATGC AAAGTCGAAGTTCCATCGCTC
Cyclin D1 AGCTGTGCATCTACACCGAC GAAATCGTGCGGGGTCATTG
CDK4 AGATGGCACTTACACCCGTG ACATGTCCACAGGTGTTGCA
IL-1β ACAGATGAAGTGCTCCTTCCA GTCGGAGATTCGTAGCTGGAT
IL-6 CAATCTGGATTCAATGAGGAGAC CTCTGGCTTGTTCCTCACTACTC
β-Actin GTACCACTGGCATCGTGATGGACT CCGCTCATTGCCAATGGTGAT

3.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The protein levels of IL-1β and IL-6 in cell supernatants were assayed with human
IL-1β and IL-6 ELISA Kits (Yi Fei Xue Biotech Co., Ltd., Nanjing, China) following the
manufacturer’s instructions. The absorbance at 450 nm was recorded using a microplate
reader (Molecular Devices LLC, San Jose, CA, USA). The results of IL-1β and IL-6 were
expressed as concentrations as ng/L.

3.10. Statistical Analysis

All experiments were repeated at least three times. Data are presented as the mean ± SEM.
All results were analyzed with GraphPad Prism 5.0 statistical software (GraphPad Software
Inc., San Diego, CA, USA). Differences in different groups were assessed by one-way
ANOVA, with p < 0.05 being significant.

4. Conclusions

In this study, we found that TCPP caused a concentration-dependent decrease in
HaCaT cell viability after exposure to 1.56–400 µg/mL for 24 h, with an IC50 of 275 µg/mL,
and induced obvious DNA damage and cell senescence. In addition, TCPP induced cell
cycle arrest in the G1 phase at 100 µg/mL by upregulation of the mRNA expression
of p53 and p21, while the expression of cyclin D1 was suppressed. Meanwhile, SASP
proinflammatory cytokines IL-1β and IL-6 were also enhanced at both mRNA and protein
levels. Taken together, our results indicate that TCPP exposure caused cellular senescence
may be through the p53/p21 pathway in HaCaT cells, which may provide a new perspective
on skin aging.
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