Fluid Biomarkers in HPV and Non-HPV Related Oropharyngeal Carcinomas: From Diagnosis and Monitoring to Prognostication—A Systematic Review
Abstract
:1. Introduction
2. Method and Analysis
3. HPV-Positive OPC
3.1. Genetics
3.1.1. DNA
Detection
Predicting Prognosis
Treatment Monitoring
Post Treatment Surveillance
3.1.2. RNA
Detection
Prognosis
Treatment Monitoring
3.2. Epigenetics
3.3. Extracellular Vesicles (EVs)
3.3.1. Detection
3.3.2. Recurrence
3.4. Oncoproteins
3.4.1. Early Detection and Classification
3.4.2. Predicting Prognosis
3.5. Immune Response
Predicting Prognosis
4. HPV-Negative OPC
4.1. Genetics
4.1.1. Early Detection
4.1.2. Predicting Prognosis
4.1.3. Treatment Selection
4.2. Proteins
4.2.1. Early Detection
4.2.2. Predicting Prognosis
4.3. Immune Response
4.3.1. Early Detection
4.3.2. Salivary LDH
Plasma IL-1Ra
4.3.3. Tumor Staging
IL-1Ra and the Inflammatory State
CD73 and MDSCs and the Adenosine Pathway
Peripheral CTLA-4+ and PD-1+ Lymphocytes
4.3.4. Predicting Prognosis
Genetic Level–HLA Traits
Cytokine sFLT-1 in Post-Surgical Drain Fluid
Cellular Level–Neutrophil-Lymphocyte Ratio
Tissue Level–Anemia
5. Limitations
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OPCs | Oropharyngeal cancers |
HPV | Human papillomavirus |
OPSCC | Oropharyngeal squamous cell carcinoma |
ctDNA | Circulating tumor DNA |
cfDNA | Cell free DNA |
EBV | Ebstein–Barr virus |
AUC | Area under curve |
PFS | Progression-free survival |
CRT | Chemoradiotherapy |
PPV | Positive predictive value |
PET | Positron emission tomography |
18F-FDG | 18f-fluorodeoxyglucose |
FNA | Fine needle aspiration |
CALML5 | Calmodulin-like 5 |
YAP1 | Yes-associated protein 1 |
LY6D | Lymphocyte antigen 6 complex locus d |
DNAJC5G | DNAj heat shock protein family member c5 |
EDNRB | Endothelin receptor type b gene |
EVs | Extracellular vesicles |
StaVarSel | Stable variation selection |
MAC | Membrane attack complex |
CTCs | Circulating tumor cells |
TRH | Thyrotropin-releasing hormone |
DDR | DNA damage repair |
PARP | Poly adp-ribose polymerase |
HRR | Homologous recombination repair |
MMP | Matrix metalloproteinases |
ECM | Extracellular matrix |
LOXL2 | Lysyl oxidase like 2 |
NT-3 | Neurotrophin-3 |
TIMP-1 | Tissue inhibitor of metalloproteinase-1 |
FAK | Focal adhesion kinase |
LDH | Lactate dehydrogenase |
IL-1Ra | Interleukin-1 receptor antagonist |
BMI | Body mass index |
MDSC | Myeloid-derived suppressor cells |
M-MDSC | Monocytic myeloid-derived suppressor cells |
PMN-MDSC | Polymorphonuclear myeloid-derived suppressor cells |
TRM | Tissue-resident memory t cells |
OTSCC | Oral tongue squamous cell carcinoma |
VEGF | Vascular endothelial growth factors |
SFlt-1 | Soluble fms-like tyrosine kinase 1 |
MNCs | Mononuclear cells |
NLR | Neutrophil lymphocyte ratio |
OS | Overall survival |
Appendix A
HPV-Positive | HPV-Negative | MiRNAs with >500 rpm in all Samples |
hsa-miR-363-3p | hsa-miR-767-5p | hsa-miR-26a-5p |
hsa-miR-551b-3p | hsa-miR-105-5p (hsa-mir-105-1) | hsa-miR-27a-3p |
hsa-miR-20b-5p | hsa-miR-105-5p (hsa-mir-105-2) | hsa-miR-221-3p |
hsa-miR-20b-3p | hsa-miR-100-5p | hsa-miR-20a-5p |
hsa-miR-143-3p | hsa-miR-584-5p | hsa-miR-23a-3p |
hsa-miR-106a-5p | hsa-miR-3065-5p | hsa-miR-26a-5p (hsa-mir-26a-1) |
hsa-miR-9-5p (hsa-mir-9-3) | hsa-miR-338-3p | hsa-miR-30d-5p |
hsa-miR-9-5p (hsa-mir-9-2) | hsa-miR-135b-5p | hsa-miR-3074-5p |
hsa-miR-9-5p (hsa-mir-9-1)) | hsa-miR-589-5p | hsa-miR-27b-3p |
hsa-miR-99a-3p | hsa-miR-3065-3p | |
hsa-miR-99a-5p | hsa-miR-338-5p | |
hsa-miR-9-3p (hsa-mir-9-1) | hsa-miR-1307-5p | |
hsa-miR-193a-5p | hsa-miR-29b-3p (hsa-mir-29b-1) | |
hsa-let-7b-3p | hsa-miR-29a-5p | |
hsa-miR-7-5p (hsa-mir-7-1) | ||
hsa-miR-345-5p | ||
hsa-miR-18a-5p | ||
hsa-miR-615-3p | ||
Has-miR-1307-3p |
Appendix B
Denominator miRNA (miRBase) | Numerator miRMA (miRBase) |
hsa-miR-206 | hsa-miR-494-3p |
U6 snRNA | hsa-miR-150-5p |
hsa-miR-532-3p | hsa-miR-574-3p |
hsa-miR-125a-5p | hsa-miR-193b-3p |
hsa-miR-1274b | hsa-miR-27a-3p |
hsa-miR-494-3p | hsa-miR-150-5p |
hsa-miR-193a-5p | U6 snRNA |
hsa-miR-27a-3p | hsa-miR-93-5p |
ath-miR159a | hsa-miR-152-3p |
ath-miR159a | hsa-miR-494-3p |
hsa-miR-375-3p | hsa-miR-483-5p |
References
- Definition of Oropharynx—NCI Dictionary of Cancer Terms—National Cancer Institute [Internet]. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/oropharynx (accessed on 27 March 2022).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- IARC Publications Website—WHO Classification of Head and Neck Tumours [Internet]. Available online: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/WHO-Classification-Of-Head-And-Neck-Tumours-2017 (accessed on 27 March 2022).
- Rosenthal, M.; Huang, B.; Katabi, N.; Migliacci, J.; Bryant, R.; Kaplan, S.; Blackwell, T.; Patel, S.; Yang, L.; Pei, Z.; et al. Detection of HPV related oropharyngeal cancer in oral rinse specimens. Oncotarget 2017, 8, 109393–109401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, K.D.; Vasani, S.; Menezes, L.; Taheri, T.; Walsh, L.J.; Hughes, B.G.M.; Frazer, I.H.; Kenny, L.; Scheper, G.C.; Punyadeera, C. Oral HPV16 DNA as a screening tool to detect early oropharyngeal squamous cell carcinoma. Cancer Sci. 2020, 111, 3854–3861. [Google Scholar] [CrossRef]
- Mazurek, A.M.; Rutkowski, T.; Śnietura, M.; Pigłowski, W.; Suwiński, R.; Składowski, K. Detection of circulating HPV16 DNA as a biomarker in the blood of patients with human papillomavirus-positive oropharyngeal squamous cell carcinoma. Head Neck. 2019, 41, 632–641. [Google Scholar] [CrossRef]
- Campo, F.; Zocchi, J.; Moretto, S.; Mazzola, F.; Petruzzi, G.; Donà, M.G.; Benevolo, M.; Iocca, O.; De Virgilio, A.; Pichi, B.; et al. Cell-Free Human Papillomavirus-DNA for Monitoring Treatment Response of Head and Neck Squamous Cell Carcinoma: Systematic Review and Meta-Analysis. Laryngoscope 2021, 132, 560–568. [Google Scholar] [CrossRef]
- Haring, C.T.; Bhambhani, C.; Brummel, C.; Jewell, B.; Bellile, E.; Heft Neal, M.E.; Sandford, E.; Spengler, R.M.; Bhangale, A.; Spector, M.E.; et al. Human papilloma virus circulating tumor DNA assay predicts treatment response in recurrent/metastatic head and neck squamous cell carcinoma. Oncotarget 2021, 12, 1214–1229. [Google Scholar] [CrossRef]
- Veyer, D.; Wack, M.; Mandavit, M.; Garrigou, S.; Hans, S.; Bonfils, P.; Tartour, E.; Bélec, L.; Wang-Renault, S.F.; Laurent-Puig, P.; et al. HPV circulating tumoral DNA quantification by droplet-based digital PCR: A promising predictive and prognostic biomarker for HPV-associated oropharyngeal cancers. Int. J. Cancer 2020, 147, 1222–1227. [Google Scholar] [CrossRef]
- Chera, B.S.; Kumar, S.; Beaty, B.T.; Marron, D.; Jefferys, S.; Green, R.; Goldman, E.C.; Amdur, R.; Sheets, N.; Dagan, R.; et al. Rapid clearance profile of plasma circulating tumor HPV type 16 DNA during chemoradiotherapy correlates with disease control in HPV-associated oropharyngeal cancer. Clin. Cancer Res. 2019, 25, 4682–4690. [Google Scholar] [CrossRef]
- Lee, J.Y.; Garcia-Murillas, I.; Cutts, R.J.; de Castro, D.G.; Grove, L.; Hurley, T.; Wang, F.; Nutting, C.; Newbold, K.; Harrington, K.; et al. Predicting response to radical (chemo)radiotherapy with circulating HPV DNA in locally advanced head and neck squamous carcinoma. Br. J. Cancer 2017, 117, 876–883. [Google Scholar] [CrossRef]
- Reder, H.; Taferner, V.F.; Wittekindt, C.; Bräuninger, A.; Speel, E.J.M.; Gattenlöhner, S.; Wolf, G.; Klussmann, J.P.; Wuerdemann, N.; Wagner, S. Plasma Cell-Free Human Papillomavirus Oncogene E6 and E7 DNA Predicts Outcome in Oropharyngeal Squamous Cell Carcinoma. J. Mol. Diagn. 2020, 22, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Chera, B.S.; Kumar, S.; Shen, C.; Amdur, R.; Dagan, R.; Green, R.; Goldman, E.; Weiss, J.; Grilley-Olson, J.; Patel, S.; et al. Plasma circulating tumor HPV DNA for the surveillance of cancer recurrence in HPV-associated oropharyngeal cancer. J. Clin. Oncol. 2020, 38, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.A.; Woo, J.K.S.; King, A.; Zee, B.C.Y.; Lam, W.K.J.; Chan, S.L.; Chu, S.W.; Mak, C.; Tse, I.O.; Leung, S.Y.; et al. Analysis of Plasma Epstein–Barr Virus DNA to Screen for Nasopharyngeal Cancer. N. Engl. J. Med. 2017, 377, 513–522. [Google Scholar] [CrossRef]
- Chernesky, M.; Jang, D.; Schweizer, J.; Arias, M.; Doerwald-Munoz, L.; Gupta, M.; Jackson, B.; Archibald, S.; Young, J.; Lytwyn, A.; et al. HPV E6 oncoproteins and nucleic acids in neck lymph node fine needle aspirates and oral samples from patients with oropharyngeal squamous cell carcinoma. Papillomavirus Res. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- Oliva, M.; Schneeberger, P.H.H.; Rey, V.; Cho, M.; Taylor, R.; Hansen, A.R.; Taylor, K.; Hosni, A.; Bayley, A.; Hope, A.J.; et al. Transitions in oral and gut microbiome of HPV+ oropharyngeal squamous cell carcinoma following definitive chemoradiotherapy (ROMA LA-OPSCC study). Br. J. Cancer 2021, 124, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Misawa, K.; Imai, A.; Matsui, H.; Kanai, A.; Misawa, Y.; Mochizuki, D.; Mima, M.; Yamada, S.; Kurokawa, T.; Nakagawa, T.; et al. Identification of novel methylation markers in HPV-associated oropharyngeal cancer: Genome-wide discovery, tissue verification and validation testing in ctDNA. Oncogene 2020, 39, 4741–4755. [Google Scholar] [CrossRef]
- Shen, S.; Saito, Y.; Ren, S.; Liu, C.; Guo, T.; Qualliotine, J.; Khan, Z.; Sadat, S.; Califano, J.A. Targeting Viral DNA and Promoter Hypermethylation in Salivary Rinses for Recurrent HPV-Positive Oropharyngeal Cancer. Otolaryngol.-Head Neck Surg. 2020, 162, 512–519. [Google Scholar] [CrossRef]
- Sun, B.K.; Boxer, L.D.; Ransohoff, J.D.; Siprashvili, Z.; Qu, K.; Lopez-Pajares, V.; Hollmig, S.T.; Khavari, P.A. CALMl5 is a ZNF750-and tincr-induced protein that binds stratifin to regulate epidermal differentiation. Genes Dev. 2015, 29, 2225–2230. [Google Scholar] [CrossRef] [Green Version]
- Szelachowska, J.; Donizy, P.; Ratajczak-Wielgomas, K.; Halon, A.; Zielecka-Debska, D.; Lichon, K.; Maciejczyk, A.; Lata-Wozniak, E.; Piotrowska, A.; Matkowski, R. The effect of YAP expression in tumor cells and tumor stroma on the prognosis of patients with squamous cell carcinoma of the oral cavity floor and oral surface of the tongue. Oncol. Lett. 2019, 18, 3561–3570. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.; Kim, J. The potential role of YAP in head and neck squamous cell carcinoma. Exp. Mol. Med. 2020, 52, 1264–1274. [Google Scholar] [CrossRef]
- Faraji, F.; Ramirez, S.I.; Anguiano Quiroz, P.Y.; Mendez-Molina, A.N.; Gutkind, J.S. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022, 11, 1370. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, E.J.C.; Leemans, C.R.; Kummer, A.; Denkers, F.; Snow, G.B.; Brakenhoff, R.H. Assessment and clinical significance of micrometastases in lymph nodes of head and neck cancer patients detected by E48 (Ly-6D) quantitative reverse transcription-polymerase chain reaction. Lab. Investig. 2003, 83, 1233–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terai, H.; Soejima, K.; Yasuda, H.; Sato, T.; Naoki, K.; Ikemura, S.; Arai, D.; Ohgino, K.; Ishioka, K.; Hamamoto, J.; et al. Long-term exposure to gefitinib induces acquired resistance through DNA methylation changes in the EGFR-mutant PC9 lung cancer cell line. Int. J. Oncol. 2015, 46, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urano, E.; Morikawa, Y.; Komano, J. Novel role of HSP40/DNAJ in the regulation of HIV-1 replication. J. Acquir. Immune Defic. Syndr. 2013, 64, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.; De-Medina, T.; Syken, J.; Vidal, M.; Münger, K. A novel human DnaJ protein, hTid-1, a homolog of the Drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology 1998, 247, 74–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattani, K.M.; Zhang, Z.; Demokan, S.; Glazer, C.; Loyo, M.; Goodman, S.; Sidransky, D.; Bermudez, F.; Jean-Charles, G.; McCaffrey, T.; et al. Endothelin receptor type B gene promoter hypermethylation in salivary rinses is independently associated with risk of oral cavity cancer and premalignancy. Cancer Prev. Res. 2010, 3, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Wu, G.; Roh, J.L.; Chang, X.; Li, X.; Ahn, J.; Goldsmith, M.; Khan, Z.; Bishop, J.; Zhang, Z.; et al. Correlation of gene methylation in surgical margin imprints with locoregional recurrence in head and neck squamous cell carcinoma. Cancer 2015, 121, 1957–1965. [Google Scholar] [CrossRef] [Green Version]
- Peacock, B.; Rigby, A.; Bradford, J.; Pink, R.; Hunter, K.; Lambert, D.; Hunt, S. Extracellular vesicle microRNA cargo is correlated with HPV status in oropharyngeal carcinoma. J. Oral Pathol. Med. 2018, 47, 954–963. [Google Scholar] [CrossRef]
- Mayne, G.C.; Woods, C.M.; Dharmawardana, N.; Wang, T.; Krishnan, S.; Hodge, J.C.; Foreman, A.; Boase, S.; Carney, A.S.; Sigston, E.A.W.; et al. Cross validated serum small extracellular vesicle microRNAs for the detection of oropharyngeal squamous cell carcinoma. J. Transl. Med. 2020, 18, 280. [Google Scholar] [CrossRef]
- Dickinsoni, A.; Saraswat, M.; Syrjänen, S.; Tohmola, T.; Silén, R.; Randén-Brady, R.; Carpén, T.; Hagström, J.; Haglund, C.; Mattila, P.; et al. Comparing serum protein levels can aid in differentiating HPV-negative and-positive oropharyngeal squamous cell carcinoma patients. PLoS ONE 2020, 15, e0233974. [Google Scholar] [CrossRef]
- Economopoulou, P.; Koutsodontis, G.; Avgeris, M.; Strati, A.; Kroupis, C.; Pateras, I.; Kirodimos, E.; Giotakis, E.; Kotsantis, I.; Maragoudakis, P.; et al. HPV16 E6/E7 expression in circulating tumor cells in oropharyngeal squamous cell cancers: A pilot study. PLoS ONE 2019, 14, e0215984. [Google Scholar] [CrossRef] [PubMed]
- Masterson, L.; Lechner, M.; Loewenbein, S.; Mohammed, H.; Davies-Husband, C.; Fenton, T.; Sudhoff, H.; Jani, P.; Goon, P.; Sterling, J. CD8+ T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. Eur. J. Cancer 2016, 67, 141–151. [Google Scholar] [CrossRef] [PubMed]
- von Witzleben, A.; Currall, E.; Wood, O.; Chudley, L.; Akinyegun, O.; Thomas, J.; Bendjama, K.; Thomas, G.J.; Friedmann, P.S.; King, E.V.; et al. Correlation of HPV16 Gene Status and Gene Expression With Antibody Seropositivity and TIL Status in OPSCC. Front. Oncol. 2021, 10, 3049. [Google Scholar] [CrossRef] [PubMed]
- Puttipanyalears, C.; Arayataweegool, A.; Chalertpet, K.; Rattanachayoto, P.; Mahattanasakul, P.; Tangjaturonsasme, N.; Kerekhanjanarong, V.; Mutirangura, A.; Kitkumthorn, N.J.B.C. TRH site-specific methylation in oral and oropharyngeal squamous cell carcinoma. BMC Cancer 2018, 18, 786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise-Draper, T.; Sendilnathan, A.; Palackdharry, S.; Pease, N.; Qualtieri, J.; Butler, R.; Sadraei, N.H.; Morris, J.C.; Patil, Y.; Wilson, K.; et al. Decreased plasma DEK Oncogene Levels Correlate with p16-Negative Disease and Advanced Tumor Stage in a Case–Control Study of Patients with Head and Neck Squamous Cell Carcinoma. Transl. Oncol. 2018, 11, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Burcher, K.M.; Faucheux, A.T.; Lantz, J.W.; Wilson, H.L.; Abreu, A.; Salafian, K.; Patel, M.J.; Song, A.H.; Petro, R.M.; Lycan, T., Jr.; et al. Prevalence of dna repair gene mutations in blood and tumor tissue and impact on prognosis and treatment in HNSCC. Cancers 2021, 13, 3118. [Google Scholar] [CrossRef]
- Boldrup, L.; Troiano, G.; Gu, X.; Coates, P.; Fåhraeus, R.; Wilms, T.; Norberg-Spaak, L.; Wang, L.; Nylander, K. Evidence that circulating proteins are more promising than miRNAs for identification of patients with squamous cell carcinoma of the tongue. Oncotarget 2017, 8, 103437–103448. [Google Scholar] [CrossRef] [Green Version]
- Sanada, T.; Islam, A.; Kaminota, T.; Kirino, Y.; Tanimoto, R.; Yoshimitsu, H.; Yano, H.; Mizuno, Y.; Okada, M.; Mitani, S.; et al. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope 2020, 130, E327–E334. [Google Scholar] [CrossRef]
- Chang, Y.T.; Chu, L.J.; Liu, Y.C.; Chen, C.J.; Wu, S.F.; Chen, C.H.; Chang, I.Y.F.; Wang, J.S.; Wu, T.Y.; Dash, S.; et al. Verification of saliva matrix metalloproteinase-1 as a strong diagnostic marker of oral cavity cancer. Cancers 2020, 12, 2273. [Google Scholar] [CrossRef]
- Lassig, A.A.D.; Joseph, A.M.; Lindgren, B.R.; Yueh, B. Association of oral cavity and oropharyngeal cancer biomarkers in surgical drain fluid with patient outcomes. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 670–678. [Google Scholar] [CrossRef]
- Carpén, T.; Sorsa, T.; Jouhi, L.; Tervahartiala, T.; Haglund, C.; Syrjänen, S.; Tarkkanen, J.; Mohamed, H.; Mäkitie, A.; Hagström, J.; et al. High levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the serum are associated with poor prognosis in HPV-negative squamous cell oropharyngeal cancer. Cancer Immunol. Immunother. 2019, 68, 1263–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page-Mccaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benbow, U.; Schoenermark, M.P.; Mitchell, T.I.; Rutter, J.L.; Shimokawa, K.I.; Nagase, H.; Brinckerhoff, C.E. A novel host/tumor cell interaction activates matrix metalloproteinase 1 and mediates invasion through type I collagen. J. Biol. Chem. 1999, 274, 25371–25378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, H.E.; Cox, T.R.; Erler, J.T. The rationale for targeting the LOX family in cancer. Nat. Rev. Cancer 2012, 12, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Louie, E.; Chen, X.F.; Coomes, A.; Ji, K.; Tsirka, S.; Chen, E.I. Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene 2013, 32, 4064–4077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, A.; Greco, S.; Mariotta, S.; Felici, L.; Bronzetti, E.; Cavazzana, A.; Cardillo, G.; Amenta, F.; Bisetti, A.; Barbolini, G. Neurotrophins and neurotrophin receptors in human lung cancer. Am. J. Respir. Cell Mol. Biol. 2001, 25, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, S.V.; Panaccione, A.; Brown, B.; Guo, Y.; Moskaluk, C.A.; Wick, M.J.; Brown, J.L.; Ivanova, A.V.; Issaeva, N.; El-Naggar, A.K.; et al. TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene 2013, 32, 3698–3710. [Google Scholar] [CrossRef] [Green Version]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Stetler-Stevenson, W.G. Tissue inhibitors of metalloproteinases in cell signaling: Metalloproteinase-independent biological activities. Sci. Signal. 2008, 1, re6. [Google Scholar] [CrossRef]
- Mohajertehran, F.; Ayatollahi, H.; Jafarian, A.H.; Khazaeni, K.; Soukhtanloo, M.; Shakeri, M.T.; Mohtasham, N. Overexpression of Lactate Dehydrogenase in the Saliva and Tissues of Patients with Head and Neck Squamous Cell Carcinoma. Rep. Biochem. Mol. Biol. 2019, 7, 142–149. [Google Scholar] [PubMed]
- Boldrup, L.; Coates, P.; Gu, X.; Wang, L.; Fåhraeus, R.; Wilms, T.; Sgaramella, N.; Nylander, K. Low potential of circulating interleukin 1 receptor antagonist as a prediction marker for squamous cell carcinoma of the head and neck. J. Oral Pathol. Med. 2021, 50, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Poropatich, K.; Fontanarosa, J.; Swaminathan, S.; Dittmann, D.; Chen, S.; Samant, S.; Zhang, B. Comprehensive T-cell immunophenotyping and next-generation sequencing of human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinomas. J. Pathol. 2017, 243, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Ida, S.; Takahashi, H.; Kawabata-Iwakawa, R.; Mito, I.; Tada, H.; Chikamatsu, K. Tissue-resident memory T cells correlate with the inflammatory tumor microenvironment and improved prognosis in head and neck squamous cell carcinoma. Oral Oncol. 2021, 122, 105508. [Google Scholar] [CrossRef] [PubMed]
- Wilms, T.; Gu, X.; Boldrup, L.; Coates, P.J.; Fahraeus, R.; Wang, L.; Sgaramella, N.; Nielsen, N.H.; Norberg-Spaak, L.; Nylander, K. PD-L1 in squamous cell carcinoma of the oral tongue shows gender-specific association with prognosis. Oral Dis. 2020, 26, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhu, Y.; Chen, X.; Zhao, J. CD73 expression in myeloid-derived suppressor cells is correlated with clinical stages in head and neck squamous cell carcinomas. Ann. Transl. Med. 2021, 9, 1148. [Google Scholar] [CrossRef]
- Gorphe, P.; Chekkoury Idrissi, Y.; Tao, Y.; Schernberg, A.; Ou, D.; Temam, S.; Casiraghi, O.; Blanchard, P.; Mirghani, H. Anemia and neutrophil-to-lymphocyte ratio are prognostic in p16-positive oropharyngeal carcinoma treated with concurrent chemoradiation. Papillomavirus Res. 2018, 5, 32–37. [Google Scholar] [CrossRef]
- Wichmann, G.; Herchenhahn, C.; Boehm, A.; Mozet, C.; Hofer, M.; Fischer, M.; Kolb, M.; Dietz, A. HLA traits linked to development of head and neck squamous cell carcinoma affect the progression-free survival of patients. Oral Oncol. 2017, 69, 115–127. [Google Scholar] [CrossRef]
- Al-Samadi, A.; Awad, S.A.; Tuomainen, K.; Zhao, Y.; Salem, A.; Parikka, M.; Salo, T. Crosstalk between tongue carcinoma cells, extracellular vesicles, and immune cells in in vitro and in vivo models. Oncotarget 2017, 8, 60123–60134. [Google Scholar] [CrossRef] [Green Version]
- Turiello, R.; Pinto, A.; Morello, S. CD73: A Promising Biomarker in Cancer Patients. Front. Pharmacol. 2020, 11, 1808. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Young, C.A.; Murray, L.J.; Karakaya, E.; Thygesen, H.H.; Sen, M.; Prestwich, R.J.D. The Prognostic Role of the Neutrophil-to-Lymphocyte Ratio in Oropharyngeal Carcinoma Treated with Chemoradiotherapy. Clin. Med. Insights Oncol. 2014, 8, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, K.A.; Harris, B.D.W.; Haddad, C.R.; Clarke, S.J.; Guminski, A.; Stevens, M.; Dodds, T.; Gill, A.J.; Back, M.; Veivers, D.; et al. Systemic inflammation is an independent predictive marker of clinical outcomes in mucosal squamous cell carcinoma of the head and neck in oropharyngeal and non-oropharyngeal patients. BMC Cancer 2016, 16, 124. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.H.; Waldron, J.N.; Milosevic, M.; Shen, X.; Ringash, J.; Su, J.; Tong, L.; Perez-Ordonez, B.; Weinreb, I.; Bayley, A.J.; et al. Prognostic value of pretreatment circulating neutrophils, monocytes, and lymphocytes in oropharyngeal cancer stratified by human papillomavirus status. Cancer 2015, 121, 545–555. [Google Scholar] [CrossRef] [PubMed]
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | Number of Patients (M/F) | Age Range | Mean Age | Other Recorded Covariates |
---|---|---|---|---|---|---|---|---|---|---|
Rosenthal et al. [5]. 2017 | HPV DNA | Oral rinse | Detection | Retrospective | 0.78 | 0.50 | 38:7 | / * | / | Tobacco, alcohol, tumor stage, treatment received |
Tang et al. [6]. 2020 | HPV DNA | Oral rinse | Detection | Retrospective | / | / | 280:370 | 18–89 | 52 | Tobacco, alcohol, race |
Mazurek et al. [7]. 2019 | HPV cfDNA | Plasma | Detection | Cross-sectional | 1.00 | 0.72 | 41:222 | 30–79 | 61 | / |
Campo et al. [8]. 2021 | HPV cfDNA | Plasma | Detection | Meta-analysis | 0.65 | 0.99 | 457 | / | / | Tobacco, alcohol, tumor stage, treatment received |
Haring et al. [9]. 2021 | HPV ctDNA | Plasma | Prognosis, Treatment monitoring | Prospective | 0.889 | 0.889 | 9:3 | / | 62 | Tobacco, tumor stage, treatment |
Veyer et al. [10]. 2020 | HPV ctDNA | Plasma | Prognosis, Treatment monitoring | Prospective | / | / | 46:20 | 43–92 | 65 | Tobacco |
Chera et al. [11]. 2019 | HPV ctDNA | Plasma | Prognosis, Treatment monitoring | Prospective | 0.89 | 0.97 | 92:11 | / | 60 | Tobacco |
Lee et al. [12]. 2017 | HPV ctDNA | Plasma | Post-treatment surveillance | Prospective | 1.00 (test), 0.90 (validation) | 0.93 (test), 1.00 (validation) | 55 | / | / | Tobacco |
Reder et al. [13]. 2020 | HPV cfDNA, E6, E7 | Plasma | Detection, prognosis, Post-treatment surveillance | Retrospective | 0.77 (combined) | 1.00 (combined) | HPV: 24:6 non-HPV: 17:3 | HPV: 47.3–91.7 non-HPV: 46.5–75.2 | HPV: 64.9 non-HPV: 59.9 | Tobacco, alcohol, tumor stage, treatment received |
Chera et al. [14]. 2020 | HPV ctDNA | Plasma | Post-treatment surveillance | Prospective | 1.00 (two consecutive abnormal levels) | 0.99 (two consecutive abnormal levels) | 101:14 | 33–84 | 59 | Tobacco |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Chernesky et al. [16]. 2018 | E6/E7 mRNA | Saliva; oral swabs; FNA | Detection | Cross-sectional | / | / | 50:9 | 40–80 | 59.8 | / |
Oliva et al. [17]. 2021 | rRNA | Saliva | Post-treatment | Prospective | / | / | 19:3 | 50–71 | 61 | Tobacco, tumor stage |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Misawa et al. [18]. 2020 | Methylated genes | Plasma | Prognosis; post-treatment surveillance | Retrospective | / | / | 217:35 | 32–95 | 65 | Tobacco, alcohol |
Shen Et al [19]. 2020 | Methylated genes | Saliva | Post-treatment surveillance | Retrospective | 0.90 (combined panel of HR E5L2-4 and EDNRB) | 0.81 (combined panel of HR E5L2-4 and EDNRB) | 62:8 | / | 60.2 | Tobacco, alcohol |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Peacock et al. [30]. 2018 | Micro-RNA (Details listed in Appendix A) | EVs | Detection | Retrospective | / | / | / | / | / | / |
Mayne et al. [31]. 2020 | Micro-RNA (Details listed in Appendix B) | EVs | Recurrence | Cross-validation | 90% | 79% | 36:3 | 47–74 | 58 | Tobacco |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Dickinsoni et al. [32]. 2020 | Oncoprotein | Serum | Classification | Retrospective | / | / | 22:14 | 36.6–84.7 | 62.6 | / |
Chernesky et al. [16]. 2018 | HPV E6 oncoprotein | Saliva, FNA | Detection | Cross-sectional | / | / | 50:9 | 40–80 | 59.8 | / |
Economopoulou et al. [33]. 2019 | HPV16 E6/E7 CTCs | Blood | Prognosis | Prospective | / | / | 22 | 41–76 | 48 | Tobacco, alcohol, tumor stage, treatment received |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Masterson et al. [34]. 2016 | CD4+; CD8+; T-cells | Blood | Prognosis | Prospective | / | / | 41:10 | / | 58 | Tobacco, alcohol |
Witzleben et al. [35]. 2021 | Antibodies to HPV DNA E2 E7 | Serum | Prognosis, treatment | Cross-sectional | / | / | 67:10 | 35–77 | 56 | Tumor stage, treatment received |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Puttipanyalears Et al [36]. 2018 | TRH gene methylation | Saliva | Diagnostic; no prognostic value | Bioinformatics with validation | 82.61% | 92.59% | 24 | / | / | / |
Wise-Draper et al [37]. 2018 | DEK gene | Plasma | Prognosis | Retrospective | / | / | 30:6 * | / | 56.67 | Race distribution, smoking, alcohol |
Burcher et al [38]. 2021 | DDR gene mutation | Blood | Treatment | Retrospective | / | / | 123:47 * | / | 60 | ETOH status, smoking, tumor stage, HPV status |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity | Specificity | No. of Patients | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|---|
Boldrup [39] et al. 2017 | NT-3 | Plasma | Diagnosis | Retrospective | / | / | 19 | / | / | / |
Sanada et al. [40]. 2020 | LOXL2 | Serum | Diagnosis | Retrospective | / | / | 31:5 (M:F) | / | 66:59 | Tumor stage |
Chang et al. [41]. 2020 | MMP-1 | Saliva | Diagnosis | Retrospective | 70.37% | 74.64% | 27 | / | / | Smoking |
Lassig et al. [42]. 2017 | MMP-1; MMP-3 | Surgical drain fluid | Prognosis | Prospective | / | / | 15:5 | / | 63.5 | Smoking, alcohol |
Carpén et al. [43]. 2019 | TIMP- | Serum | Prognosis | Retrospective | / | / | 66:24 | 36.6–84. | 61.8 | Smoking, alcohol, tumor stage |
Study | Biomarker | Biofluid | Application | Study Type | Sensitivity, Specificity | No. of Patients (M/F) | Age Range | Mean Age | Other Covariates Recorded |
---|---|---|---|---|---|---|---|---|---|
Mohajertehran et al. [53]. 2019 | LDH | Saliva | Early diagnosis | Retrospective | / | 33:11 | 27–83 | 59.61 | / * |
Boldrup et al. [54]. 2021 | IL1Ra | Blood | Diagnosis (failed), staging | Retrospective | / | 87 | 19–84 | / | Tobacco, fasting status |
Poropatich et al. [55]. 2017 | CTLA-4+ PD-1+ | Blood | Staging | Retrospective | / | 19:7 | / | 61 | Tobacco, alcohol |
CD8+ T-cells | |||||||||
Ida et al. [56]. 2021 | TRM-like cells | Blood | Failed to correlate with staging | Retrospective | / | 54:6 | 39–89 | 65 | HPV status |
Wilms et al. [57]. 2020 | PD-L1 protein | Blood | Staging & prognosis | Retrospective | / | 50:51 | 19–89 | 62 | Tobacco, alcohol, treatment received |
Zheng et al. [58]. 2021 | CD73 | Blood | Staging & prognosis | Retrospective | / | 42:11 | 28–78 | 57.3 | / |
Gorphe et al. [59]. 2018 | Anaemia; | Blood | Prognosis | Retrospective | / | 126:41 | 38–77 | 59.2 | HPV-status, smoking history (30 pack years), tumor stage |
Neutrophil-lymphocyte ratio | |||||||||
Wichmann et al. [60]. 2017 | HLA traits in leukocytes | Blood | Prognosis | Cross-sectional | / | 78:12 | / | / | Tobacco, alcohol, HPV status, treatment |
Al-Samadi et al. [61]. 2017 | Mononuclear cells | Blood | Prognosis (failed correlation) | Prospective animal model | / | / | / | / | / |
Lassig et al. [42]. 2017 | MMP-1, MMP-3; sFlt-1 | Post-surgical drain fluid | Prognosis | Prospective | / | 15:5 | / | 63.5 | Tobacco, alcohol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.C.; Leung, K.K.C.; Chung, A.C.Y.; Wong, E.S.Y.; Meehan, K.L.; Chan, J.Y.K. Fluid Biomarkers in HPV and Non-HPV Related Oropharyngeal Carcinomas: From Diagnosis and Monitoring to Prognostication—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 14336. https://doi.org/10.3390/ijms232214336
Lee SC, Leung KKC, Chung ACY, Wong ESY, Meehan KL, Chan JYK. Fluid Biomarkers in HPV and Non-HPV Related Oropharyngeal Carcinomas: From Diagnosis and Monitoring to Prognostication—A Systematic Review. International Journal of Molecular Sciences. 2022; 23(22):14336. https://doi.org/10.3390/ijms232214336
Chicago/Turabian StyleLee, Shaun C., Karina K. C. Leung, Audrey C. Y. Chung, Elysia S. Y. Wong, Katie L. Meehan, and Jason Y. K. Chan. 2022. "Fluid Biomarkers in HPV and Non-HPV Related Oropharyngeal Carcinomas: From Diagnosis and Monitoring to Prognostication—A Systematic Review" International Journal of Molecular Sciences 23, no. 22: 14336. https://doi.org/10.3390/ijms232214336
APA StyleLee, S. C., Leung, K. K. C., Chung, A. C. Y., Wong, E. S. Y., Meehan, K. L., & Chan, J. Y. K. (2022). Fluid Biomarkers in HPV and Non-HPV Related Oropharyngeal Carcinomas: From Diagnosis and Monitoring to Prognostication—A Systematic Review. International Journal of Molecular Sciences, 23(22), 14336. https://doi.org/10.3390/ijms232214336