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Abstract: Many studies have been conducted to elucidate the role of Type VI collagen in muscle and
tendon, however, its role in oral tissues remains unclear. In this study, an α2(VI) deficient mouse
(Col6α2-KO) model was used to examine the role of Type VI collagen in oral tissues. Tissue volume
and mineral density were measured in oral tissues by µCT. Proteome analysis was performed using
protein extracted from alveolar bone. In addition, alveolar bone was evaluated with a periodontitis
induced model. µCT analysis showed the Col6α2-KO mice had less volume of alveolar bone, dentin
and dental pulp, while the width of periodontal ligament (PDL) was greater than WT. The mineral
density in alveolar bone and dentin were elevated in Col6α2-KO mice compared with WT. Our
proteome analysis showed significant changes in proteins related to ECM organization and elevation
of proteins associated with biomineralization in the Col6α2-KO mice. In induced periodontitis, Col6α2-
KO mice had greater alveolar bone loss compared with WT. In conclusion, Type VI collagen has a
role in controlling biomineralization in alveolar bone and that changes in the ECM of alveolar bone
could be associated with greater bone loss due to periodontitis.

Keywords: type VI collagen; µCT analysis; proteome analysis; alveolar bone

1. Introduction

Type VI collagen is a microfibrillar collagen found in many connective tissues including
muscle, tendon, skin, bone and cartilage [1–4]. It is composed of three alpha chains, and
made mainly of α1(VI), α2(VI) and α3(VI) chains [5]. Three other alpha chains have also
been identified that are similar to α3 (α4(VI), α5(VI), α6(VI)) [6]. Human mutations in the
Type VI collagen alpha chains have been found in patients with muscle disorders known as
Type VI collagen-related myopathies that include Ullrich congenital muscular dystrophy
(UCMD) and Bethlem myopathy (BM) [2,7,8]. To understand the mechanistic basis for
these diseases and to develop new treatments, many studies have focused on the roles of
type VI collagen in muscle and tendon, however, less is known about its role in oral tissues.

The extracellular matrix (ECM) has an important role in providing a scaffold, facili-
tates interaction between cell–cell or cell-signaling molecules and regulates growth and
homeostasis in tissues. Type VI collagen is known to be an important factor in organizing
ECM structure by interacting with other ECM molecules. These molecules include Type
I [9], Type II [10], Type IV [11] collagens, perlecan [12], decorin [13], biglycan [14] and
fibronectin [15], as well as integrins [16] and the cell-surface proteoglycan NG2 [17]. Given
that Type VI collagen has bridging functions with numerous ECM molecules, it is proposed
that it integrates the ECM structure and regulates homeostasis in tissues. Previous reports
using a Type VI collagen-deficient mouse model showed that they have defective tendons
with abnormal fibroblast shape and greater levels of thin fibers resulting in weak mechan-
ical properties [18,19]. Other studies show Type VI collagen is an important component
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of the stem cell niche in muscle and can regulate self-renewal of muscle stem cells and,
subsequently, muscle regeneration [20,21]. Type VI collagen also appears to contribute to
inflammation in adipose and nervous tissue [22,23]. Taken together, it is concluded that
Type VI collagen has numerous roles in many tissues by controlling its ECM components.

Oral tissues are complex consisting of mineralized tissues including teeth and alveolar
bone and non-mineralized tissues including gingiva and the periodontal ligament (PDL),
all of which support the structure and function of the mandible and maxilla. Tooth tissues
consist of enamel at the surface covering the dentin and dental pulp underneath. Healthy
alveolar bone supports the teeth and enables them to be functional in chewing and for
stabilizing the jaw. Although alveolar bone is composed primarily of hydroxyapatite, its
ECM scaffold is an important factor in controlling hydroxyapatite deposition. Collagen is
the main organic component of bone, and its distribution and cross-linking make important
contributions to bone quality.

Periodontitis is the most common disease in oral tissues and presents with chronic
inflammation leading to alveolar bone loss. Past studies show many factors are involved in
the regulation of periodontitis including bone quality, chewing forces, immune responses
and bacterial activity, however, little is known for the role of ECM in periodontitis.

The current study was aimed to examine changes in oral tissues using α2(VI) deficient
mouse (Col6α2-KO). To examine the potential networking function of Type VI collagen in
alveolar bone, a proteome analysis was performed. In addition, bone loss with induced
periodontitis was used to identify whether Type VI collagen deficiency affects bone loss
progression due to induced periodontitis.

2. Results
2.1. Type VI Collagen Is Expressed in Oral Tissues

Oral tissues consist of mineralized alveolar bone (AB), teeth that contain dental pulp
(DP), as well as non-mineralized tissues including the gingiva (Gn) and the periodontal
ligament (PDL) (Figure 1A,B). To examine the expression of Type VI collagen in oral tissues,
we first performed immunohistochemistry for Type VI collagen using 3-month-old WT
mice. The immunostaining showed the unique expression pattern of Type VI collagen in
non-mineralized tissues including the PDL (Figure 1a’,c’, yellow arrowheads), the bone
marrow in alveolar bone (Figure 1a’, green arrowheads), the dental pulp (Figure 1b’) and
in the connective tissue (CT) of the gingiva (Figure 1d’, blue arrowheads). To further
investigate the protein composition of the mineralized tissue, alveolar bone was dissected,
protein was extracted from 6-week-old mice, and then subjected to proteome analysis. In
mice teeth, cementum tissue covers the root deposits with aging, making it difficult to
pull out the tooth intact. To avoid contamination from other tooth tissues, we used the
6-week old mice. Our proteome analysis identified α1(VI), α2(VI), α3(VI) and α5(VI) were
abundantly expressed (Figure 1C). The small size and intricate shape of the enamel and
dentin precluded a similar proteomic analysis in these latter tissues.

2.2. Col6α2-KO Mice Have Compromised Oral Tissues

Since Type VI collagen is expressed in numerous oral tissues, we used an α2(VI)
chain deficient (Col6α2-KO) mouse model that is globally unable to secrete any Type VI
collagen into its ECM [24]. In this study, µCT was used to measure the volume of the
alveolar bone and the nature of the tooth tissue using software that allowed the separation
of enamel, dentin and dental pulp. In our analysis, we also measured the width of the PDL.
An illustration showing tissue measurements of the µCT analysis is shown in Figure 2A.
Quantification of the µCT data showed that compared with WT, the Col6α2-KO mice had
significantly less alveolar bone volume (p < 0.005), less dentin volume (p < 0.005) and less
dental pulp volume (p < 0.05), however, there was no significant differences in the enamel
(Figure 2C–F). When the width of PDL was measured in a ROI using the mesial root of
1st molar (Figure 2B), we found the width of the PDL was greater in the Col6a2-KO mice
(p < 0.05) (Figure 2G). There were no significant differences in the ratio in the volume of the
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overall tooth to alveolar bone in Col6a2-KO compared to WT mice. To further analyze the
nature of the mineralization status of the alveolar bone, enamel and dentin, the mineral
density was measured. A heatmap showing the mineral density of oral tissues is shown
in Figure 3A. Quantification of the mineral density showed Col6α2-KO mice had greater
mineral density in alveolar bone (p < 0.01) and dentin (p < 0.05) but no significant changes
in enamel (Figure 3B–D).

Figure 1. The expression of Type VI collagen in oral tissues. (A) H&E staining of mandibles from
3-month-old mice. Dashed line shows periodontal ligament. (B) Representative immunofluorescent
staining image of Type VI collagen in mouse mandibles of 3-month-old mice (n = 3). Magnified
images of boxed areas in panel B are shown in (a’,b’,c’,d’). Nuclei were stained with DAPI (blue).
Type VI collagen expression (red) in the periodontal ligament (PDL) (yellow arrowheads), bone
marrow (BM) (green arrowheads), gingiva (Gn (blue arrowheads). (C) The abundance of alpha chains
of Type VI collagen in murine alveolar bone from 6-week-old mice. M: molar, AB: alveolar bone,
DP: dental pulp, Gn: gingiva, BM: bone marrow, PDL: periodontal ligament, Ep: epithelium, CT:
connective tissue. Scale bars: (A,B): 500 µm, (a’–d’): 50 µm.
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Figure 2. µCT analysis of the volume and width of the PDL. (A) An illustration showing separate
analysis of each structure in the oral tissues. Each color represents a different tissue: enamel (white),
dentin (yellow), dental pulp (red), PDL (orange) and alveolar bone (blue). (B) shows the width of the
PDL measured by µCT. Quantification of the different tissues is shown for alveolar bone (C), enamel
(D), dentin (E), dental pulp (F). (G) The PDL width was measured in the mesial root of the 1st molar.
Bars represent standard deviation (volume: n = 7/genotype, PDL width: n = 5/genotype) p-value:
* p < 0.05, *** p < 0.005 **** p < 0.001 ns: not significant.

Figure 3. Mineral density with µCT analysis. (A) Heatmap of mineral density from WT and Col6α2-
KO mice mandibles. Quantification of the data is shown in (B): Alveolar bone, (C): Enamel and
(D): Dentin. Bars represent standard deviation (n = 7/genotype) p-value: * p < 0.05, ** p < 0.01 ns: not
significant.
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2.3. Type VI Collagen Affects ECM Molecules in the Alveolar Bone

Since Type VI collagen protein expression was found in alveolar bone, we next per-
formed proteome analysis to try to further decipher its molecular functions at a develop-
mental stage active in mineral apposition (6-weeks). From our proteome analysis using
6-week-old mice, we found significantly less expression of α1(VI), α2(VI), α3(VI) and
α5(VI) in the alveolar bone of the Col6α2-KO mice compared with WT mice (Figure 4A, red
box). Other collagens affected by α2(VI) deficiency were α2(IV), α1(XVI) and α1(XXII), that
were significantly less in α2(VI) deficient alveolar bone. Our proteome data also identified
287 differentially expressed proteins (DEPs) (p-value < 0.05). Gene Ontology enrichment
analysis was carried out to understand the potential role of Type VI collagen on biological
functions. Type VI collagen has suggested functions in organizing the ECM structure,
and as expected, proteins related to Extracellular Matrix Organization (GO: 0030198) were
enriched. These included 19 proteins shown in yellow in Figure 4B. Interestingly, there
were several important molecules previously implicated in Biomineralization (GO: 0110148)
including enamelin (Enam), Ameloblastin (Ambn), Amelogenin (Amelx), Dentin sialophos-
phoprotein (Dspp), alkaline phosphatase (Alpl) and Fibroblast growth factor receptor 1
(Fgfr1), all of which were upregulated in α2(VI) deficient alveolar bone (Figure 4B, green).
The proteins marked half color of yellow and green belong to both GO terms.

Figure 4. Proteome analysis with protein extracted from alveolar bone at 6-week of age. (A) The
abundance of collagen detected in alveolar bone. (B) The volcano plot showing deferentially expressed
proteins in Col6α2-KO mice alveolar bone. Green marked proteins represent molecules related to
Biomineralization and yellow marked proteins represent molecules related to Extracellular matrix
organization. Bars represent standard deviation (n = 4/genotype) p-value: * p < 0.05, ‡ p < 0.005,
§ p < 0.001.

2.4. Col6α2-KO Mice Have More Bone Resorption in an Induced Model of Periodontitis Compared
with WT

To examine whether Type VI collagen deficiency affects induced bone loss, we used
a ligature procedure which is a well-accepted model to induce periodontitis. In this
experiment, a thin piece of string was tied around the right maxillary 2nd molar (ligature
side) in WT and Col6α2-KO mice, and then bone parameters were measured after 3 days.
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This procedure induced the accumulation of bacteria which then caused bone resorption.
The left maxillary side without a ligature served as a control. Bone loss was measured by
µCT. To evaluate vertical bone loss, the distance between the cemento-enamel junction (CEJ)
to the alveolar bone crest (AB) was measured as shown in Figure 5A and the difference
in CEJ-AB distance in the control side and the ligature side were compared. In addition,
the bone volume was measured to determine the amount of alveolar bone loss in 3D. Our
results showed that with periodontitis both the CEJ-AB distance (Figure 5B) and % volume
of bone loss was significantly greater in Col6α2-KO compared with WT mice (Figure 5C).

Figure 5. Alveolar bone loss with periodontitis. (A) Representative 3D reconstructed image of left
molars in maxilla (control side) and right molars in maxilla (ligature side). To evaluate bone loss, the
distance between the cemento-enamel junction (CEJ) to the alveolar bone crest (A,B) was measured
at 12 separate points in both the buccal and palatal sides. The red line in (A) shows the measurement
points. (B) shows the difference of the CEJ-AB distance in the control side and the ligature side from
WT and Col6α2-KO mice. (C) shows the % volume of bone loss. Bars represent standard deviation
(n = 9/genotype) p-value: * p < 0.05, ** p < 0.01.

3. Discussion

Previous studies show that Type VI collagen regulates collagen fibril assembly, ulti-
mately affecting fiber thickness [18,19], as well as the function of stem cells for regeneration
of muscle and tendon [20,21]. Although Type VI collagen is found in many tissues, little is
known about its role in oral tissues. This current study showed for the first time that the oral
tissues in Col6α2-KO mice are abnormal and have greater mineral density in alveolar bone
and dentin compared with WT mice. Proteome analysis of the alveolar bone showed that
deficiency in Type VI collagen resulted in changes in proteins related to ECM organization
and biomineralization and that this could be the basis for the abnormal volume and mineral
density in alveolar bone found in the Col6α2-KO mice. We show the alveolar bone affected
by the loss of Type VI collagen has increased bone loss with induced periodontitis.

There are few reports that examined the volume of oral tissues using µCT. Mice
deficient in osteopontin, an ECM molecule that regulates bone development, have greater
alveolar bone and dentin volume and less dental pulp and PDL volume compared with WT
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mice [25]. Other work using a mutant mouse model of X-linked Hypophosphatemia (XLH)
with a deficiency in phex, the gene responsible for phosphate regulation, showed that they
have less enamel and dentin with no significant change in alveolar bone volume [26]. He
Xu et al., showed mice deficient in crtap, a cartilage-associated protein that is associated
with post-translational modification of Type I collagen, as well as mice with osteogenesis
imperfecta Type VII due to loss of Col1a2 (oim) have less alveolar bone and dentin volume
and greater PDL volume [27]. Here, we showed that mice deficient in Col6α2 have defects
in the volume of oral tissues suggesting a regulatory role of Type VI collagen in the
development or homeostasis of oral tissues. In our work, we used 3-month-old mice at
which time the growth of oral tissues is completed. Further studies are needed using tissues
from earlier stages to fully understand if and how Type VI collagen could regulate the
development and final formation of oral tissues. The mineral density of alveolar bone was
also evaluated in these reports and showed greater mineral density in the alveolar bone of
osteopontin knock-out mice and less mineral density in the alveolar bone in XLH deficient
and oim mice, the latter of which is a model of OI type VII described earlier. Previous work
from our lab showed that fibromodulin knock-out mice have greater mineral density in their
alveolar bone compared with WT mice [28]. In this study, we showed Col6α2-KO mice also
had greater mineral density in alveolar bone and dentin compared with WT mice. From
these previous reports and the current study, we propose that ECM molecules including
osteopontin, fibromodulin, Type I and Type VI collagen, as well as proteins implicated in
phosphate regulation, could control mineral apposition in alveolar bone. However, more
studies are necessary to understand their mechanism of action.

The orchestration of bone biomineralization is complex and appears to be regulated by
non-collagenous proteins (NCPs), including glycoproteins and proteoglycans that interact
closely with inorganic calcium and phosphate ions to control the deposition of hydrox-
yapatite (HA) on extracellularly secreted collagen fibers. Small integrin-binding ligand
N-linked glycoprotein (SIBLINGs) are some of the NCPs which are important for miner-
alization in bone and dentin and include Dmp1, Mepe, Opn which inhibits calcification
and Dspp1 which enhances calcification. Our proteome analysis showed the levels of
Dmp1, Mepe and Opn were not changed in the absence of Type VI collagen, however, the
expression of Dspp1 was upregulated in the Col6α2-KO mice. Interestingly, the levels of the
enamel matrix proteins (EMPs) including Amelx, Ambn and Enam were upregulated in
the alveolar bone of the Col6α2-KO mice. The EMPs have been identified in enamel matrix
and considered important factors for the regulation of enamel mineralization. Recent stud-
ies showed EMPs are also expressed in non-enamel mineralized tissues and can increase
osteogenesis in bone marrow stem cells (BMSCs) [29–32]. Amelx and Ambn were also
previously found in alveolar bone [33]. Considering the role of EMPs in biomineralization,
it is possible their upregulation could be the mechanistic basis of the increased mineral
density we found in the Col6α2-KO mice, however, additional studies need to be performed
to understand their exact function in regulating mineral density in alveolar bone. An
important next step will be to carry out Western blotting to confirm the upregulation of
proteins related to biomineralization including the SIBLINGs and the EMPs.

Our observation that there is greater mineral density in alveolar bone in Col6α2-KO
compared with WT mice is different from our previous findings in trabecular bone in long
bone where we found less mineral density in Col6α2-KO compared with WT mice. While
the reason for this difference is not known, it is widely accepted that alveolar bone and
trabecular bone have different growth mechanisms. Specifically, orofacial bone is neural
crest derived and long bones are from mesoderm. It will be interesting in the future to
determine how and why Type VI collagen has unique tissue-specific effects depending on
tissue location and developmental origin. The expression of the EMPs in alveolar bone
could be involved the differential effect of Type VI collagen on long bone compared to
alveolar bone.

Three genetically distinct Type VI collagen alpha chains, α1(VI), α2(VI) and α3(VI)
were originally identified. However, later studies uncovered that there are three additional
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alpha chains, α4(VI), α5(VI) and α6(VI) which have homology with α3(VI). In our proteome
analysis using protein extracted from alveolar bone α5(VI) was identified. Although it is
known that the α5(VI) protein is expressed more widely in mouse compared with human
tissues, the reason for the restricted expression in humans is not clear. In the assembly of
Type VI collagen, it is known that α1 (VI), α2 (VI) and α3(VI) chains are the basic units that
make up the [α1, α2, α3] heterotrimers with a 1:1:1 ratio. As for α5 (VI), it is speculated
that because of its homology it can substitute for the α3(VI) chain and generate [α1, α2,
α5] heterotrimers [34]. Although we do not know the exact function of α5(VI) in alveolar
bone, its presence provides important insights about possible novel roles for these newly
identified alpha chains of Type VI collagen.

Periodontitis causes alveolar bone loss due to chronic inflammation. The exact mecha-
nisms regulating bone loss during periodontitis are complex because many factors such
as bone quality, chewing force, immune response are involved. In this study, we showed
greater mineral density in alveolar bone in Col6α2-KO mice accompanied by a significant
change in proteins related to ECM organization. The structure of collagen in the bone
has been recognized as an important factor in bone quality. Although Type I collagen
detected in the proteome analysis did not have altered expression in Col6α2-KO and we
did not perform collagen fibers analysis in the alveolar bone, we speculate that the altered
properties we found in alveolar bone in the α2(VI) deficient mice, such as greater mineral
density and disorganized ECM organization could be a factor for increased bone loss from
periodontitis, however, other aspects of the function in Type VI collagen need to be studied
in the future. As shown in Figure 1d’, Type VI collagen is expressed in the gingiva. Previous
reports using single cell RNA analysis show there is a change in the cell populations in
the gingiva from healthy controls and periodontitis patients [35]. When we analyzed the
publicly available data bases from this study, we found that Type VI collagen expression
was upregulated in the gingiva from periodontitis patients, suggesting Type VI collagen is
secreted to protect tissues from inflammation or to induce regeneration of tissues subject to
destruction. The PDL is another oral tissue expressing Type VI collagen, and in this context,
it is interesting to note that the PDL of Col6α2-KO mice has weak mechanical properties.
This could explain why the width of the PDL in the Col6α2-KO mice is wider and could
possibly contribute to the bone loss that occurs during periodontitis.

The limitation of this study is that an analysis is needed to understand the role of Type
VI collagen in bone loss from periodontitis. Given that Type VI collagen is expressed in the
gingiva and PDL, it might play protective roles there in ameliorating periodontitis. Further,
previous studies showing its role in modulating macrophage support this possibility [22,23].
To address this point, specific studies on gingiva and the PDL are needed.

The present study was intended to show the expression of Type VI collagen in oral
tissues and determine possible functions in alveolar bone mineralization. Our results
suggest that Type VI collagen regulates biomineralization in alveolar bone and altered
alveolar bone properties could lead to increased bone loss during induced periodontitis.

4. Materials and Methods
4.1. Animal Experiments

The Col6a2-KO mouse strain used for this research project was a kind gift from Carsten
Bonnemann (National Institute of Neurological Disorders and Stroke, NIH). Animals were
housed under standard conditions (55% humidity, 12 h day night cycle, standard chow and
free access to water) following the guidelines and approval of The National Institutes of
Dental and Craniofacial Research Animal Care and Use Committee (protocol #21-1067). A
total of 40 WT and Col6a2-KO mice were used in this study.

4.2. Micro-Computed Tomography (µCT)

For µCT analysis, mice were euthanized, and mandibles were dissected from 3-month-
old WT and Col6α2-KO and fixed for 24 h at room temperature in Z-fix (Anatech, LTD,
Battle Creek, MI, USA) and then stored in 70% ethanol at 4 ◦C. The 3-D reconstruction
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image of mandibles were acquired using micro-CT system (µCT 50, Scanco Medical AG,
Bassersdorf, Switzerland) with the following parameters: 70 kV X-ray source voltage,
85 µA of intensity/beam current, power at 6 W and integration time at 300 ms. The image
resolution was 6 µm. The 3D mandible images were rendered, and Bone volume (BV) and
mineral density were measured using AnalyzePro software (AnalyzeDirect, Overland Park,
KS, USA). To measure the PDL width, a region of interest (ROI) was determined using the
cemento-enamel junction (CEJ) and the apex of the root. The middle position of root was
calculated from the CEJ and the apex of the root, and 25 slices from the middle position to
the CEJ side and 25 slices from the middle position to the apex side was used for the ROI (1
slice = 6 µm).

4.3. Immunohistochemistry

The dissected mandibles from 3-month-old mice were fixed in Z-fix for 24 h, rinsed
with PBS overnight and decalcified with 10% EDTA for 14 days. Samples were then washed
and dehydrated through a graded ethanol series and xylene before paraffin embedding.
The sections were cut at 5 µm, deparaffinized, stained with H&E and observed under an
Aperio ScanScope (Leica ICC50 W, Wetzlar, Germany). For preparing frozen sections of
mandibles, Kawamoto’s film method was performed [36]. Briefly, samples were embedded
with Super Cryoembedding Medium (SECTION-LAB Co. Ltd., Hiroshima, Japan) and
cut to a thickness of 3 µm with a tungsten carbide blade after mounting the adhesive film
onto the cut surface. For immunohistochemical staining, the specimens were fixed with 4%
PFA for 10 min, followed by incubation with primary antibodies at 4 ◦C overnight after
blocking with 10% normal donkey serum (Jackson Immunoresearch, West Grove, PA, USA)
for 60 min at room temperature. Primary antibody specific to Type VI collagen (Fitzgerald,
North Acton, MA, USA) was applied to samples at a 1:50 dilution. After washing, the
specimens were incubated with secondary antibody Alexa Fluor 647 anti-rabbit at a 1:500
dilution (Thermo Fisher Scientific, Waltham, MA, USA) for 60 min at room temperature. As
a negative control PBS was applied instead of primary antibodies. All images were taken
by fluorescence microscope.

4.4. Protein Extraction

Alveolar bone was dissected from 6-week-old WT and Col6a2-KO mice with soft tissues
attached to the bone removed and immediately snap-frozen in liquid nitrogen. Alveolar
bone was subsequently stored at −80 ◦C until protein extraction. The samples were then
put into the center of a tissue tube (Covaris, Woburn, MA, USA) frozen in liquid nitrogen,
and pulverized on the CP02 cryoPREP Automated Dry Pulverizer (Covaris, Woburn, MA,
USA). Pulverized samples were processed using a buffer (100 µL of 4 M Guanidine-HCL
and 100 µm of 0.25 M EDTA) containing protease and phosphatase inhibitors for 48 h and
then the buffer was exchanged after centrifugation to collect the supernatant and incubated
with the same buffer for another 48 h. Protein extracts were precipitated with 4 volumes of
acetone, and protein pellets were resuspended with 5 mM triethylammonium bicarbonate
buffer (TEAB). Protein concentrations were determined using the Bradford assay (Thermo
Fisher Scientific, Waltham, MA, USA). Protein extracts were then reduced with 50 mM tris
2-carboxyethyl phosphine (TCEP) and alkylated with 10 mM iodoacetamide (IAA). Trypsin
digestion was performed with 1 µg of MS grade trypsin (Promega, Madison, WI, USA) to
25 µg of sample proteins at 37 ◦C over night. The resulting peptide was desalted using
C18 Toptip columns (Glygen Scientific Corp, Columbia, MD, USA) following manufactural
protocol.

4.5. Proteomics

NanoLC-MS/MS analysis of tryptic peptides was carried out with a Thermo Scientific
Fusion Lumos tribrid mass spectrometer interfaced to a UltiMate3000 RSLCnano HPLC
system. For each analysis, 1 µg of the tryptic digest was loaded and desalted in an Ac-
claim PepMap 100 trapping column (75 µm × 2 cm) at 4 µL/min for 5 min. Peptides
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were then eluted into Thermo Scientific Accalaim PepMap™ 100 column, (3 µm, 100 Å,
75 µm × 250 mm) and chromato-graphically separated using a binary solvent system con-
sisting of A: 0.1% formic acid and B: 0.1% formic acid and 80% acetonitrile at a flow rate
of 300 nL/min. A gradient was run from 1% B to 37.5%B over 120 min, followed by a
5 min wash step with 80% B and 10 min equilibration at 1% B before the next sample was
injected. Precursor masses were detected in the Orbitrap at R = 120,000 (m/z 200). Fragment
masses were detected in linear ion trap at unit mass resolution. Data dependent MSMS
was carried with the top of speed setting, cycle time was 2 s with dynamic exclusion of
20 s. Protein identification was carried out using Proteome Discoverer software package
(v 2.5 Thermo Scientific). Raw data was searched against a mouse protein database from
Uniprot along with a contaminant protein database with Sequest HT search engine. C
carbamidomethylation was set as fixed modification, M oxidation, and protein N-terminal
acetylation were set as variable modifications. Peptide precursor intensity-based label free
quantification was carried out in Proteome Discoverer using unique and razor peptides.
Abundances from different samples were normalized by total peptide amount from each
sample, Protein abundances were calculated by summed intensity of top 3 peptides.

4.6. Ligature-Induced Periodontitis Model

Periodontal inflammation was induced by ligation of the maxillary second molar in
mice, as previously described [37]. A 5-0 silk ligature (Corza medical, Westwood, MA, USA)
was tied around the maxillary right second molar in 11-week-old mice under anesthesia.
The contralateral second molar in each mouse was un-ligated to serve as baseline control
for bone height and volume measurements. The mice were euthanized 3 days after surgery
and subjected to imaging with µCT using the same setting as was done with analysis of the
mandibles. The ligatures remained in place in all mice throughout the experimental period.

4.7. Statistics

Statistical analyses were performed with unpaired Student’s t-test. A statistically
significant difference was considered as p-value < 0.05.
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