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Abstract: Efforts to heal damaged pulp tissue through tissue engineering have produced positive
results in pilot trials. However, the differentiation between real regeneration and mere repair is not
possible through clinical measures. Therefore, preclinical study models are still of great importance,
both to gain insights into treatment outcomes on tissue and cell levels and to develop further concepts
for dental pulp regeneration. This review aims at compiling information about different in vitro
and in vivo ectopic, semiorthotopic, and orthotopic models. In this context, the differences between
monolayer and three-dimensional cell cultures are discussed, a semiorthotopic transplantation model
is introduced as an in vivo model for dental pulp regeneration, and finally, different animal models
used for in vivo orthotopic investigations are presented.

Keywords: regenerative endodontics; study model; dental pulp; regeneration; tissue engineering;
cell culture techniques; animal models; translational research

1. Introduction

The dental pulp has important functions, and its loss can have serious consequences.
A root-filled tooth may remain in the oral cavity without pulp, but it lacks the ability to react
to sensory stimuli, issue an immune response, or form reparative dentin [1]. Additionally,
remaining hard tissue is weakened, and as a result, root fractures occur more frequently than
in vital teeth [2]. If immature teeth are affected, root development comes to a halt, leaving
thin dentin walls and an open apex behind, which complicates further therapies [3,4]. To
overcome the biological and mechanical drawbacks of traditional endodontic treatment,
research focused on pulp regeneration has gained interest over the last years. Several
approaches in the realm of endodontic tissue engineering are being explored, which can
be categorized into primarily cell-free methods, where resident stem cells re-populate the
root canal, and cell-based approaches, where cells are introduced by transplantation [5]. In
both approaches, the three pillars of classical tissue engineering, i.e., stem cells, signaling
molecules, and a scaffold material, are present [6].

Interestingly, endodontic tissue engineering has already been translated into random-
ized clinical trials. Patients with irreversible pulpitis have been treated with transplantation
of autologous [7] or allogenic [8] mesenchymal stem cells into root canals. In these studies,
all teeth that received treatment through tissue engineering have survived after 12 months,
and even positive responses to sensitivity testing were evident in a considerable number
of cases. Further observations, such as radiographic reduction in apical lesion size and
root lengthening and thickening, demonstrated clinical success [9]. However, the question
remains whether this success is associated with biological regeneration of the pulp or a re-
pair process. Teeth that have undergone regenerative procedures and are later extracted for
other reasons often show proof of repair by ectopically formed tissues instead of restitutio
ad integrum [5]. Strengthening the tooth root by the apposition of any hard tissue may be
of clinical value and could contribute to increased mechanical resistance, but functional
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issues, e.g., adequate biological response of the dental pulp to external stimuli, remain
unresolved [3,10]. In this context, histological examination is the only way to determine
the exact nature of newly generated tissues. However, this is, of course, impossible in a
systematic way in clinical studies. For this reason, preclinical study models are still indis-
pensable for the development of new pulp regeneration procedures and for the biological
evaluation of outcomes.

The aim of this review is to compile different study models for both cell-based and
primarily cell-free tissue engineering approaches for pulp regeneration that have emerged
and developed over the past years. These can be grouped roughly into categories: in vitro;
in vivo ectopic, referring to the ectopic transplantation of scaffolds and cells into im-
munocompromised animals; in vivo semiorthotopic, where cells are cultured in a tooth
framework, which is transplanted into animals; and in vivo orthotopic, meaning the in situ
simulation of clinical procedures in study animals, as shown in Figure 1. The advantages
and disadvantages of the available in vitro and in vivo models are compared and discussed.

in vitro in vivo

Cell culture Semiorthotopic

Hydrogel & Tooth slice = Canine

B Spheroid Sl Dentin cylinder g  Porcine

e Organoid e Tooth root — Ferret

Combined with
tooth structures

— Rodent
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Figure 1. Compilation of study models for dental pulp tissue engineering.

2. In Vitro
2.1. Monolayer Cell Culture

The monolayer cell culture presents the most basic laboratory technique. Distin-
guished by the locations of their origins, several cell sources have been identified. Of
particular interest for dental pulp tissue engineering are mesenchymal stem cells, such
as dental pulp stem cells (DPSCs), stem cells from the apical papilla, and periodontal
ligament stem cells [11-13]. Dental stem cells can be obtained from human teeth, as well
as from other species [14-16]. Furthermore, the use of non-oral stem cells for dental pulp
regeneration, such as umbilical cord stem cells or amniotic epithelial stem cells, has also
been investigated [17,18].

In terms of dental pulp, stem cells are isolated from pulp tissue by enzyme digestion
or the outgrowth method and then cultured in medium supplemented with fetal bovine
serum [19]. As adherent cells, they attach to the bottom of the culture vessel and form
a confluent monolayer. In this culture environment, many cell characteristics, such as
viability, population doubling, senescence, gene expression, or differentiability, and their
responses to signaling molecules or biomaterials can be assessed.

The strengths of this model are controllable and reproduceable experimental condi-
tions [20]. Different aspects of a complex in vivo system can be simplified and explored



Int. . Mol. Sci. 2022, 23, 14361

30f19

mechanistically in an in vitro culture setting [21], and costs are also very low compared
to other models in use [20]. However, there are some disadvantages as well. Due to its
simplicity, it has limitations when it comes to reproducing physiologic conditions. This
includes tissue architecture, cell-cell communication, cellular movement, and cell-matrix
interaction [22]. An adequate rendering of biological processes is, therefore, difficult, and
the model may produce misleading and nonpredictive data [20,23].

Still, it has been instrumental in the characterization of tooth-derived stem cells [24]
and remains the basis of most research even today. Many attempts have been made to
culture and analyze odontoblast-like cells in vitro by the addition of signaling molecules to
stem cells [25-28]. Signaling pathways in these cells have been investigated [29,30], gene
expression patterns during cell differentiation have been revealed [31-33], and mineral-
ization has been observed through alkaline phosphatase or alizarin red staining [17,34,35].
Since the cells at the interface with dentin are an integral part of the pulp—dentin complex,
this model can also be adapted to study the behavior of DPSCs seeded directly onto the
surface of dentin disks [19,36]. Furthermore, dentin matrix proteins, which are rich in
growth factors that modulate cell differentiation, can be isolated from human dentin and
supplemented in cell culture media to study the behavior of pulp cells [28,37,38].

2.2. Three-Dimensional (3D) Cell Culture

A two-dimensional approach can be enhanced by the utilization of three-dimensional
culture methods, such as scaffold cell cultures, spheroids, or organoids (Figure 2). While
scaffold cultures are mostly applied in material testing, spheroids and organoids were
originally developed for tumor research and personalized medicine [23]. Unfortunately,
the terms are used inconsistently in the literature. The term spheroid describes a conglom-
erate of adult cells without any scaffold, whereas an organoid consists of self-organized
stem or progenitor cells forming organ-specific constructs with the help of a scaffolding
environment [20,39].

A B C

Figure 2. Three-dimensional cell culture models. (A) Hydrogel culture: cells are embedded in a
scaffold material with a supernatant of culture medium. (B) Spheroid culture. (C) Organoid culture:
cells are embedded in an extracellular matrix.

These three 3D-culturing methods have in common that the cells are spatially dis-
tributed within a supporting structure, i.e., an extracellular matrix [40—42]. 3D-cultured
cells differ in morphology and physiology from two-dimensional cultures, as nonadherent
cells are given the possibility to unfold their cellular shape and display greater heterogene-
ity, either in morphology, lineage, function, or age (Figure 3). Whereas necrotic cells in 2D
cultures quickly detach from the surface of the culture flask and are rinsed out, 3D cultures
consist of cells in different stages of aging. The core of agglomerates is often composed of
necrotic cells, while the outermost layer consists of viable and proliferating cells, which
emulates natural processes more closely [23]. The matrix itself also influences the cell
behavior, e.g., by its rigidity. Stiff matrices can drive stem cell differentiation towards the
osteogenic line [43].
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Figure 3. Comparison of morphologies of differently cultured cells. (A) DPSCs cultured on a tissue
culture plate; scale bar of 200 um. (B) REM image of DPSCs cultured on a dentin disk, where cells
extend their processes into dentin tubules; scale bar of 10 pm. (C) Confocal laser scanning microscopy
of live (green) and dead (red) DPSCs cultured in a collagen hydrogel shows the high turnover of cells;
scale bar of 200 pm.

In general, 3D cell cultures are more apt to reflect in vivo mechanisms than monolayer
cultures [23] and, therefore, produce more accurate insights [44]. Thus, 3D cultures have
the potential to bridge the gap between simple cell cultures and in vivo experiments, which
can reduce the need for ethically challenging animal models [41]. However, as of now,
3D culturing is less established than monolayer culturing and is associated with greater
effort and higher costs. Furthermore, the analysis of cell cultures is more difficult since cells
need to be separated from the extracellular matrix, and high variability in the produced
agglomerates reduces reproducibility [22,23].

Since there is always a close connection between hard and soft tissues in the pulp-
dentin complex, it is also possible to combine 3D cell cultures with tooth structures. In this
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case, the pulp cavity of a slice of a tooth crown or the empty canal of a root can serve as
reservoir to receive 3D-cultured cells. These constructs can be maintained in culture and
studied in vitro [45,46]. Nevertheless, tooth slice or root fragment models are commonly
used in in vivo model situations, which is discussed in detail in a following section.

2.2.1. Hydrogels

Scaffolds can not only serve as a cell matrix in vitro, but constitute a pillar of tissue
engineering, which makes them the subject of research in the realm of pulp regeneration.
Essentially, these can be divided structurally into porous scaffolds, fibrous scaffolds, and
hydrogels, where hydrogels are primarily used in the field of pulp biology research. They
best imitate the mechanical properties of the dental pulp, and furthermore, their injectability
makes them suitable for use in the root canal [47,48]. Appropriate materials should restore
tissue architecture and guide cell growth but also degrade over time to provide space
for new tissue formation [48,49]. The combination of scaffold materials and stem cells
in vitro lays the foundation for assessing the eligibility of materials for clinical applications.
Herein, cells can be cultured inside or on top of a hydrogel material to assess both the
scaffold properties [50,51], such as inductivity or degradability, and the cell behavior, such
as proliferation and migration, as well as cell-cell and cell-matrix interactions. Furthermore,
the cytotoxicity of dental materials can be tested in a hydrogel model by adding substances
to the culture medium or in direct contact with cells [52].

To emulate the mechanical and functional relationship between hard tissue and cells
within the pulp—dentin complex, dentin can also be incorporated into three-dimensional
culture systems. Rosa et al. filled tooth roots with stem cells from exfoliated deciduous teeth
(SHED) that were encapsulated in a collagen matrix and cultured the fragments in vitro
to investigate whether odontoblastic differentiation of cells was possible in full-length
roots [46].

An innovative method for producing scaffolds and even hydrogels to incorporate
cells is 3D bioprinting. Two different approaches are usually applied: one is the printing
of acellular scaffolds, such as PCL [53], and the other is the additive manufacturing of
scaffolds that already contain cells and signaling molecules [54,55]. Both types can be used
in vitro and in vivo and are captivating because of their rapid fabrication, high precision,
and customized production; however, the limitations of a low number of suitable materials,
high costs, and possible undesirable additives could restrict applicability at present [56].

2.2.2. Spheroids

Spheroids can be defined as a conglomerate of cells that self-assemble or are forced
to aggregate [22,44]. They can be produced from a single cell type or as a multicellular
spheroid and can be fabricated in a myriad of ways, from the gravity-enforced hanging
drop method to the layering of cell sheets, as well as low-attachment culture plates [57],
pellet culturing [58], the utilization of micro molds [59], and magnetic levitation [41].

In terms of pulp regeneration, researchers are studying the possibility to use in-
vitro-generated cell agglomerates to replace damaged pulp tissue directly, but the use of
engineered pulp tissue replicas also provides a novel model to study the processes in dental
pulp regeneration and to assess the biocompatibility of various materials used [60].

2.2.3. Organoids

Organoids commonly refer to self-organizing 3D cell structures of organ-specific cell
types that arise from the differentiation of stem or progenitor cells [20]. They partially
resemble the architecture and function of the target organ and are usually fabricated using
decellularized extracellular matrices, such as Matrigel or collagen, to mimic a tissue’s
noncellular components [61]. Matrigel is a commercially available material that contains
structural proteins, such as collagen, elastin, and laminin, comparable to the basal lamina
in vivo. However, it is not suited for in vivo application, as it is extracted from mouse
sarcoma cells [62].
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Organoids are, to a certain degree, able to simulate the architecture and functionality
of a native organ [20,63]. Fashioned from embryonic cells, for example, organoids can
recreate both hard and soft tissues. Cells in an organoid can be cultured for an extended
time and mimic signaling pathways and niche conditions more closely compared to cells in
a 2D system. Compared to an animal model, the implementation of organoids provides
greater accessibility and feasibility [64]. However, the creation of organoids also requires
certain laboratory skills, and protocols, including which cells and signaling molecules to
use, still need to be revised [64].

Thus far, intestinal, cerebral, and renal organoids have been established [65]. Research
into oral organoids is also being conducted, e.g., salivary glands have been recreated that
can restore nerval connections and produce saliva when implanted orthotopically [66].
Jeong et al. managed to construct dentin-pulp-like organoids that expressed odontoblast-
like markers and issued a biological response to the application of hydraulic calcium silicate
cements [60]. Xu et al. also established an organoid model that was recommended for the
toxicity screening of dental materials used, e.g., for direct pulp capping [67].

Outside the realm of dental pulp regeneration, researchers have even attempted to
engineer whole tooth germ organoids. This has been partially successful by layering a
multitude of different cell types [68,69]. These constructs display odontogenic markers
and are also capable of epithelial invagination into the mesenchymal layer, mimicking the
tissue interactions and signaling pathways at play during human tooth development [70].
Furthermore, the vision for these organoids is to replace dental implants, but further
development is necessary [64].

2.2.4. Bioreactors

One drawback of 3D cultures is that nutrients cannot efficiently penetrate the center
of the 3D structures and waste accumulates, which affects cell survival. Consequently,
these cultures are difficult to maintain for longer time periods [60]. However, in an in vivo
environment, a steady blood supply guarantees tissue homeostasis. Bioreactors are, there-
fore, designed to mimic this natural phenomenon and to actively supply cells in the depth
of 3D structures with nutrients and oxygen [71]. Examples for simple bioreactors are
magnetic rod stirrers, rockers, rotating wall vessels, and peristaltic pumps [72-74]. What
these methods have in common is that they set culture medium in motion in order to
achieve deeper penetration into matrix structures. By choosing either laminar or a more
turbulent flow, mechanical stimuli, such as sheer stress, flow-induced pressure, or dynamic
compression, can also be applied to cells in culture vessels to further emulate an in vivo
situation [71]. Naturally, each individual tissue requires specific stimuli. For example,
cells differentiating towards an osteogenic cell fate have proven particularly perceptive to
hydrostatic pressure and sheer stresses [75-77]. However, which stimuli best support the
odontogenic differentiation of cells remains to be determined.

2.2.5. Tooth-on-a-Chip Model

The so-called “organ-on-a-chip” techniques can be viewed as an extension of biore-
actors. Here, cells are seeded in a microfluid device that ensures nutrient transportation
through small channels and recreates physical parameters, such as pressure or shear
stress [20]. Monitoring tools can also be included in this device [20]. The first organ to be
emulated in a small plastic device was the lung. For example, the alveolar—capillary barrier
was simulated by combining alveolar epithelial and endothelial cells, with both blood and
oxygen flow, as well as cyclic mechanical stretching, in a 3D multichannel microfluid culture
vessel [78]. Franga et al. were the first to build a tooth-on-a-chip model [79]. It consisted
of two separate, closed-circuit channels filled with medium and two reaction chambers
separated by a dentin fragment. Dental stem cells were added to one side, whereas the
other side of the dentin barrier mimicked a tooth cavity. This model was used to test cell
reactions to biomaterials by injecting solvents of the materials into the cavity side of the
chip. Morphological changes in the cells could now be observed by direct cell imaging [79].
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With further development, this approach holds many opportunities to enhance research
into materials and signaling molecules used in dental pulp tissue engineering.

3. In Vivo Ectopic and Semiorthotopic Models

The transplantation of biological samples into the subcutaneous space of experimental
animals is another method to create a physiological environment. In this context, ectopic
means that tissues or cells are transplanted into experimental animals at a nonphysio-
logical location. Cells in scaffolds can be transplanted by themselves or with signaling
molecules [12,80-83]. However, especially in the context of pulp biology, cells are often
implanted together on dentin disks [84,85], in tooth slices [59,86-88], in dentin cylinders,
or in tooth roots [46,50,89-93] in order to simulate their natural environment. Since the
directly surrounding or adjoining tissue is not ectopic, but rather corresponds to the natural
environment (orthotopic), the term semiorthotopic is often used [94]. Here, the proxim-
ity to blood vessels enables nutrient supply to cells and the removal of waste products,
and the animals can, thus, be considered in vivo bioreactors [71]. Additionally, interac-
tions with resident peripheral nerve cells, connective tissues, and the immune system
can be studied. Immunodeficient animals are most often utilized to prevent unwanted
immunogenic reactions.

Implantation sites can vary. Small incisions through the skin can, for example, be
made on the dorsum of mice, and subcutaneous pockets created by blunt dissection. After
implant placement, wounds are closed by stapling or stitching [88]. Due to its abundant
blood supply, the rat renal capsule is another location for ectopic transplantation; however,
it is more difficult to access, and the mortality rate of experimental animals is higher than
after subcutaneous implantation [95,96]. The subcutaneous implantation of autologous
dental pulp cells or scaffold constructs into the dorsal surface of rabbits was also suggested
as a valid ectopic model [97]. Ruangsawasdi et al. investigated the implantation of cell-
free tooth roots filled with fibrin into the calvaria of rats and found that this placement
produced more tissue ingrowth in the same time period than the dorsal location. This
article suggested that rat calvaria could provide a microenvironment similar to the tooth
socket [98].

Favorable outcomes can be achieved with ectopic and semiorthotopic transplantation,
as they offer very translational features, are reproducible, and are well-described in the
literature. Compared to other preclinical in vivo models, the utilization of smaller animals,
such as mice, is preferred, as breeding and housing are less expensive and murine anatomy
is well-understood. The surgical procedure of implant placement is easy to perform and
results in minimal distress for the animals. Nevertheless, ethical concerns still need to be
considered, and especially in the early stages of research, cell cultures should be preferred.
The decision to use animals should never be taken lightly. It must also be noted that newly
formed tissue, blood vessels, or nerve fibers can be of human or rodent origin. These
ambiguities need to be kept in mind and reviewed in order to draw the correct conclusions
regarding tissue formation (Table 1).

Table 1. Strengths and weaknesses of in vitro and in vivo models.

In Vitro In Vivo
Monolayer 3D Culture Ectopic Semiorthotopic
high cost + + ++ ++
ethical concerns + + +++ 4+
literature experience +++ + ++ ++
difficult implementation + ++ ++ ++
reproducibility +4++ ++ + +

mimicry of natural situation + ++ ++ +++
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Further variations of these model are presented below, and selected references for
applications of both in vitro and in vivo ectopic and semiorthotopic models can be found
in Table 2.

Table 2. Selected references for applications of each study model, including both in vitro and in vivo.
The asterisk indicates categories that are not conceivable in the present classification.

Study Models

In Vitro In Vivo

Ectopic Semiorthotopic

Scaffold culture

Wang et al., 2010 [81]
Galler et al., 2012 [50]
Qu and Liu, 2013 [40]
Widbiller et al., 2016 [52]
Lin et al., 2021 [42]

Buurma et al., 1999 [80]
Gronthos et al., 2000 [12]
Wang et al., 2010 [81] *
Lee et al., 2011 [82]
De Almeidas et al., 2014 [83]

Xiao and Tsutsui, 2013 [99]
Dissanayaka et al., 2014 [59]

Spheroid and organoid Jeong et al., 2020 [60] *
Zheng et al., 2021 [100]
Chan et al., 2021 [101]
Sloan et al., 1998 [102]
Dentin disk Huang et al., 2006 [19] " Batouli et al., 2003 [84]

Widbiller et al., 2019 [103] Goncalves et al., 2007 [85]

Atesci et al., 2020 [104]

Tooth slice

Cordeiro et al., 2008 [86]
Prescott et al., 2009 [87]
Sakai et al., 2010 [105]
Casagrande et al., 2010 [45]
Sakai et al., 2011 [88]
Dissanayaka et al., 2014 [59]

Casagrande et al., 2010 [45] *

Dentin cylinder and tooth root

Galler et al., 2011 [89]
Galler et al., 2012 [50]
Rosa et al., 2013 [46]
Takeuchi et al., 2015 [90]
Widbiller et al., 2018 [91]
With coronal plug:
Huang et al., 2010 [92]
Zhu et al., 2018 [93]

Rosa et al., 2013 [46] *

3.1. Dentin Disk and Tooth Slice

Despite the fact that various research applications are based on the ectopic implanta-
tion of cells alone or cells encapsulated in a scaffold material [24,83,106], pulp cannot be
restored without considering the pulp-dentin complex. The close mechanical and func-
tional connections of cells and dentin are the reasons why many researchers choose to
combine pulp-derived cells with dentin disks or tooth slices in vitro and implant them
subcutaneously. Therefore, dentin disks or tooth slices are usually obtained in the area
of solid coronal dentin or the pulp cavity from human molars respectively. The cells can
then be seeded on top of solid dentin disks or cast within a scaffold into the former pulp
chamber [45,87,88] (Figure 4A,B).
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Figure 4. Variants of the ectopic transplantation model. (A) Dentin disk with cells seeded on top.
(B) Tooth slice with cells and scaffold inserted into the pulp chamber. (C) Root fragment model with
cells and scaffold inserted into the root canal.

The tooth slice model has proven to be a valid semiorthotopic approach to observe
and evaluate mechanisms of differentiation, vascularization, and regeneration [45,105]. It
can answer questions regarding the pretreatment of dentin surfaces, the host integration of
transplants, the deposition of extracellular matrix, and tumorigenic potential. Furthermore,
the assessment of various scaffold materials and their suitability for regenerative procedures
is possible [107]. The research team around Nor has used it to investigate genetically
modified DPSCs and to better understand signaling pathways [29,30]. It also allows for the
transplantation of traceable cells to analyze cell fate in vivo [86,105].

3.2. Dentin Cylinder and Tooth Root

Sufficient vascularization is a prerequisite for cells to survive and generate new tis-
sue [71,86,108]. In a tooth slice model, nutrients and oxygen may reach the cells easily by
diffusion from neighboring tissues, as the diffusion distance is short. However, the anatomy
of an actual tooth is different. Diffusion from the root tip all the way to the crown is not
possible. Only the advancement of a functional vascular system allows cells to expand
into the entire pulp cavity and tissue to develop even far from the apical entry [108,109].
As blood vessels have only restricted access to the root canal through the apical foramen,
models using dentin cylinders or tooth roots mimic the difficulties of the clinical situation
more accurately. Here, whole roots or parts of them are separated from extracted teeth,
prepared, and filled with cells and a scaffold material. Sample constructs can then be
implanted, for example, into a mouse dorsum to be accessed by blood vessels and nerve
fibers (Figure 4C). Whereas leaving both ends of the dentin cylinder open may provide
optimal blood supply from two directions, sealing of the coronal opening with a bioactive
material corresponds to clinical situations, as the unilateral sprouting of vessels into the
tooth root presents a challenge [46,91,92]. However, the decision of how to prepare the
roots must be made depending on the application and the specific research question.

This semiorthotopic model situation allows a variety of investigations and analyses.
The focus can be on qualitative factors, such as the formation of odontoblast-like cells or the
expressions of certain markers, as well as quantitative factors, such as the number of blood
vessels or nerve fibers or the amount of newly formed tissue. Furthermore, the model has
been continuously developed and modified over the past years to answer specific questions
or to counteract limitations. For example, Widbiller et al. established a customized tooth
root model to test cell-homing approaches for dental pulp regeneration [91]. Here, the root
canal was filled with a growth-factor-laden hydrogel with the ability to promote chemotaxis.
Stem cells were then placed only at the apical opening of the root to mimic the apical papilla
as the stem cell source of immature teeth. After the recovery of the tooth roots from the
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mouse subcutaneous space, the samples can be processed histologically, and the newly
formed tissue can be analyzed by various techniques (Figure 5) [110].

Figure 5. Cell-homing model. Tooth root recovered after 6 weeks of implantation into subcutaneous
dorsal space of mice: (A) coronal plug, (B) dentin of root walls, (C) cells that migrated into the root
canal, (D) apical reservoir of stem cells in collagen, (E) murine tissue, (F) blood vessel.

Another interesting variant was reported by Hilkens et al. with the aim of creating a
more standardized situation. Cells were seeded not into human root fragments but into
3D-printed hydroxyapatite scaffolds shaped as tooth roots that were then implanted into
mice to assess the angiogenetic potentials of different stem cells [109].

4. In Vivo Orthotopic Model

Lastly, the most translational situation to investigate stem pulp tissue engineering
is the experimental animal. In this orthotopic model, signaling molecules, a scaffold,
and eventually, stem cells are implanted together into an anatomically correct site, which
is the root canal of a tooth in its physiological position in the oral cavity of an animal.
Animal models for dental pulp tissue engineering can be grouped into small animal
models and large animal models. Large animal models, such as dogs and pigs, are often
preferred because it is easier to facilitate from a treatment perspective regarding tooth size
(Figure 6) [95].
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mouse molar ferret cuspld dog premolar human premolar
rat molar cat cuspld sheep incisor miniature plg premolar

Figure 6. Relative tooth sizes of different species. Scale bar: 1 cm.

The scientific value, thereby;, is that treated teeth can be examined histologically after
animals have been euthanized, and the treatment outcomes of regenerative procedures can
be systematically evaluated at tissue and single-cell levels. Furthermore, orthotopic models
are used to evaluate the efficacy and quality of proposed regenerative strategies and to
establish a data basis to design future clinical trials adequately [95]. The fields of application
cover many areas, such as tumorigenesis, the testing of restorative materials, and root canal
disinfection methods, as well as periodontal and endodontic regeneration [93,111].

However, it must always be kept in mind that conclusions derived from animal
studies are not necessarily transferable to the clinical situation. Tooth anatomy, as well
as the local microbiomes or regenerative capacities of cells or tissues, may differ. For
example, autologous stem cells of animals, which are typically applied to circumvent the
problem of immunocompatibility, may not behave the same way as human stem cells [111].
Furthermore, animal studies are afflicted with higher expenses than in vitro methods,
which limits their availability and feasibility [111]. Most importantly, ethical concerns must
always be considered when conducting research in vivo, and the step from cell culturing
to animal testing should not be taken carelessly. From an ethical point of view, every
single sacrifice of an animal needs to be justified by an increase in scientific knowledge.
Therefore, the proposed research protocol must be reviewed before experiments can be
initiated. It must align with local animal welfare laws and regulations, and it is important
to ensure that researchers are educated in the handling of the animal in use. In addition, the
least sentient animal should be preferred when choosing a suitable species (Table 3) [71].
When planning animal-based research, one should consider the principle of the three Rs:
(1) replacement with alternative methods, such as in vitro cell cultures, whenever possible;
(2) reduction in number, which may include performing multiple experiments on the
same animal; and (3) refinement of the projects and techniques used in order to minimize
pain and stress [112,113]. However, a reduction in number that results in invalid data
and the need for repetition of the experiment is to be avoided [71]. When reporting the
findings of animal studies, the ARRIVE guidelines (Animal Research: Reporting of in vivo
Experiments) should be observed [114].
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Table 3. Strengths and weaknesses of in vivo orthotopic models.

In Vivo Orthotopic
Dog Pig Ferret Rodent

high cost +++ +++ ++ +
ethical concerns +++ ++ ++ ++
literature experience +++ ++ + +
housing requirements ++ +++ + +

animal handling +++ + ++ +++
similarity of tooth anatomy ++ ++ + +
similarity of tooth size +++ +++ ++ +
access to teeth ++ ++ ++ +

4.1. Large Animal Models
4.1.1. Dogs

Dogs have often been used as a model in dental pulp regeneration research [115].
In general, canine teeth are similar to human teeth in anatomy, growth patterns, and
pathophysiology [116]. Canine premolars are preferred, as they present the greatest sim-
ilarity to human molars [71]. However, even other teeth, such as incisors or canines, are
suitable [117].

Differently from human teeth, the root canal system of an adult dog ends in a highly
branched apical delta with multiple ramifications, which makes disinfection by irrigation
difficult [116]. The premolars of younger dogs, however, have not yet formed the complex
delta and still present a more stringent apical anatomy [71]. Still, the enlargement of the
apical opening is a necessary step during the operation procedure [118]. Of course, there
are ethical concerns and public criticism associated with the use of the canine model, which
are justified and understandable, as dogs are considered companions to humans and are
usually kept as pets.

Overall, there is extensive knowledge of this study model and, thus, its predictability
in outcome can be seen as an advantage. Groups around Nakashima and Iohara have
established and refined canine models using the beagle dog breed due to its friendly tem-
perament and small size [118,119], which is advantageous for the housing and handling of
the animals. They have worked for many years on the development of clinically applicable
protocols for pulp regeneration by cell transplantation, making extensive use of the canine
model, thereby, for example, proving the successful regeneration of pulp tissue using
cell transplantation approaches by transplanting autologous canine stem cells into canine
teeth after partial or total removal of the pulp [108,118]. Furthermore, this experimental
set-up has been used to investigate different subclasses of canine dental stem cells [120],
the influence of various signaling molecules [58,120], and the impacts of age [121] and
inflammation [122] on endodontic regeneration.

4.1.2. Pigs

Pigs are used in various areas of research, especially as surgical models. This is
because their growth patterns, physiology, and head size come close to humans [123,124].
Endodontic procedures were performed on porcine premolars, which were easy to access
and were deemed suitable for experimentation in dental pulp tissue engineering [93].
Another advantage is that euthanizing pigs, which are regarded as livestock, is considered
less critically [71,117]. However, there are also shortcomings to this model, such as the
heavy weight of the animals compared to dogs, the small size of pig pulp chambers, and the
challenges of adequate housing and high demands for feeding and care [93]. Additionally,
their posterior teeth were described as difficult to access, and the root canal morphology
was irregular and not ideal [93]. Interestingly, pigs were reported to possess a “disobedient
temperament” or “uncooperative behavior”, which deemed them difficult to manage [117].
However, Zhu et al. isolated porcine dental pulp stem cells and could prove the formation
of vascularized pulp-like tissue in pig teeth and reparative dentin formation [93]. On the
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other hand, the implantation of porcine dental pulp stem cells in induced pulp defects
did not result in regenerated pulp or reparative dentinogenesis in other studies [124].
Therefore, there are still challenges that need to be overcome before this model can find
widespread use.

4.2. Small Animal Models
4.2.1. Rodents

Small animal models are often automatically excluded from use as orthotopic study
models because of the diminutive size of the teeth. In addition, rodent incisors grow
continuously throughout their lives and are only shortened due to attritive wear and tear.
In contrast, their molars are brachydont and can, therefore, be considered for endodontic
treatments. However, small mouth size limits access, and teeth are minute compared to hu-
man teeth. When using standard endodontic instruments, there is a high risk of perforating
the soft dentin walls, especially in curved roots. Nowadays, the use of magnification by,
e.g., operative microscopes and small instruments enables the use of rodents for endodontic
applications [71,125,126]. Despite the difficulties in treating teeth, the animals” small sizes
are beneficial when it comes to housing. Another advantage is that rodents possess faster
biological responses to treatment; one month for rats is equal to 30 months in humans [125].

Thus, the rat model was reported as a suitable model to study novel methods of
root canal treatment after apical periodontitis [126]. On various occasions, rodent models
have also been used for the study of pulpal healing in direct pulp capping [127-129].
Furthermore, Almushayt et al. used rats to test the functionality of DMP1 as a signaling
molecule for dental pulp tissue engineering [130].

4.2.2. Ferrets

The ferret is a medium sized carnivore that is much smaller than dogs or pigs. Their
teeth exhibit anatomical, physiologic, histologic, and pathologic characteristics that resem-
ble human teeth [111]. In particular, their single-rooted canine is suited for endodontic
procedures [71,131,132].

Ferrets have the advantage of being less expensive to house and easier to maintain and
breed in the laboratory than larger animals and are typically not considered as pets [111].
Because their root apices are wide open, ferret teeth lend themselves to the study of
regenerative endodontic procedures where the pulp tissue is removed and bleeding is
induced in order to facilitate the formation of new tissue in the root canal [133,134]. In
addition, periapical infections can predictably be induced, and ferret canines can be used
to investigate irrigation and medication protocols [131].

4.3. Untypical or Inappropriate Models
4.3.1. Feline Model

Other animals have been considered for stem-cell-based oral tissue engineering, as
well. Cats are easy to anesthetize and have four single-rooted cuspid teeth that are suitable
for endodontic procedures. However, they are more expensive to accommodate than small
animals, and in analogy to dogs, they are commonly considered as pets, which induces
emotional problems and public objections [111]. Although they have been described
historically as a possible model, e.g., for the study of periapical lesions [135], they have not
been used as such for a long time.

4.3.2. Ovine Model

Sheep present a less-developed study model in dental research but were reported to
be very promising [117]. Because they are ruminants, the salivary pH of sheep is higher
than humans [117]. Furthermore, ovine teeth are different from those of humans, although
there are similarities in anatomy and size [136,137]. The permanent first incisors of 12-to-
18-month sheep are suited for regenerative endodontic studies, as they possess an open
apex and thin dentinal walls. Further advantages can be seen in the low ethical concerns
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regarding farm animals and the easy upkeep, as they can be released on fields [137]. Even
if sheep have been used in other research areas, such as periodontology [138] or bone
regeneration [139], further investigations need to be conducted before sheep can be utilized
as a study model for dental pulp tissue engineering [136].

4.3.3. Primate Model

Because of their sentient character, long life span, and expensive acquisition and
care, non-human primates are not an adequate model for research in dental regenera-
tion [140,141]. Furthermore, despite presenting great anatomical similarities to humans,
non-human primates are not ideal for endodontic research, as they have far better re-
covering abilities than humans. The artificial induction of pulpitis was hindered by the
strong resistance of primate pulp to oral contamination [71]. For various ethical, legal, and
physiological reasons, primates may not be used in this context, and other animal models
must be preferred.

5. Conclusions

Today, various 3D cell culture models offer good alternatives to animal studies. Certain
questions can easily be resolved in vitro, and the ongoing development of organoid and
spheroid cultures, for example, could expand this area of application in the future. In order
to gain further insight into outcomes in a physiological environment, there is, of course,
also a necessity for animal studies. In consideration of the 3 Rs, study designs based on
the semiorthotopic approach are of great benefit here. However, the final investigation of
the research goal must be carried out in an in situ approach. Small animal studies should
also be considered in this context in order to reduce the number of currently used large and
more sentient animals.

Looking at the variety of in vitro and in vivo study models, there is not a single
model that is suitable to answer all questions related to dental pulp regeneration. In each
case, the appropriate model situation must be selected to correspond with the specific
research question and the current state of development on the way to clinical applica-
tion. Requirements, costs, and above all, ethical considerations should be included in the
decision-making process.
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