High-frequency Contactless Sensor for the Detection of Heparin-Induced Thrombocytopenia Antibodies via Platelet Aggregation
Abstract
:1. Introduction
2. Results
2.1. Experimental Setup
2.2. Visualization of Platelet Aggregation by Confocal Laser Scanning Microscopy (CLSM)
2.3. Platelet Aggregation Causes a Change in Resonant Frequency
2.4. Determination of Geometry Parameters of the Sensors
2.5. Platelet Aggregation Alters Sample Conductivity
3. Discussion
4. Conclusions
5. Materials and Method
5.1. Chemicals and Reagents
5.2. Ethics
5.3. Isolation of Platelets
5.4. Platelet Aggregation/Functional Assay
5.5. Confocal Laser Scanning Microscopy (CLMS) to Visualize Platelet Aggregation
5.6. High-Frequency Contactless Sensor Measuring Platelet Aggregation
5.7. Conductivity and Permittivity Determination
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogan, M.; Berger, J.S. Heparin-induced thrombocytopenia (HIT): Review of incidence, diagnosis, and management. Vasc. Med. 2020, 25, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Sheppard, J.A.; Sigouin, C.S.; Kohlmann, T.; Eichler, P.; Greinacher, A. Gender imbalance and risk factor interactions in heparin-induced thrombocytopenia. Blood 2006, 108, 2937–2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patriarcheas, V.; Pikoulas, A.; Kostis, M.; Charpidou, A.; Dimakakos, E. Heparin-induced Thrombocytopenia: Pathophysiology, Diagnosis and Management. Cureus 2020, 12, e7385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arepally, G.M. Heparin-induced thrombocytopenia. Blood 2017, 129, 2864–2872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laber, D.A.; Martin, M.E. Etiology of thrombocytopenia in all patients treated with heparin products. Eur. J. Haematol. 2005, 75, 101–105. [Google Scholar] [CrossRef]
- Ahmed, I.; Majeed, A.; Powell, R. Heparin induced thrombocytopenia: Diagnosis and management update. Postgrad. Med. J. 2007, 83, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Dahal, S.; Bhatt, V.R.; Upadhyay, S.; Silberstein, P. Heparin Induced Thrombocytopenia. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Kowalska, M.A.; Krishnaswamy, S.; Rauova, L.; Zhai, L.; Hayes, V.; Amirikian, K.; Esko, J.D.; Bougie, D.W.; Aster, R.H.; Cines, D.B.; et al. Antibodies associated with heparin-induced thrombocytopenia (HIT) inhibit activated protein C generation: New insights into the prothrombotic nature of HIT. Blood 2011, 118, 2882–2888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwuemene, O.; Arepally, G.M. Heparin-induced thrombocytopenia: Research and clinical updates. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Páramo, J.A.; Lozano, M.L.; González-Porras, J.R.; Mateo, J. Current status of diagnosis and treatment of heparin-induced thrombocytopenia (HIT). Med. Clín. 2022, 158, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Thi-Huong, N. Chapter 3: Not Only Heparin but Also Antibody Induces Thrombocytopenia. In Thrombocytopenia; Pankaj, A., Ed.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Althaus, K.; Marini, I.; Zlamal, J.; Pelzl, L.; Singh, A.; Häberle, H.; Mehrländer, M.; Hammer, S.; Schulze, H.; Bitzer, M.; et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 2021, 137, 1061–1071. [Google Scholar] [CrossRef]
- Dragonetti, D.; Guarini, G.; Pizzuti, M. Detection of anti-heparin-PF4 complex antibodies in COVID-19 patients on heparin therapy. Blood Transfus. Trasfus. Sangue 2020, 18, 328. [Google Scholar]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uaprasert, N.; Tangcheewinsirikul, N.; Rojnuckarin, P.; Patell, R.; Zwicker, J.I.; Chiasakul, T. Heparin-induced thrombocytopenia in patients with COVID-19: A systematic review and meta-analysis. Blood Adv. 2021, 5, 4521–4534. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Malynn, E.; Shaz, B.; Uhl, L. Utility of consecutive repeat HIT ELISA testing for heparin-induced thrombocytopenia. Am. J. Hematol. 2008, 83, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Pearson, M.-A.; Nadeau, C.; Blais, N. Correlation of ELISA Optical Density With Clinical Diagnosis of Heparin-Induced Thrombocytopenia: A Retrospective Study of 104 Patients With Positive Anti-PF4/Heparin ELISA. Clin. Appl. Thromb. Hemost. 2014, 20, 349–354. [Google Scholar] [CrossRef]
- Greinacher, A.; Amiral, J.; Dummel, V.; Vissac, A.; Kiefel, V.; Mueller-Eckhardt, C. Laboratory diagnosis of heparin-associated thrombocytopenia and comparison of platelet aggregation test, heparin-induced platelet activation test, and platelet factor 4/heparin enzyme-linked immunosorbent assay. Transfusion 1994, 34, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Arnold, D.M.; Nazi, I.; Kelton, J.G. The platelet serotonin-release assay. Am. J. Hematol. 2015, 90, 564–572. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Greinacher, A.; Gruel, Y.; Aster, R.H.; Chong, B.H. Laboratory testing for heparin-induced thrombocytopenia: A conceptual framework and implications for diagnosis. J. Thromb. Haemost. JTH 2011, 9, 2498–2500. [Google Scholar] [CrossRef]
- Motohashi, S.; Matsuo, T.; Inoue, H.; Kaneko, M.; Shindo, S. Clinical Significance of the Serotonin Release Assay and Platelet Count Monitoring After Cardiac Surgery. Clin. Appl. Thromb. Hemost. 2018, 24, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Smythe, M.A.; Ali, M.A.; Aslam, N.; Sheppard, J.-A.I.; Smith, J.W.; Moore, J.C.; Arnold, D.M.; Nazy, I. Serotonin-release assay-positive but platelet factor 4-dependent enzyme-immunoassay negative: HIT or not HIT? Am. J. Hematol. 2021, 96, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Kelton, J.G.; Warkentin, T.E. Heparin-induced thrombocytopenia: A historical perspective. Blood 2008, 112, 2607–2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maličev, E. The use of flow cytometry in the diagnosis of heparin-induced thrombocytopenia (HIT). Transfus. Med. Rev. 2020, 34, 34–41. [Google Scholar] [CrossRef]
- Kumar, N.; Uppal, V.; Ahluwalia, J.; Malhotra, P.; Varma, N.; Jain, A. Evaluation of STic Expert(®) HIT Kit and Its Comparison with ID-PaGIA™ Test in Suspected Heparin-Induced Thrombocytopenia. Indian J. Hematol. Blood Transfus. 2019, 35, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Minet, V.; Bailly, N.; Douxfils, J.; Osselaer, J.C.; Laloy, J.; Chatelain, C.; Elalamy, I.; Chatelain, B.; Dogné, J.M.; Mullier, F. Assessment of the performances of AcuStar HIT and the combination with heparin-induced multiple electrode aggregometry: A retrospective study. Thromb. Res. 2013, 132, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Strobel, E. Use of the ID-PaGIA Heparin/PF4 Antibody Test as a screening test for heparin/platelet factor 4 antibodies. Blood Transfus. Trasfus. Sangue 2017, 15, 268–271. [Google Scholar]
- Warkentin, T.E. Laboratory diagnosis of heparin-induced thrombocytopenia. Int. J. Lab. Hematol. 2019, 41 (Suppl. S1), 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warkentin, T.E.; Sheppard, J.I.; Smith, J.W.; Li, N.; Moore, J.C.; Arnold, D.M.; Nazy, I. Combination of two complementary automated rapid assays for diagnosis of heparin-induced thrombocytopenia (HIT). J. Thromb. Haemost. 2020, 18, 1435–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, U.J.; Cooper, N.; Czwalinna, A.; Müller, J.; Pötzsch, B.; Tiede, A.; Althaus, K. PF4-Dependent Immunoassays in Patients with Vaccine-Induced Immune Thrombotic Thrombocytopenia: Results of an Interlaboratory Comparison. Thromb. Haemost. 2021, 121, 1622–1627. [Google Scholar] [PubMed]
- Vayne, C.; Rollin, J.; Gruel, Y.; Pouplard, C.; Galinat, H.; Huet, O.; Mémier, V.; Geeraerts, T.; Marlu, R.; Pernod, G.; et al. PF4 Immunoassays in Vaccine-Induced Thrombotic Thrombocytopenia. N. Engl. J. Med. 2021, 385, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Nazy, I.; Sheppard, J.-A.I.; Smith, J.W.; Kelton, J.G.; Arnold, D.M. Serotonin-release assay-negative heparin-induced thrombocytopenia. Am. J. Hematol. 2020, 95, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Sun, H.; Xu, L. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor. Sensors 2018, 18, 1438. [Google Scholar] [CrossRef] [PubMed]
- Kasai, M.; Kanemasa, T.; Fukumoto, S. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique. J. Membr. Biol. 1979, 51, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Nacke, T.; Barthel, A.; Frense, D.; Meister, M.; Cahill, B.P. Application of High Frequency Sensors for Contactless Monitoring in Disposable Bioreactors. Chem. Ing. Tech. 2013, 85, 179–185. [Google Scholar] [CrossRef]
- Sachais, B.S.; Litvinov, R.I.; Yarovoi, S.V.; Rauova, L.; Hinds, J.L.; Rux, A.H.; Arepally, G.M.; Poncz, M.; Cuker, A.; Weisel, J.W.; et al. Dynamic antibody-binding properties in the pathogenesis of HIT. Blood 2012, 120, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Yarovoi, S.V.; Zhu, Z.; Rauova, L.; Hayes, V.; Lebedeva, T.; Liu, Q.; Poncz, M.; Arepally, G.; Cines, D.B.; et al. Atomic description of the immune complex involved in heparin-induced thrombocytopenia. Nat. Commun. 2015, 6, 8277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran, T.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U.; Al-Mugren, K.S. Development of diverse coding metamaterial structure for radar cross section reduction applications. Sci. Rep. 2022, 12, 10958. [Google Scholar] [CrossRef]
- Mordakhanova, E.R.; Nevzorova, T.A.; Synbulatova, G.E.; Rauova, L.; Weisel, J.W.; Litvinov, R.I. Platelet Activation in Heparin-Induced Thrombocytopenia is Followed by Platelet Death via Complex Apoptotic and Non-Apoptotic Pathways. Int. J. Mol. Sci. 2020, 21, 2556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonello, J.; Demarco, A.; Farhat, I.; Farrugia, L.; Sammut, C.V. Application of Artificial Neural Networks for Accurate Determination of the Complex Permittivity of Biological Tissue. Sensors 2020, 20, 4640. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.Z.; Martin, D.; Pliquett, U.; Zaikou, Y.; Thomas, N.; Heinrich, D.; Köhler, J.M.; Nguyen, T.-H. High-frequency Contactless Sensor for the Detection of Heparin-Induced Thrombocytopenia Antibodies via Platelet Aggregation. Int. J. Mol. Sci. 2022, 23, 14395. https://doi.org/10.3390/ijms232214395
Khan NZ, Martin D, Pliquett U, Zaikou Y, Thomas N, Heinrich D, Köhler JM, Nguyen T-H. High-frequency Contactless Sensor for the Detection of Heparin-Induced Thrombocytopenia Antibodies via Platelet Aggregation. International Journal of Molecular Sciences. 2022; 23(22):14395. https://doi.org/10.3390/ijms232214395
Chicago/Turabian StyleKhan, Nida Zaman, Daniel Martin, Uwe Pliquett, Yahor Zaikou, Nacke Thomas, Doris Heinrich, J. Michael Köhler, and Thi-Huong Nguyen. 2022. "High-frequency Contactless Sensor for the Detection of Heparin-Induced Thrombocytopenia Antibodies via Platelet Aggregation" International Journal of Molecular Sciences 23, no. 22: 14395. https://doi.org/10.3390/ijms232214395
APA StyleKhan, N. Z., Martin, D., Pliquett, U., Zaikou, Y., Thomas, N., Heinrich, D., Köhler, J. M., & Nguyen, T. -H. (2022). High-frequency Contactless Sensor for the Detection of Heparin-Induced Thrombocytopenia Antibodies via Platelet Aggregation. International Journal of Molecular Sciences, 23(22), 14395. https://doi.org/10.3390/ijms232214395