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Abstract: Various studies have been conducted, exploring the genetic susceptibility of Alzheimer’s
disease (AD). Adenosine receptor subtype A2a (ADORA2A) and cytochrome P450 1A2 (CYP1A2)
are implicated in pathways such as oxidative stress and caffeine metabolism, which are associated
with AD. The aim of this study was to explore for any potential association between the ADORA2A
rs5760423 and the CYP1A2 rs762551 genetic variants and AD. A case–control study was performed
with a total of 654 subjects (327 healthy controls and 327 patients with AD). Five genetic models
were assumed. We also examined the allele–allele combination of both variants. The value of 0.05
was considered as the statistical significance threshold. A statistically significant association was
found between ADORA2A rs5760423 and AD, as the “T” allele was associated with increased AD
risk in recessive (OR = 1.51 (1.03–2.21)) and log-additive (OR = 1.30 (1.04–1.62)) genetic modes. In the
codominant model, the TT genotype was more prevalent compared to the GG genotype (OR = 1.71
(1.09–2.66)). The statistical significance was maintained after adjustment for sex. No association
between CYP1A2 rs762551 or allele–allele combination and AD was detected. We provide prelimi-
nary indication for a possible association between the ADORA2A rs5760423 genetic polymorphism
and AD.

Keywords: Alzheimer’s disease; caffeine metabolism; oxidative stress; polymorphism; genetics;
ADORA2A rs5760423; CYP1A2 rs762551

1. Introduction

Alzheimer’s disease (AD) is considered to be the most common type of dementia,
accounting for over 60% of all dementia diagnoses worldwide [1]. AD is a neurodegenera-
tive disease, with intracellular neurofibrillary tau tangles and β-amyloid (Aβ) extracellular
plaques as its neuropathological hallmarks [2]. Several risk factors including genetics
are considered to have an impact on developing AD, yet aging is considered to have the
strongest impact on the disease [3].

Various studies have been conducted in previous years, exploring a multivariate
predicting AD model, which could lead to more precise preventing approaches for AD [4].
However, due to the multifactorial etiology of AD [5], such an effort is far from fully
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accomplished. In fact, environmental and genetic factors have been reported to influence
the manifestations of AD’s signs and symptoms [6].

Heretofore, more than 40 genetic loci have been reported for their impact on AD [7,8].
Although some results from previous genetic studies may be false positives, and the
magnitude of associations are not highly precise, this continuous genetic research has
expanded the landscape on the pathophysiology of AD [7]. Therefore, ongoing research on
AD genetics is of great importance, and, doubtlessly, novel data and hypotheses regarding
AD pathogenesis will be evident in the near future.

Adenosine receptor subtype A2a (ADORA2A) is a G-protein-coupled adenosine re-
ceptor, with an endogenous ligand that is adenosine [9,10]. ADORA2A is implicated
in several pathophysiological processes, including neurogenesis, caffeine metabolism,
and synaptic plasticity in glutamatergic synapses [11]. Moreover, the loss of adenosine-
receptor-mediated modulation on immune cells has an impact on oxidative-stress-mediated
inflammation [12,13]. Cytochrome P450 1A2 (CYP1A2) is an inducible enzyme, and it is
considered to be the main caffeine-metabolizing enzyme, while it is implicated in several
drugs’ metabolisms as well [14,15]. CYP1A2 is also implicated in several pathophysiological
mechanisms of oxidative stress [16,17].

Moderate caffeine intake may have a beneficial effect in a transgenic model of AD-like
tau pathology [18]. Moreover, coffee intake may decrease the risk of AD and cognitive de-
cline [19,20]. An elevated serum ADORA2A level has been found in patients with AD, and,
aside for that fact, amongst CYP1A2 rs762551 C allele carriers, daily coffee consumption
was associated with a decreased risk for dementia [21,22]. While, non-constantly, both the
ADORA2A rs5760423 and CYP1A2 rs762551 variants have been associated with PD [23–25],
CYP1A2 rs762551 polymorphism has also been associated with amyotrophic lateral sclero-
sis and blepharospasm [26,27]. Despite that, AD and PD are two clinically distinct entities,
and there is evidence that they share several pathophysiological, phenotypic, and genetic
traits [28] including oxidative stress and neuroinflammation [29,30].

Considering that genetic-based AD studies may provide additional data regarding
its pathogenesis; that ADORA2A and CYP1A2 are implicated in pathways such as in
oxidative stress and caffeine metabolism, which are associated with AD; and also that
the ADORA2A rs5760423 and CYP1A2 rs762551 variants have previously been linked to
certain neurodegenerative disorders, which share biochemical and clinical similarities with
AD, we performed a case–control study aiming to explore for any potential association
between these two genetic variants (ADORA2A rs5760423 and CYP1A2 rs762551) and AD.

2. Results
2.1. Characteristics of the Included Subjects

We genotyped a cohort of 654 subjects (327 patients with AD and an equal number
of healthy controls). The AD group consisted of 33.1% males, with a mean age of blood
collection ± standard deviation (SD) = 78.90 ± 8.56 years. The control group consisted of
55.9% males, with a mean age ± SD = 69.71 ± 3.02.

2.2. Genotypic Call Rate, Hardy–Weinberg Equilibrium (HWE), and Sample Power

Three and seven samples failed to be genotyped for ADORA2A rs5760423 in healthy
controls and AD, respectively. For CYP1A2 rs762551, the respective values were three
samples for both health controls and patients with AD. Consequently, the overall genotype
call rate was >98.47% (98.47% for ADORA2A rs5760423 and 99.08% for CYP1A2 rs762551).
Moreover, we did not detect any deviation from the HWE for either ADORA2A rs5760423
(p = 0.82 and p = 0.74, for the AD and the healthy control groups, respectively) or CYP1A2
rs762551 (p = 0.71 and p = 0.63, for the AD and the healthy control groups, respectively).
Finally, our sample had 81.1 power to reveal a significant association (p < 0.05) between the
examined genetic variants and AD, with a minor allele frequency (MAF) allele of 33%, a
relative genotype risk of 1.65, and a prevalence of AD equal to 37/100,000, assuming the
multiplicative model of inheritance.
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2.3. Primary Endpoint
2.3.1. Analysis for ADORA2A rs5760423

The MAF (T) was 49% in the AD group and 42% in the healthy control group. The
genotypic frequency was 85 (27%), 157 (49%), and 78 (24%) for the G/G, G/T, and T/T in
the AD group, respectively. The respective values in the healthy control group were 106
(33%), 161 (50%), and 57 (17%). The total numbers (n) and frequencies (%) of the alleles and
genotypes of ADORA2A rs5760423 for the patients with AD, the healthy controls, and the
whole sample are presented in Table 1.

Table 1. Allelic and genotype frequencies for ADORA2A rs5760423 in healthy controls, in AD cases,
and in whole sample.

SNP Genotypes/
Alleles

Healthy Controls
(n = 327)

AD
(n = 327)

Whole Sample
(n = 654)

rs5760423 n (%) n (%) n (%)

Genotype G/G 106 (33) 85 (27) 191 (30)
G/T 161 (50) 157 (49) 318 (49)
T/T 57 (17) 78 (24) 135 (21)

Allele G 373 (58) 327 (51) 700 (54)
T 275 (42) 313 (49) 588 (46)

SNP, single nucleotide polymorphism; ADORA2A, adenosine A2a receptor; AD, Alzheimer’s disease.

A statistically significant association was found between ADORA2A rs5760423 and
AD. More precisely, the “T” allele was associated with increased AD risk in the recessive
(odds ratio (OR) = 1.51 (1.03–2.21)), and log-additive (OR = 1.30 (1.04–1.62)) genetic modes.
In the codominant model, the TT genotype was more prevalent compared to the GG
genotype (OR = 1.71 (1.09–2.66)), with a marginal p-value = 0.06. The statistical significance
was maintained after adjustment for sex, and it was also evident in codominant mode
(p = 0.044). The respective results are presented in Table 2.

Table 2. Single locus analysis for association between ADORA2A rs5760423 and AD, in codominant,
dominant, recessive, overdominant, and log-additive modes.

Unadjusted Analysis Adjusted Analysis

Mode Genotype OR (95% CI) p-Value OR (95% CI) p-Value

Codominant G/G 1.00 0.06 1.00 0.044
T/G 1.22 (0.85–1.74) 1.15 (0.79–1.66)
T/T 1.71 (1.09–2.66) 1.76 (1.11–2.78)

Dominant G/G 1.00 0.087 1.00 0.14
T/G-T/T 1.34 (0.96–1.89) 1.30 (0.92–1.85)

Recessive G/G-T/G 1.00 0.034 1.00 0.017
T/T 1.51 (1.03–2.21) 1.61 (1.09–2.39)

Overdominant G/G-T/T 1.00 0.87 1.00 0.56
T/G 0.98 (0.72–1.33) 0.91 (0.66–1.25)

Log-additive --- 1.30 (1.04–1.62) 0.02 1.31 (1.04–1.64) 0.019
ADORA2A, adenosine A2a receptor; AD, Alzheimer’s disease; CI, confidence interval; OR, odds ratio. Adjustment
was made for sex as a categorical variable.

2.3.2. Analysis for the CYP1A2 rs762551

The MAF (C) was 33% in the AD group and 37% in the healthy control group. The
genotypic frequency was 145 (45%), 141 (44%), and 38 (12%) for the A/A, A/C, and C/C in
the AD group, respectively. The respective values in the healthy control group were 131
(40%), 147 (45%), and 46 (14%). The total numbers (n) and frequencies (%) of the alleles
and genotypes of CYP1A2 rs762551 for the patients with AD, the healthy controls, and the
whole sample are presented in Table 3.
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Table 3. Allelic and genotype frequencies for CYP1A2 rs762551 in healthy controls, in AD cases, and
in whole sample.

SNP Genotypes/
Alleles

Healthy Controls
(n = 327)

AD
(n = 327)

Whole Sample
(n = 654)

rs762551 n (%) n (%) n (%)

Genotype A/A 131 (40) 145 (45) 276 (43)
A/C 147 (45) 141 (44) 288 (44)
C/C 46 (14) 38 (12) 84 (13)

Allele A 409 (63) 431 (67) 840 (65)
C 239 (37) 217 (33) 456 (35)

SNP, single nucleotide polymorphism; CYP1A2, cytochrome P450 1A2; AD, Alzheimer’s disease.

No association (p > 0.05) was found between CYP1A2 rs762551 and AD in any of
the examined genetic models of inheritance. Adjustment for sex could not reveal any
statistically significant results (p > 0.05). The respective results are presented in Table 4.

Table 4. Single locus analysis for association between CYP1A2 rs762551 and AD in codominant,
dominant, recessive, overdominant, and log-additive modes.

Unadjusted Analysis Adjusted Analysis

Mode Genotype OR (95% CI) p-Value OR (95% CI) p-Value

Codominant A/A 1.00 0.45 1.00 0.43
C/A 0.87 (0.62–1.21) 0.90 (0.64–1.26)
C/C 0.75 (0.46–1.22) 0.72 (0.44–1.19)

Dominant A/A 1.00 0.27 1.00 0.33
C/A-C/C 0.84 (0.61–1.14) 0.85 (0.62–1.18)

Recessive A/A-C/A 1.00 0.35 1.00 0.25
C/C 0.80 (0.51–1.27) 0.76 (0.47–1.22)

Overdominant A/A-C/C 1.00 0.64 1.00 0.85
C/A 0.93 (0.68–1.26) 0.97 (0.70–1.33)

Log-additive --- 0.86 (0.69–1.08) 0.21 0.86 (0.68–1.09) 0.21
CYP1A2, cytochrome P450 1A2; AD, Alzheimer’s disease; CI, confidence interval; OR, odds ratio. Adjustment
was made for sex as a categorical variable.

2.4. Secondary Endpoint (Allele–Allele Combination Analysis)

Four allele–allele combinations were created, (1) rs5760423G-rs762551A (G-A), (2)
rs5760423T-rs762551A (T-A), (3) rs5760423G-rs762551C (G-C), and (4) rs5760423T-rs762551C
(T-C), with proportions n = 444, n = 390, n = 289, and n = 84, respectively. The following
comparisons were made, (1) G-A carriers vs. non-G-non-A individuals, (2) T-A carriers
vs. non-T-non-A individuals, (3) G-C carriers vs. non-G-non-C individuals, and (4) T-C
carriers vs. non-T-non-C individuals. The total numbers of individuals carrying allele–allele
combinations of ADORA2A rs5760423 and CYP1A2 rs762551 in healthy controls, in AD
cases, and in the whole sample are presented in Table 5.

No association (p > 0.05) was found between the any allele–allele combination AD, in
either crude or adjusted-for-sex analysis (p > 0.05). The respective results are presented in
Table 6.
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Table 5. Total numbers of individuals carrying allele–allele combinations of ADORA2A rs5760423
and CYP1A2 rs762551 in healthy controls, in AD cases, and in whole sample.

Combined Allele Carriage Healthy Controls AD Whole Sample
rs5760423 rs762551

G A 231 213 444
Non-G Non-A 11 8 19

T A 184 206 390
Non-T Non-A 13 8 21

G C 158 131 289
Non-G Non-C 23 32 55

T C 124 138 262
Non-T Non-C 38 46 84

ADORA2A, adenosine A2a receptor; CYP1A2, cytochrome P450 1A2; AD, Alzheimer’s disease.

Table 6. Analysis for association between the combined allele carriage from ADORA2A rs5760423
and CYP1A2 rs762551 and AD.

Unadjusted Analysis Adjusted Analysis

Combined Allele Carriage

rs5760423 rs762551 OR (95% CI) p-Value OR (95% CI) p-Value

G A 1.27 (0.50–3.21) 0.62 1 1.32 (0.51–3.46) 0.57 1

T A 1.82 (0.74–4.49) 0.19 2 1.89 (0.75–4.75) 0.18 2

G C 0.59 (0.33–1.07) 0.082 3 0.57 (0.31–1.03) 0.064 3

T C 0.91 (0.56–1.51) 0.74 4 0.91 (0.55–1.50) 0.71 4

ADORA2A, adenosine A2a receptor; CYP1A2, cytochrome P450 1A2; AD, Alzheimer’s disease; CI, confidence
interval; OR, odds ratio. Adjustment was made for sex as a categorical variable. 1 G-A vs. non-G-A; 2 T-A vs.
non-T-A; 3 G-C vs. non-G-C; 4 T-C vs. non-T-C.

3. Discussion

In this study, a novel association between the rs5760423 genetic polymorphism of the
ADORA2A gene and the risk for AD is presented. Moreover, CYP1A2 rs762551 was not
associated with AD in our study.

The literature data have already revealed that degeneration and synaptic dysfunction
is a crucial event, attributable for cognitive impairment, which occurs even before the
Aβ plaques and tangle formation; the loss of posterior cingulate gyrus and hippocampus
synapses is considered as the main neuropathological altering, especially in AD cases.
Consequently, AD could also be characterized as a synaptic-based disease [31]. Indeed, the
A2A adenosine receptor has been recognized in contributing to synaptic degeneration, and
it was recently associated with AD pathogenesis [32]. Exclusively, an elevated A2A expres-
sion has been observed in the hippocampal neurons of AD or aged animal models and also
in astrocytes of patients with AD and in aged mice [31]. Additionally, the hyperactivation of
A2A receptors results in memory issues and alterations of synaptic biomarkers [31]. It has
also been found that overexpression of A2A receptors increases TAU hyperphosphorylation
and, subsequently, is related to memory deficits in TAUopathic transgenic mice [33]. Due
to the A2A adenosine receptor’s synaptic roles in neuronal injury, neuroinflammation,
astrocytes, and microglia, it has been suggested as a potential peripheral biomarker in AD
cases and even a possible therapeutic target for these patients [31]. Therefore, it is estimated
that our study is in parallel with the existing neuropathologic literature data concerning
the ADORA2A gene and AD.

Furthermore, genetic polymorphisms occurring in both the ADORA2A and CYP1A2
genes have already been linked to caffeine-induced impairments in postprandial gly-
caemia [14]. ADORA2A genetic polymorphisms have also been associated with schizophre-
nia [34], childhood epilepsy, and predisposition to neurologic comorbidity as well as
childhood encephalopathy with febrile status epilepticus [35,36], panic disorder [37],
methamphetamine-use disorder susceptibility [38], Gilles de la Tourette syndrome [39],
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and even habitual caffeine consumption, its derived emotional processing, and the anxiety
due to caffeine loss [40,41]. Therefore, one could argue that ADORA2A genetic variants
are more likely to be related with the specific signs and symptoms of more than one neu-
rological disorder. Bearing in mind that AD’s underlying mode of inheritance and the
multifactorial AD etiology still remain unknown, further studies are of great necessity in
order for the risk of AD conferred by ADORA2A rs5760423 to be fully clarified.

Heretofore, several important fundamental research studies from the literature data
highlight caffeine’s potential protective effect in AD, yet other evidence, mostly from human
studies, reveals no link or even implies that caffeine is a real dementia risk factor [42].
Memory issues are a core manifestation of AD, while neuropsychiatric symptoms can also
be manifested,— which can even exist from preclinical early AD stages, though they may be
developed in different manners in each case; their common denominator is anxiety, and a
study conducted with non-transgenic normal aging mice and familial Alzheimer’s models
also showed that long-term usage (even in low doses) of caffeine worsened neophobia,
cognitive and emotional flexibility, and anxiety-related behaviors, while providing only a
small-scale benefit to memory or learning [43]. On the contrary, another study revealed
that caffeine may be associated with a reduced dementia and AD risk, since caffeine can
interact with and affect several other mechanisms, including elevated insulin sensitivity
and antioxidant capacity [44]. Therefore, one could argue that this heterogeneity in AD
studies on caffeine could be explained due to genetic variance.

A wide range of studies have reported that the common genetic polymorphisms
of the adenosine receptors have a pivotal role in neurologic and psychiatric diseases
as well, while the literature data report some novel associations with neuropsychiatric
conditions. Of the human adenosine receptor genes, ADORA2A is a dual-coding gene, and
it has the most complex structure, resulting in the largest proteinic molecule, whereas its
molecular and bioinformatics analyses showed that the various transcripts encoded the
same protein, though displayed tissue-specific expression patterns, and that, generally, the
highest expression levels were observed in the basal ganglia, blood, spleen, lung, immune
cells, and cerebellum [45]. This means that the SNP studied here is not always expressed at
the same way in the specific tissues of all AD patients; however, the association with AD was
finally evident. Additionally, ADORA2A-related long noncoding RNAs have been reported
to be implicated in several processes, such as neurodegeneration and neurodevelopment,
and, thus, to neurological and psychiatric disorders [45].

One of the strengths of the present study is the selection of the genetic polymorphism
on biological bases. Apart from this, our study contacted in a clinically well-characterized
group of AD patients, with ethnically homogeneity. Nevertheless, no study is completely
foolproof; firstly, the already-referred-to ethnically homogeneity of our sample, as the
whole sample consisted of white Caucasians, may lead to limited generalizability of our
findings in populations with different ancestry, especially given that the association be-
tween AD with some genetic variants can only be detected in specific ethnicities. Secondly,
the present study’s results have not been adjusted for a potential co-founding of other
related genetic risk factors, especially the dopamine receptor D2 (DRD2) rs1110976 genetic
variant and APOE4 carriage status. As a matter of fact, a functional relationship among
the dopaminergic and the adenosinergic systems has already been discussed; adenosine
A2A receptors format heteromeric complexes with DRD2 receptors that can have an impact
on cell functions, with activation of A2A decreasing the DRD2 signaling [46]. Moreover,
we did not include several known AD risk factors (e.g., years of educations, history of
traumatic brain injury, dietary habits, etc.) in our statistical regression models. Conse-
quently, the latent effect of additional AD-related covariates in our results cannot totally
be excluded. Furthermore, AD subjects were included without any prior screening for
major AD-causative genes [7,8]. Even if the risk for AD is studied here in parallel with
these polymorphisms, we do not know if the interaction with low or high caffeine intakes
could again alter the risk for the disease; meaning that, we have not assessed the caffeine
intakes here.
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Future studies should be performed, including with additional data and co-founders,
such as age, and other genetic and environmental factors (e.g., the amount of coffee that
each participant consumes, body mass index, subjective cognitive decline). Moreover,
future studies should also examine the association of ADORA2A rs5760423 with other
outcomes in AD patients, such as age at the disease onset, initial phenotypic manifestation,
disease progression, and disease severity, so further and more precise correlations can be
established. Along with this information, the data for anxiety and other related behavioral
manifestations as well as the sleep quality ought to be recorded, along with all the previ-
ously discussed potential risk factors that could have an impact on the final results. Finally,
epigenetic and other environmental parameters should be examined, as, undeniably, the
ADORA2A gene interacts with other molecules, and, finally, they contribute to its own
epigenetic mechanisms.

4. Materials and Methods
4.1. Study Design, Ethics, and Informed Consent

A case–control study was performed aiming to examine any potential association
between the ADORA2A rs5760423 and the CYP1A2 rs762551 genetic variants and AD. The
research protocol was approved by the local Ethics Committee of the University General
Hospital of Larissa (132/17-06-2015). All the included participants (or their close relatives
when necessary) granted a written informed consent to participate in the study.

4.2. Study Population

We recruited consecutive AD patients admitted to the Neurology Department (outpa-
tient and inpatient clinics) of the General University Hospital of Larissa, a tertiary referral
institution located in Central Greece. This current study includes the sample from previ-
ously published articles [47–51]. Briefly, all patients diagnosed with probable AD (G30
according to the International Classification of Diseases, 10th Revision) by a senior neu-
rologist, based on the National Institute of Neurological and Communicative Disorders
and Stroke/Alzheimer Disease and Related Disorders Association (NINCDS/ADRDA)
criteria [52]. Healthy volunteers with free medical history record and normal mini-mental
state examination (MMSE) scores (conducted by neuropsychologists) that did not fulfill the
criteria for Mild Cognitive Impairment were considered as the healthy control group. These
unrelated healthy controls were recruited in General University Hospital of Larissa, mainly
from patients’ spouses (not the spouses of the patients with AD), hospital employees, and
adult visitors to the hospital.

4.3. Laboratory Techniques

We used the salting out method [53], for nuclear DNA to be isolated from peripheral
blood leucocytes, from all the included subjects. We genotyped all the samples, for the
ADORA2A rs5760423 and CYP1A2 rs762551 genetic variants, using the TaqMan allele
specific discrimination assay (Thermo Fisher Scientific, Waltham, MA, USA) on an ABI
PRISM 7900 Sequence Detection System, with SDS software (SDS 2.4) (Applied Biosystems,
Foster City, CA, USA). A detailed description of the entire method (PCR steps, enzyme
activation, denaturation, and annealing/extension) has been previously described [54].
The overall procedure (genotyping and analyses of the results) was performed completely
by personnel that were blinded to clinical status of the recruited participants, aiming to
mitigate any potential bias.

4.4. Quality Assessment

Quality assessment was carried out by setting the threshold of the genotypic call
rate (percentage of successfully genotyped samples) at 95%. Moreover, we proceeded
to re-genotype a randomly selected 10% of the samples. A 100% concordance with the
results from the initial genotyping was revealed. Finally, the chi-squared test was applied
to calculate the genotyping results, in order to detect any deviation from HWE [55].
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4.5. Endpoints

The primary endpoint of the present study was to examine any potential association
between the ADORA2A rs5760423 and CYP1A2 rs762551 SOD2 and AD. The secondary
endpoint was to examine for any potential effect of the allele–allele combination derived
from ADORA2A rs5760423 and CYP1A2 rs762551 on AD.

4.6. Statistical Analysis

The main demographic characteristics are expressed as n and/or percentages for
categorical variables and as means with the respective SD for continuous variables. With
the CaTS Power Calculator for Genetic Studies (Center for Statistical Genetics, University
of Michigan, Ann Arbor, MI, USA), we calculated the statistical power of the genotyped
sample size. The total number (n), and the percentages for allelic and genotypic distribu-
tion in the whole sample, in AD cases, and in healthy controls were calculated. For the
primary endpoint, five genetic modes were assumed (codominant, dominant, recessive,
overdominant, and log-additive). The ‘G’ was considered as the reference allele and the ‘T’
as the alternative one for the ADORA2A rs5760423 gene variant. The ‘A’ was considered as
the reference allele and the ‘C’ as the alternative one for the CYP1A2 rs762551 gene variant.
For the secondary endpoint, allele–allele combinations of both variants were created and ex-
amined for their association with AD via logistic regression. The risk for every allele–allele
combination was estimated by comparing individuals carrying each combination with
those that not carrying it. The effect size for both primary and secondary endpoints was
expressed in terms of the ORs with their respective 95% confidence intervals (CIs). An
alpha error of 5% (two-tailed p < 0.05) was set as the statistical significance threshold. The
statistical analysis, for the effect of each polymorphism, was performed with SNPStats
software (https://www.snpstats.net/, accessed on 10 February 2022) [55]. The statistical
analysis for the allele–allele combination comparisons was performed using IBM SPSS
Statistics Software Version 26 (Chicago, IL, USA).

5. Conclusions

In conclusion, we provide the preliminary indication for a possible association of the
ADORA2A rs5760423 genetic polymorphism with the manifestation of AD. Moreover, this
is the first study that reports no association of the CYP1A2 rs762551 genetic variant with
the disease. Therefore, this study may be of clinical importance for the diagnostic index of
AD, and further, more thorough studies are required for our results to be confirmed again.
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