Synthesis, DFT, Biological and Molecular Docking Analysis of Novel Manganese(II), Iron(III), Cobalt(II), Nickel(II), and Copper(II) Chelate Complexes Ligated by 1-(4-Nitrophenylazo)-2-naphthol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Structure of the Azo Ligand
2.2. Complexes Structures’ Elucidation
2.2.1. Conductivity and EA Measurements
2.2.2. IR Spectra
2.2.3. Mass Spectra
2.2.4. Magnetic Moment and Electronic Spectra Measurements
2.2.5. Stoichiometry of the Metal Complexes
2.2.6. Thermal Decomposition
2.3. DFT Calculations
2.4. In Vitro Antimicrobial Activity
2.5. Molecular Docking
3. Materials and Methods
3.1. Synthesis of the 1-(4-Nitrophenylazo)-2-naphthol as Azo-Ligand (HL)
3.1.1. Step I: The Synthesis of Diazonium Salt of 4-Nitroaniline as Azo Compounds
3.1.2. Step II: Coupling Procedure
3.2. Metal Chelates Preparation
3.3. Characterization
3.4. DFT Calculations
3.5. Antimicrobial Exploration
3.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismael, M.; Abdou, A.; Abdel-Mawgoud, A.-M. Synthesis, Characterization, Modeling, and Antimicrobial Activity of FeIII, CoII, NiII, CuII, and ZnII Complexes Based on Tri-substituted Imidazole Ligand. Z. Anorg. Allg. Chem. 2018, 644, 1203–1214. [Google Scholar] [CrossRef]
- Ismael, M.; Abdel-Mawgoud, A.M.; Rabia, M.K.; Abdou, A. Design and synthesis of three Fe(III) mixed-ligand complexes: Exploration of their biological and phenoxazinone synthase-like activities. Inorg. Chim. Acta 2020, 505, 119443. [Google Scholar] [CrossRef]
- Ismael, M.; Abdel-Mawgoud, A.M.; Rabia, M.K.; Abdou, A. Synthesis, characterization, molecular modeling and preliminary biochemical evaluation of new copper (II) mixed-ligand complexes. J. Mol. Struct. 2021, 1227, 129695. [Google Scholar] [CrossRef]
- Ismael, M.; Abdel-Mawgoud, A.M.; Rabia, M.K.; Abdou, A. Ni(II) mixed-ligand chelates based on 2-hydroxy-1-naphthaldehyde as antimicrobial agents: Synthesis, characterization, and molecular modeling. J. Mol. Liq. 2021, 330, 115611. [Google Scholar] [CrossRef]
- Aljamali, N.M. Review in Azo Compounds and its Biological Activity. Biochem. Anal. Biochem. 2015, 4, 1000169. [Google Scholar] [CrossRef] [Green Version]
- Eltaboni, F.; Bader, N.; El-Kailany, R.; Elsharif, N.; Ahmida, A. Chemistry and Applications of Azo Dyes: A Comprehensive Review. J. Chem. Rev. 2022, 4, 313–330. [Google Scholar]
- Bentley, R. Different roads to discovery; Prontosil (hence sulfa drugs) and penicillin (hence β-lactams). J. Ind. Microbiol. Biotechnol. 2009, 36, 775–786. [Google Scholar] [CrossRef]
- Pervaiz, M.; Riaz, A.; Munir, A.; Saeed, Z.; Hussain, S.; Rashid, A.; Younas, U.; Adnan, A. Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents. J. Mol. Struct. 2020, 1202, 127284. [Google Scholar] [CrossRef]
- Kyhoiesh, H.A.K.; Al-Adilee, K.J. Synthesis, spectral characterization and biological activities of Ag(I), Pt(IV) and Au(III) complexes with novel azo dye ligand (N, N, O) derived from 2-amino-6-methoxy benzothiazole. Chem. Pap. 2022, 76, 2777–2810. [Google Scholar] [CrossRef]
- Husien, N.S.M. Preparation and (Characterization, Chromatography, Antimicrobial Activities) of Some Metal Complexes of 1-(2--hydroxyl-4--nitrophenylazo)-2-naphthol. Biochem. Cell. Arch. 2018, 18, 901–908. [Google Scholar]
- Abdallah, S.M. Metal complexes of azo compounds derived from 4-acetamidophenol and substituted aniline. Arab. J. Chem. 2012, 5, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Rana, M.; Cho, H.-J.; Roy, T.K.; Mirica, L.M.; Sharma, A.K. Azo-dyes based small bifunctional molecules for metal chelation and controlling amyloid formation. Inorg. Chim. Acta 2018, 471, 419–429. [Google Scholar] [CrossRef]
- Badea, M.; Olar, R.; Cristurean, E.; Marinescu, D.; Emandi, A.; Budrugeac, P.; Segal, E. Thermal stability study of some azo-derivatives and their complexes, Part 2. New azo-derivative pigments and their Cu(II) complexes. J. Therm. Anal. Calor. 2004, 77, 815–824. [Google Scholar] [CrossRef]
- Mohammed, H. Synthesis, Identification, and Biological Study for Some Complexes of Azo Dye Having Theophylline. Sci. World J. 2021, 2021, 9943763. [Google Scholar] [CrossRef]
- Abdou, A.; Mostafa, H.M.; Abdel-Mawgoud, A.M. Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, characterization, DFT calculations, Drug-Likeness, in vitro antimicrobial screening and molecular docking analysis. Inorg. Chim. Acta 2022, 539, 121043. [Google Scholar] [CrossRef]
- Samy, F.; Shebl, M. Synthesis, spectroscopic, biological, and theoretical studies of new complexes from (E)-3-(2-(5, 6- diphenyl-1,2,4- triazin-3- yl)hydrazono)butan-2- one oxime. Appl. Organometal. Chem. 2020, 34, e5502. [Google Scholar] [CrossRef]
- Seleem, H.S.; El-Shetary, B.A.; Shebl, M. Synthesis and characterization of a novel series of metallothiocarbohydrazone polymers and their adducts. Heteroatom. Chem. 2007, 18, 100. [Google Scholar] [CrossRef]
- Shebl, M.; Khalil, S.M.E. Synthesis, spectral, X-ray diffraction, antimicrobial studies, and DNA binding properties of binary and ternary complexes of pentadentate N2O3 carbohydrazone ligands. Monatsh. Chem. 2015, 146, 15. [Google Scholar] [CrossRef]
- Shebl, M.; Adly, O.M.I.; El-Shafiy, H.F.; Khalil, S.; Taha, A.; Mahdi, M.A. Structural variety of mono- and binuclear transition metal complexes of 3-[(2-hydroxy-benzylidene)-hydrazono]-1-(2-hydroxyphenyl)-butan-1-one: Synthesis, spectral, thermal, molecular modeling, antimicrobial and antitumor studies. J. Mol. Struct. 2017, 1134, 649–660. [Google Scholar] [CrossRef]
- Morgan, S.M.; El-Sonbati, A.Z.; Eissa, H.R. Geometrical structures, thermal properties and spectroscopic studies of Schiff base complexes: Correlation between ionic radius of metal complexes and DNA binding. J. Mol. Liq. 2017, 240, 752. [Google Scholar] [CrossRef]
- Elkanzi, N.A.A.; Ali, A.M.; Hrichi, H.; Abdou, A. New mononuclear Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) complexes incorporating 4-{[(2 hydroxyphenyl)imino]methyl}phenyl-4-methylbenzenesulfonate (HL): Synthesis, characterization, theoretical, anti-inflammatory, and molecular docking investigation. Appl. Organomet Chem. 2022, 36, e6665. [Google Scholar] [CrossRef]
- Abdou, A. Synthesis, Structural, Molecular Docking, DFT, Vibrational Spectroscopy, HOMO-LUMO, MEP Exploration, antibacterial and antifungal activity of new Fe(III), Co(II) and Ni(II) hetero-ligand complexes. J. Mol. Struct. 2022, 1262, 132911. [Google Scholar] [CrossRef]
- Elkanzi, N.A.A.; Hrichi, H.; Salah, H.; Albqmi, M.; Ali, A.M.; Abdou, A. Synthesis, physicochemical properties, biological, molecular docking and DFT investigation of Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the 4-[(5-oxo-4,5-dihydro-1,3-thiazol-2-yl)hydrazono]methyl}phenyl 4-methylbenzenesulfonate Schiff-base ligand. Polyhedron 2023, 230, 116219. [Google Scholar]
- Job, P. Formation and Stability of Inorganic Complexes in Solution. Ann. Chem. 1928, 9, 113–203. [Google Scholar]
- Abdel-Latif, S.A.; Hassib, H.B.; Issa, Y.M. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Singh, B.K.; Bhojak, N.; Adhikari, D. Synthesis and characterization of bioactive zinc(II) and cadmium(II) complexes with new Schiff bases derived from 4-nitrobenzaldehyde and acetophenone with ethylenediamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 76, 356–362. [Google Scholar] [CrossRef]
- Zaky, R.R.; Yousef, T.A. Spectral, magnetic, thermal, molecular modelling, ESR studies and antimicrobial activity of (E)-3-(2-(2-hydroxybenzylidene) hydrazinyl)-3-oxo-n(thiazole-2-yl)propanamide complexes. J. Mol. Struct. 2011, 1002, 76–85. [Google Scholar] [CrossRef]
- Alghuwainem, Y.A.A.; Abd El-Lateef, H.M.; Khalaf, M.M.; Abdelhamid, A.A.; Alfarsi, A.; Gouda, M.; Abdelbaset, M.; Abdou, A. Synthesis, Structural, DFT, Antibacterial, Antifungal, Anti-inflammatory, and Molecular Docking Analysis of New VO(II), Fe(III), Mn(II), Zn(II), and Ag(I) complexes based on 4-((2-hydroxy-1-naphthyl)azo) benzenesulfonamide. J. Mol. Liq. 2023, 369, 120936. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Alotaibi, N.H.; Al-Farraj, E.S.; Qasem, H.A.; Alzahrani, S.; Mahfouz, M.K.; Abdou, A. Fabrication, structural elucidation, theoretical, TD-DFT, vibrational calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. J. Mol. Liq. 2022, 365, 119961. [Google Scholar] [CrossRef]
- Shokr, E.K.; Kamel, M.S.; Abdel-Ghany, H.; Mahmoud El-Remaily, M.A.E.A.A.; Abdou, A. Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno [2,3-b]thiophene azo dye derivatives. Mater. Chem. Phys. 2022, 290, 126646. [Google Scholar] [CrossRef]
- Elkanzi, N.A.A.; Ali, A.M.; Albqmi, M.; Abdou, A. New Benzimidazole-Based Fe (III) and Cr (III) Complexes: Characterization, Bioactivity Screening, and Theoretical Implementations Using DFT and Molecular Docking Analysis. Appl. Organomet. Chem. 2022, 36, e6868. [Google Scholar] [CrossRef]
- Abdou, A.; Mostafa, H.M.; Abdel-Mawgoud, A.M. Molecular Modeling, Breast Cancer, and Hepatitis A, B, C Molecular Docking Investigation of (2E)-1-phenyl-butane-1,2,3-trione 2-[(2-oxo-2H-chromene-6-yl)hydrazone]. Sohag. J. Sci. 2022, 6, 167–173. [Google Scholar] [CrossRef]
- Al-Wabli, R.I.; Resmi, K.S.; Mary, Y.S.; Panicker, C.Y.; Attia, M.A.; El-Emam, A.A.; Van Alsenoy, C. Vibrational spectroscopic studies, Fukui functions, HOMO-LUMO, NLO, NBO analysis and molecular docking study of (E)-1-(1,3-benzodioxol-5-yl)-4,4-dimethylpent-1-en-3-one, a potential precursor to bioactive agents. J. Mol. Struct. 2016, 1123, 375–383. [Google Scholar] [CrossRef]
- Chaudhary, A.P.; Bharti, S.K.; Kumar, S.; Ved, K.; Padam, K. Study of molecular structure, chemical reactivity and first hyperpolarizability of a newly synthesized N-(4-oxo-2-phenylquinazolin-3(4H)-yl)-1H-indole-2-carboxamide using spectral analysis. J. Mol. Struct. 2017, 1148, 356–363. [Google Scholar] [CrossRef]
- Abdou, A.; Abdel-Mawgoud, A.M. Synthesis, structural elucidation, and density functional theory investigation of new mononuclear Fe(III), Ni(II), and Cu(II) mixed-ligand complexes: Biological and catalase mimicking activity exploration. Appl. Organomet Chem. 2022, 36, e6600. [Google Scholar] [CrossRef]
- Uddin, M.N.; Chowdhury, D.A.; Islam, M.T.; Hoque, F. Evaluation of biological activity of some dioxouranium complexes of some Schiff base and dithiocarbamate ligands. Orbital Electron. J. Chem. 2012, 4, 273–287. [Google Scholar]
- Rehman, S.; Ikram, M.; Rehman, S.; Faiz, A. Synthesis, characterization and antimicrobial studies of transition metal complexes of imidazole derivative. Bull. Chem. Soc. Ethiop. 2010, 24, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Aiyelabola, T.O.; Ojo, I.A.; Adebajo, A.C.; Ogunlusi, G.O.; Oyetunji, O.; Akinkunmi, E.O.; Adeoye, A.O. Synthesis Characterization and Antimicrobial Activities of Some Metal(II) Amino Acids’ Complexes. Adv. Biol. Chem. 2012, 2, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Fekri, A.; Zaky, R. Solvent-free synthesis and computational studies of transition metal complexes of the aceto- and thioaceto-acetanilide derivatives. J. Organomet. Chem. 2016, 818, 15–27. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, D.; Kumari, K.; Mkhize, Z.; Katata Seru, L.M.; Bahadur, I.; Singh, P. Metal-ligand complex formation between ferrous or ferric ion with syringic acid and their anti-oxidant and anti-microbial activities: DFT and molecular docking approach. J. Mol. Liq. 2021, 322, 114872. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Abdou, A.; Omran, O.A.; Nafady, A.; Antipin, I.S. Structural, spectroscopic, FMOs, and non-linear optical properties exploration of three thiacaix(4)arenes derivatives. Arab. J. Chem. 2022, 15, 103656. [Google Scholar] [CrossRef]
- Heba, E. Hashem, Ashutosh Nath, Ajoy Kumer, Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. J. Mol. Struct. 2022, 1250, 131915. [Google Scholar]
L | MnL | FeL | CoL | NiL | CuL | ||
---|---|---|---|---|---|---|---|
Physical properties | Color | Orange | Pale yellow | Darck violet | Darck orange | Orange red | Pale pink |
Melting point (°C) | 190 | 280 | 268 | 255 | 295 | 290 | |
Yield (%) | 80 | 88 | 85 | 90 | 95 | 90 | |
EA Found (calc.) % | C | 65.41 (65.53) | 54.27 (54.02) | 51.64 (51.39) | 52.13 (52.40) | 53.48 (53.73) | 53.82 (53.37) |
H | 3.61 (3.78) | 3.55 (3.97) | 3.92 (3.77) | 4.01 (4.12) | 4.15 (3.95) | 3.27 (3.92) | |
N | 14.21 (14.33) | 11.43 (11.81) | 11.04 (11.24) | 11.18 (11.46) | 11.98 (11.75) | 11.35 (11.67) | |
M | ----- | 7.54 (7.72) | 7.81 (7.47) | 7.88 (8.03) | 8.06 (8.21) | 8.44 (8.82) | |
conductivity | µv, Ω−1 cm2 mol−1 | ------ | 8.57 | 10.14 | 9.85 | 9.10 | 10.08 |
IR spectra | υ (–OH) | 3306 | 3457 | 3460 | 3455 | 3448 | 3466 |
υ (–N=N) | 1550 | 1515 | 1520 | 1518 | 1520 | 1517 | |
υ (M–O) | ------- | 561 | 558 | 559 | 560 | 557 | |
υ (M–N) | ------- | 453 | 451 | 450 | 454 | 455 | |
UV-vis. | λmax, nm | 280, 335 | 395 | 410 | 445 | 540 | 525 |
Magnetic | µeff (B.M) | ------- | 1.89 | 1.91 | 1.83 | 3.14 | 1.76 |
Stoichiometry | M:L | ------- | 1:2 | 1:2 | 1:2 | 1:2 | 1:2 |
TG (°C) | DTG (°C) | Mass Loss (%) | Assignment | Residue | ||
---|---|---|---|---|---|---|
Found | Calculated | |||||
MnL | 30–140 | 95 | 5.31 | 5.26 | 2 H2O | MnO |
140–315 | 225 | 49.15 | 49.37 | C18H15N4O4 | ||
315–560 | 430 | 35.22 | 35.39 | C14H7N2O3 | ||
FeL | 30–140 | 90 | 7.24 | 7.35 | 3 H2O | ½ Fe2O3 |
140–360 | 260 | 44.31 | 44.48 | C16H14N3O3Cl | ||
360–550 | 490 | 36.44 | 36.51 | C16H6N3O2 | ||
CoL | 30–125 | 60 | 7.22 | 7.37 | 3 H2O | CoO |
125–350 | 350 | 48.87 | 48.98 | C20H15N4O3 | ||
350–535 | 530 | 33.65 | 33.42 | C12H9N2O4 | ||
NiL | 30–130 | 75 | 5.18 | 5.04 | 2 H2O | NiO |
30–130 | 70 | 46.73 | 46.85 | C18H13N3O4 | ||
130–360 | 260 | 37.76 | 37.62 | C14H11N3O3 | ||
CuL | 360 520 | 470 | 5.11 | 5.08 | 2 H2O | CuO |
130–335 | 230 | 46.08 | 46.14 | C19H14N3O3 | ||
335–540 | 440 | 37.84 | 37.78 | C13H10N3O4 |
EHOMO | ELUMO | ∆E | I | A | χ | CP | η | σ | ω | Nu | µ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L | −6.11 | −3.24 | 2.87 | 6.11 | 3.24 | 4.67 | −4.67 | 1.43 | 0.35 | 7.61 | 0.13 | 3.26 |
MnL | −4.69 | −3.48 | 1.21 | 4.69 | 3.48 | 4.08 | −4.08 | 0.60 | 0.83 | 13.83 | 0.07 | 6.77 |
FeL | −6.13 | −3.60 | 2.53 | 6.13 | 3.60 | 4.86 | −4.86 | 1.26 | 0.40 | 9.35 | 0.11 | 3.85 |
CoL | −6.16 | −3.48 | 2.68 | 6.16 | 3.48 | 4.82 | −4.82 | 1.34 | 0.37 | 8.65 | 0.12 | 3.59 |
NiL | −5.35 | −3.60 | 1.75 | 5.35 | 3.60 | 4.47 | −4.47 | 0.87 | 0.57 | 11.44 | 0.09 | 5.11 |
CuL | −4.09 | −3.39 | 0.70 | 4.09 | 3.39 | 3.74 | −3.74 | 0.35 | 1.43 | 20.00 | 0.05 | 10.70 |
Compounds | Pseudomonas aeruginosa | Escherichia coli | Staphylococcus aureus | Bacillus cereus | Aspergillus flavus | Trichophyton rubrum | Candida albicans | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IZD (mm) a | A% | MIC | IZD (mm) a | A% | MIC | IZD (mm) a | |||||||||||||||
8 | 44.44 | 50 | 8 | 40.00 | 50 | 7 | A% | MIC | IZD (mm) a | A% | MIC | IZD (mm) a | A% | MIC | IZD (mm) a | A% | MIC | IZD (mm) a | A% | MIC | |
L | 17 | 94.44 | 6.25 | 18 | 90.00 | 12.5 | 16 | 38.89 | 50 | 8 | 44.44 | 50 | 8 | 42.11 | 50 | 9 | 40.91 | 50 | 8 | 38.10 | 50 |
MnL | 15 | 83.33 | 12.5 | 17 | 85.00 | 12.5 | 15 | 88.89 | 12.5 | 16 | 88.89 | 12.5 | 17 | 89.47 | 25 | 18 | 81.82 | 12.5 | 17 | 80.95 | 25 |
FeL | 16 | 88.89 | 12.5 | 17 | 85.00 | 25 | 15 | 83.33 | 25 | 15 | 83.33 | 25 | 16 | 84.21 | 12.5 | 17 | 77.27 | 12.5 | 17 | 80.95 | 25 |
CoL | 16 | 88.89 | 25 | 18 | 90.00 | 12.5 | 15 | 83.33 | 12.5 | 16 | 88.89 | 25 | 16 | 84.21 | 25 | 16 | 72.73 | 25 | 18 | 85.71 | 12.5 |
NiL | 17 | 94.44 | 12.5 | 18 | 90.00 | 25 | 16 | 83.33 | 25 | 16 | 88.89 | 12.5 | 16 | 84.21 | 25 | 17 | 77.27 | 25 | 17 | 80.95 | 25 |
CuL | 17 | 94.44 | 12.5 | 18 | 90.00 | 25 | 16 | 88.89 | 25 | 17 | 94.44 | 6.25 | 17 | 89.47 | 12.5 | 18 | 81.82 | 12.5 | 18 | 85.71 | 12.5 |
Ligand | Receptor | Interaction | Distance | E (kcal/mol) | S (kcal/mol) | |
---|---|---|---|---|---|---|
L | O 20 | GLY 306 | H-acceptor | 3.33 | −1.30 | −6.79 |
6-ring | ALA 109 | pi-H | 3.57 | −0.70 | ||
6-ring | ALA 111 | pi-H | 3.87 | −0.90 | ||
MnL | O 66 | LEU 191 | H-donor | 3.35 | −3.10 | −8.36 |
O 66 | ASN 193 | H-donor | 2.99 | −2.90 | ||
O 20 | GLY 307 | H-acceptor | 3.12 | −1.20 | ||
O 53 | ALA 83 | H-acceptor | 3.12 | −1.10 | ||
FeL | CL 66 | LEU 189 | H-donor | 3.68 | −0.80 | −7.75 |
O 67 | GLY 306 | H-donor | 3.01 | −3.60 | ||
O 53 | ASN 193 | H-acceptor | 3.03 | −1.00 | ||
CoL | O 69 | LEU 191 | H-donor | 3.09 | −10.10 | −8.15 |
O 69 | ASN 193 | H-donor | 3.03 | −1.80 | ||
O 20 | ALA 83 | H-acceptor | 3.19 | −1.10 | ||
NiL | O 69 | LEU 191 | H-donor | 3.23 | −4.30 | −8.37 |
O 69 | ASN 193 | H-donor | 2.91 | −2.70 | ||
O 20 | ALA 83 | H-acceptor | 3.15 | −1.10 | ||
CuL | O 66 | LEU 191 | H-donor | 3.20 | −4.20 | −8.36 |
O 66 | ASN 193 | H-donor | 2.92 | −2.50 | ||
O 52 | ALA 83 | H-acceptor | 3.15 | −1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghuwainem, Y.A.A.; El-Lateef, H.M.A.; Khalaf, M.M.; Amer, A.A.; Abdelhamid, A.A.; Alzharani, A.A.; Alfarsi, A.; Shaaban, S.; Gouda, M.; Abdou, A. Synthesis, DFT, Biological and Molecular Docking Analysis of Novel Manganese(II), Iron(III), Cobalt(II), Nickel(II), and Copper(II) Chelate Complexes Ligated by 1-(4-Nitrophenylazo)-2-naphthol. Int. J. Mol. Sci. 2022, 23, 15614. https://doi.org/10.3390/ijms232415614
Alghuwainem YAA, El-Lateef HMA, Khalaf MM, Amer AA, Abdelhamid AA, Alzharani AA, Alfarsi A, Shaaban S, Gouda M, Abdou A. Synthesis, DFT, Biological and Molecular Docking Analysis of Novel Manganese(II), Iron(III), Cobalt(II), Nickel(II), and Copper(II) Chelate Complexes Ligated by 1-(4-Nitrophenylazo)-2-naphthol. International Journal of Molecular Sciences. 2022; 23(24):15614. https://doi.org/10.3390/ijms232415614
Chicago/Turabian StyleAlghuwainem, Yousef A. A., Hany M. Abd El-Lateef, Mai M. Khalaf, Amer A. Amer, Antar A. Abdelhamid, Ahmed A. Alzharani, Anas Alfarsi, Saad Shaaban, Mohamed Gouda, and Aly Abdou. 2022. "Synthesis, DFT, Biological and Molecular Docking Analysis of Novel Manganese(II), Iron(III), Cobalt(II), Nickel(II), and Copper(II) Chelate Complexes Ligated by 1-(4-Nitrophenylazo)-2-naphthol" International Journal of Molecular Sciences 23, no. 24: 15614. https://doi.org/10.3390/ijms232415614
APA StyleAlghuwainem, Y. A. A., El-Lateef, H. M. A., Khalaf, M. M., Amer, A. A., Abdelhamid, A. A., Alzharani, A. A., Alfarsi, A., Shaaban, S., Gouda, M., & Abdou, A. (2022). Synthesis, DFT, Biological and Molecular Docking Analysis of Novel Manganese(II), Iron(III), Cobalt(II), Nickel(II), and Copper(II) Chelate Complexes Ligated by 1-(4-Nitrophenylazo)-2-naphthol. International Journal of Molecular Sciences, 23(24), 15614. https://doi.org/10.3390/ijms232415614