Recent Advances in Mesoporous Materials and Their Biomedical Applications
Author Contributions
Funding
Conflicts of Interest
References
- Bryan, C.P. Ancient Egyptian Medicine: ThepPapyrus Ebers; Ares: Chicago, IL, USA, 1974. [Google Scholar]
- Vermeer, D.E.; Ferrell, R.E. Nigerian geophagical clay: A traditional antidiarrheal pharmaceutical. Nature 1985, 227, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Çeçen, F.; Aktaş, Ö. Water and Wastewater Treatment: Historical Perspective of Activated Carbon Adsorption and its Integration with Biological Processes. In Activated Carbon for Water and Wastewater Treatment; John Wiley and Sons: Hoboken, NJ, USA, 2011; pp. 1–11. [Google Scholar]
- Diamond, E.M.; Farrer, K.T.H. Watering the fleet and the introduction of distillation. Mar. Mirror 2005, 91, 548–553. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Hagemann, N.; Draper, K.; Kammann, C. The use of biochar in animal feeding. Peerj 2019, 7, e7373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Deitz, V.R. Bibliography of Solid Adsorbents: An Annotative Bibliographical Survey of the Scientific Literature on Bone Char, Activated Carbons, and Other Technical Solid Adsorbents, for the Years 1900 to 1942 Inclusive; National Bureau of Standards: Gaithershurg, MD, USA, 1944. [Google Scholar]
- Juurlink, D.N. Activated charcoal for acute overdose: A reappraisal. Br. J. Clin. Pharmacol. 2016, 81, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiers, E.M. The Gas War, 1915–1918: If Not a War Winner, Hardly a Failure, One Hundred Years of Chemical Warfare: Research, Deployment, Consequences; Friedrich, B., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 153–168. [Google Scholar]
- Milton, R.M. Molecular sieve science and technology. In Zeolite Synthesis; Occelli, M.L., Robson, H.E., Eds.; American Chemical Society: Washington, DC, USA, 1989; pp. 1–10. [Google Scholar]
- Kistler, S.S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrikson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordeiro, R.; Carvalho, A.; Duraes, L.; Faneca, H. Triantennary GalNAc-functionalized multi-responsive mesoporous silica nanoparticles for drug delivery targeted at asialoglycoprotein receptor. Int. J. Mol. Sci. 2022, 23, 6243. [Google Scholar] [CrossRef] [PubMed]
- Solarska-Sciuk, K.; Adach, K.; Fijalkowski, M.; Haczkiewicz-Lesniak, K.; Kulus, M.; Olbromski, M.; Glatzel-Plucinska, N.; Szelest, O.; Bonarska-Kujawa, D. Identifying the molecular mechanisms and types of cell death induced by bio- and pyr-silica nanoparticles in endothelial cells. Int. J. Mol. Sci. 2022, 23, 5103. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.S.Y.; Martínez, S.; Banchero, M.; Manna, L.; Ronchetti, S.; Onida, B. The role of the pH in the impregnation of spherical mesoporous silica particles with L-arginine aqueous solutions. Int. J. Mol. Sci. 2021, 22, 13403. [Google Scholar] [CrossRef] [PubMed]
- Gondim, D.R.; Cecilia, J.A.; Rodrigues, T.N.B.; Vilarrasa-García, E.; Rodríguez-Castellón, E.; Azevedo, D.C.S.; Silva, I.J., Jr. Protein adsorption onto modified porous silica by single and binary human serum protein solutions. Int. J. Mol. Sci. 2021, 22, 9164. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Erro, S.; Navas, F.; Romaní-Cubells, E.; Fernández-García, P.; Morales, V.; Sanz, R.; García-Muñoz, R.A. Kidney-protector lipidic cilastatin derivatives as structure-directing agents for the synthesis of mesoporous silica nanoparticles for drug delivery. Int. J. Mol. Sci. 2021, 22, 7968. [Google Scholar] [CrossRef] [PubMed]
- Ryl, A.; Owczarz, P. Influence of injection application on the sol-gel phase transition conditions of polysaccharide-based hydrogels. Int. J. Mol. Sci. 2021, 22, 13208. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecilia, J.A.; Moreno-Tost, R. Recent Advances in Mesoporous Materials and Their Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 15636. https://doi.org/10.3390/ijms232415636
Cecilia JA, Moreno-Tost R. Recent Advances in Mesoporous Materials and Their Biomedical Applications. International Journal of Molecular Sciences. 2022; 23(24):15636. https://doi.org/10.3390/ijms232415636
Chicago/Turabian StyleCecilia, Juan Antonio, and Ramón Moreno-Tost. 2022. "Recent Advances in Mesoporous Materials and Their Biomedical Applications" International Journal of Molecular Sciences 23, no. 24: 15636. https://doi.org/10.3390/ijms232415636
APA StyleCecilia, J. A., & Moreno-Tost, R. (2022). Recent Advances in Mesoporous Materials and Their Biomedical Applications. International Journal of Molecular Sciences, 23(24), 15636. https://doi.org/10.3390/ijms232415636