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Abstract: Luffa leaf (LL) is an agricultural waste produced by loofah. In this work, LL was used as
biomass carbon source for biochars for the first time. After carbonization, activation, and chemical co-
precipitation treatments, a magnetic lignocellulose-derived hierarchical porous biochar was obtained.
The specific surface area and total pore volume were 2565.4 m2/g and 1.4643 cm3/g, and the surface
was rich in carbon and oxygen functional groups. The synthetic dye rhodamine B (RhB) and the
antibiotic tetracycline hydrochloride (TH) were selected as organic pollutant models to explore the
ability to remove organic pollutants, and the results showed good adsorption performances. The
maximum adsorption capacities were 1701.7 mg/g for RhB and 1755.9 mg/g for TH, which were
higher than most carbon-based adsorbents. After 10 cycles of use, the removal efficiencies were still
maintained at more than 70%, showing good stability. This work not only verified the feasibility of
lignocellulose LL as a carbon source to prepare biochar but also prepared a magnetic hierarchical
porous adsorbent with good performances that can better treat RhB and TH, which provided a new
idea and direction for the efficient removal of organic pollutants in water.

Keywords: lignocellulose; magnetic biochar; hierarchical porous; organic pollutants; efficient removal

1. Introduction

With the rapid development of global industrialization, the problem of water pollution
has attracted a lot of attention worldwide [1]. Various organic pollutants, such as organic
dyes and antibiotics, have been detected in water bodies [2,3]. They are not only difficult
to degrade naturally. They can cause teratogenesis, cancer, and death [4,5]. Traditional
treatment methods, such as chemical precipitation [6], electrocatalysis [7], and microbial
degradation [8], struggle to completely remove these impurities. Electrocatalysis, for
example, can be costly due to using more expensive metals as electrodes [7]. The chemical
precipitation method causes serious secondary pollution due to its use of a large number
of flocculants [6]. Although the microbial method has low energy consumption and is
sustainable, the treatment cycle is longer than for other methods [8]. Therefore, there is
an urgent need to develop more efficient and green methods to quickly remove organic
pollutants. The adsorption method has become a research hotspot in recent years due to its
advantages of simple operation, mild conditions, and no secondary pollution [9,10]. The
adsorbent, as a key index to measure the adsorption efficiency and evaluate the effect of an
adsorption treatment, is one of the important parameters affecting the adsorption process.

In addition to some highly available sustainable biomass that is often used as ad-
sorbents due to its excellent adsorption properties [9,10], carbon-based materials such
as graphene [11], carbon nanotubes [12], and highly poly carbon fibers [13] also show
great adsorption potential. However, such carbonaceous materials are not only extremely
expensive but are also difficult to obtain. Biochar is a kind of carbon-rich product generated
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by the pyrolysis of biomass under anaerobic conditions [14]. Its advantages of easy access
to carbon sources and low cost have given it a popular role in a new class of carbon-based
materials [14]. Generally speaking, the properties of biochar are mainly determined by its
natural structure and preparation process. The unique natural structure and more advanced
preparation techniques often maximize the potential of biochar properties, which surprises
researchers [15,16]. Lignocellulose is often used as one of the main carbon sources for
biochar preparation and is composed of cellulose, hemicellulose, and lignin [17,18]. These
lignocellulosic components intertwine with each other, forming complex structures [18]
and eventually becoming organs with more attractive structures, such as flowers, rods, and
leaves, through the process of biological differentiation during plant growth. Our team has
been working on the development and utilization of lignocellulosic resources for nearly ten
years [19–21], but until now, these valuable resources have not been thoroughly explored.

Towel gourd (Luffa cylindrica) is one of the most important melon vegetables. Due to
its rich nutrition, high yield, and good economic benefits, loofah is not only widely planted
throughout China but is also widely cultivated in the temperate and tropical regions of
the world [22]. With the increasing demand for loofah and the continuous development
of cultivation technology, the planting scale of loofah is expanding, and the agricultural
waste produced by loofah is also increasing. Luffa leaf (LL) is a kind of agricultural waste
produced by the cultivation of loofah. The main component is lignocellulose [23]. Although
there have been some reports on LL in recent years, most of them have focused on the
medicinal use of its extracts [24,25]. Few studies have reported on biochar preparation
from LL, and its performance was not clear, which gives us great motivation to continue to
exploit this valuable and abundant lignocellulosic resource.

In this work, LL was used as a carbon source to prepare hierarchical porous biochars.
Three bases, including NaOH, KOH, and a mixed base (MB, consisted of equal masses of
NaOH and KOH), were used to explore the best preparation activator and the influences of
different activators on the preparation of biochars. In order to improve the stability and
rapid recovery ability of LL-based hierarchical porous biochar (LLB), magnetic nanopar-
ticles (Fe3O4) were loaded via a chemical co-precipitation method. Subsequently, the
antibiotic tetracycline hydrochloride (TH) and the organic synthetic dye rhodamine B (RhB)
were chosen as pollutant models to explore the removal efficiency of biochars in a water
environment. Finally, the adsorption mechanism was also studied and discussed. The
focus of this study was to explore the feasibility of using LL as a carbon source to prepare
magnetic hierarchical porous biochar and to prepare a series of biochars with excellent
performance, rapid recovery, and stable reproduction to provide effective ideas for the
improved and more efficient removal of organic pollutants.

2. Results and Discussion
2.1. Preparation of Magnetic Biochar

The preparation process of magnetic hierarchical porous biochar is shown in Figure 1
and can be divided into two steps: the preparation of hierarchical porous biochar and
a magnetic composite. Of course, there were also two possible reaction mechanisms,
including the MB activation process and chemical co-precipitation.

MB Activation process [26–28]: In the high-temperature pyrolysis process, MB generates
M2O and water, and is then further ionized to form K+, Na+, and OH−. These ions migrate
or insert carbon precursors and react with them to generate carbon dioxide and water. The
carbon dioxide further reacts with the oxide produced by MOH (Na2O or K2O) to form
carbonate (Na2CO3 or K2CO3), which etches the carbonized sample. Finally, microporous
or mesoporous structures are formed in the carbon.

Chemical co-precipitation [29–31]: Under N2 protection, Fe2+ and Fe3+ form unstable
colloidal compounds (Fe(OH)2 and Fe(OH)3) in the presence of OH−. These alternate
compounds partially react with H+ to form magnetic nanoparticles and FeOOH. As the pH
of the solution increases, excess OH− continues to participate in the reaction, eventually
forming Fe3O4.
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Figure 1. Scheme of the preparation of magnetic hierarchical porous biochar.

2.2. Results of Characterizations

The results of the TGA and DTG curves, FT-IR spectra, XRD, and Raman spectra
of the samples are shown in Figure 2. The effects of temperatures on LL were obtained
by TGA and DTG tests under the protection of nitrogen with a heat rate of 10 ◦C/min,
and the results are shown in Figure 2A. The TGA curves correspond to different stages
of carbonized sample formation, indicating that there were three main stages of weight
loss in the range from room temperature to 1200 ◦C. The first stage occurred from room
temperature to 100 ◦C and was caused by the evaporation of water from the physical
surface [32]. Then, the second stage occurred at 100–200 ◦C and may have been due to the
loss of residual water from the pores inside LL [33]. The third stage started at 200 ◦C and
ended at 500 ◦C. Like many types of lignocellulosic biomass [32–34], the main oxygenated
components of LL were lignocellulose, which is composed of cellulose, hemicellulose, and
lignin, and macromolecular organic materials such as proteins and fats [33,34]. These
components can be decomposed into gas and tar during high-temperature pyrolysis and
then removed, which causes significant weight loss. At 500 ◦C, the carbon yield was
44.92%. As the temperature continued to rise, the TGA and DTG curves did not show
any further weight loss, especially when the temperature was 600 ◦C. The carbon yield
was 43.81%, which was not much different from that at 500 ◦C. Therefore, considering the
sustainable development and energy savings, the carbonization temperature of 500 ◦C was
finally selected.
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Figure 2. (A) TGA and DTG curves of LL. (B) FT-IR spectra, (C) XRD, and (D) Raman spectra
of samples.

The functional groups of the samples were analyzed by an FT-IR spectroscopy test,
and the results are shown in Figure 2B. The wide band at 3250−3550 cm−1 represents
the stretching vibration of the hydroxyl functional group (O-H) [32,33]. The bands at
2800−2900 cm−1 represent the symmetric and asymmetric stretching vibrations of the -CH,
-CH2, and -CH3 groups [27–29]. The band at 1680−1720 cm−1 represents the stretching
vibration of C=O [33]. The band at 1300−1400 cm−1 represents the C-H symmetric bending
vibration of the methyl group. The band at 1200−1250 cm−1 represents the deformation
vibration of the methylene group [32]. The bands around 980−1150 cm−1 represent the
stretching vibration of the C-O in alcohols, phenols, acids, or esters [32,33]. The characteris-
tic bands of Fe-O groups on Fe3O4 were observed at 575−585 cm−1 [26]. Thus, it can be
inferred that Fe3O4 particles were successfully loaded on LLB-MB@Fe3O4.
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The crystal structure of the samples was analyzed by XRD, and the results are shown
in Figure 2C. The wide peak around 23◦ of LL was typical of lignocellulose [19,20]. Other
irregular and obvious bands may be related to inorganic salts. The irregular and obvious
bands of CLL were more prominent after carbonization, which might be due to salting out
during the high-temperature pyrolysis process. After activation (regardless of the activators)
these bands became weaker or even partially disappeared, largely due to the washing
process during the preparation. In addition, from LLB-MB@Fe3O4 samples, characteristic
peaks representing Fe3O4 can be clearly seen, such as (111), (220), (311), (400), (422), (511),
and (440) [35,36], indicating successful magnetic recombination.

The presence of defects in the biochars was tested by Raman spectra, and the results
are shown in Figure 2D. Three typical peaks obtained from the results, including the D-
band with amorphous carbon around 1340−1349 cm−1 [37], the G-band with graphitic
carbon around 1574−1583 cm−1 [38], and the G′-band (also named the 2D-band), which
was sensitive to the number of graphene layers, had no defect and no D-peak, and could be
fitted to a single peak of a single layer of graphene or to multiple peaks of a multilayer of
graphene, which was caused by the double resonant Raman scattering with two-phonon
emissions around 2758−2773 cm−1 [37,38]. To measure the degree of defect and disorder in
carbons, the intensity ratio of the D-band and G-band with the G′-band (ID/IG+G′ ) was used
as an important index. The ID/IG+G′ value of CLL was 1.69. After activation, the ID/IG+G′

values of LLB-Na and LLB-K were 2.92 and 3.12, which indicated that more amorphous
carbon structures were generated in the biochars during activation when using NaOH or
KOH as activators. Coincidentally, the ID/IG+G′ value of LLB-MB was 3.02, which was
lower than LLB-Na and higher than LLB-K. After magnetic recombination, the ID/IG+G′

value of LLB-MB@Fe3O4 was 2.98.
The morphology of the samples was observed by SEM and TEM, and the results

are shown in Figure 3. LL showed obvious lignofibers with a large number of lamellar
structures. It was also clear that there were significant macropores, which may be solvent
channels in the process of plant growth [19,20]. After carbonization, the surface of CLL
became rough and compact due to intense dehydration, and there were obvious folds
and furrows. Figure 3C–E show LLBs treated with different activators, which had visible
differences, such as the degree of fragmentation and etching. This result indicated that
different activators, including MB, had different effects on biochar preparation processes.
After recombination, a large number of regular particles appeared on the surface of LLB-
MB@Fe3O4 (Figure 2F), indicating that the chemical co-precipitate method was indeed
successful in loading Fe3O4 onto the biochar. To further confirm the successful recombina-
tion, Fe3O4 (Figure 3I) and LLB-MB@Fe3O4 (Figure 3H) were tested by TEM, supporting
this conclusion.

The surface chemical and electronic states of the samples were tested by XPS spec-
troscopy, and the results are shown in Figure 4. LLB-MB contained mainly C (84.24%), O
(13.89%), and N (1.87%) elements. Meanwhile, LLB-MB@Fe3O4 contained C (62.98%), O
(26.5%), N (2.59%), and Fe (7.93%) elements. Further fitting these elements can obtain dif-
ferent functional keys. The high-resolution C1s spectrum of LLB-MB and LLB-MB@Fe3O4
showed three classical peaks, which were obtained at 284.14–284.18 eV, 285.05–285.08 eV,
and 287.81–288.27 eV, corresponding to C-C, C-O, and C=O, respectively [32,33]. The
high-resolution O1s spectrum of LLB-MB and LLB-MB@Fe3O4 had peaks at 529.98 eV,
531.59–531.61 eV, 532.83–532.97, and 534.38 eV, corresponding to quinones, C=O, C-O,
and -OH, respectively [32,33]. The high-resolution N1s spectrum of LLB-MB and LLB-
MB@Fe3O4 both had peaks at 397.41–397.61 eV and 399.57–400.16 eV, corresponding to
pyridinic-N and pyrrolic-N [39]. Additionally, LLB-MB had a special peak at 401.09 eV
corresponding to graphite-N [39], which may have disappeared during the process of the
chemical co-precipitation of the composite magnetic properties.
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A N2 adsorption–desorption isotherm was used to test the specific surface area and
porosity of the samples, and the results are shown in Figure 5 and Table 1. The specific
surface area and total pore volume of CLL were 9.0 m2/g and 0.0253 cm3/g, respectively,
which were far from sufficient to support CLL as a porous biochar. Therefore, further
activation treatment was needed to increase the porosity and improve the adsorption
performance. The effect of alkali activation was not in doubt [27–29], so different activators,
including NaOH, KOH, and MB, were used for the further processing of CLL. After activa-
tion, the results showed that all LLBs exhibited typical type IV isotherms with typical H3
hysteresis loops (Figure 5A) [40,41], which indicated the existence of mesopore structures
in the prepared biochars. Additionally, all LLBs had significant capillary absorption at the
relative pressure range of 0.0 to 0.3 (Figure 5B), which was strong proof of the existence of
a microporous structure [19]. Meanwhile, the specific surface areas and total pore volumes
of LLB-Na, LLB-K, and LLB-MB were 2139.2 m2/g and 1.1886 cm3/g, 1500.8 m2/g and
1.0692 cm3/g, and 2446.6 m2/g and 1.6990 cm3/g, respectively. It can be seen from the
above data that different activators indeed had different activation behaviors, which caused
different activation results. Beyond that, the specific surface area and total pore volume
of LLB-MB were obviously greater than those of LLB-Na and LLB-K, which indicated
that MB-mediated activation was more effective than single-base activation for CLL. More
notably, after magnetic recombination, the surface area of LLB-MB@Fe3O4 (2565.4 m2/g)
was again increased compared with LLB-MB, which can be explained by the presence
of uniformly loaded magnetic nanoparticles that improved the specific surface area of
biochar [28]. On the other hand, the successful loading of Fe3O4 occupied part of the
volume of the mesopore. Although the total pore volume decreased slightly (1.4643 m3/g),
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the proportion of capillary micropores increased, thus increasing the specific surface area
of LLB-MB@Fe3O4, which can also be seen in Figure 5B. In addition, the pore size distri-
bution results also showed the presence of both microporous and mesoporous structures,
and combined with the macropores naturally presented in LL, it was concluded that LLB
was successfully produced after activation (i.e., lignocellulose-derived hierarchical porous
biochar). The mean pore sizes of LLB-Na, LLB-K, and LLB-MB were 2.22, 2.85, and 2.78 nm,
which were larger than the molecular sizes of RhB (1.2 nm) and TH (1.3 nm), which can be
used as adsorbents for efficient organic pollutant removal. At the same time, the mean pore
size of LLB-MB@Fe3O4 was 2.28 nm, which was also applicable to the above conclusion.
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Table 1. The data of N2 adsorption–desorption for CITG, CMITG, ITGB, and MITGB.

Samples SBET (m2/g) Pm (nm) Vtotal (cm3/g)

CLL 9.0 11.27 0.0253
LLB-Na 2139.2 2.22 1.1886
LLB-K 1500.8 2.85 1.0692

LLB-MB 2446.6 2.78 1.6990
LLB-MB@Fe3O4 2565.4 2.28 1.4643

SBET, Pm, and Vtotal represent the BET specific surface area, the mean pore size, and the total pore volume.

2.3. Results of Adsorption Experiments
2.3.1. Adsorption Kinetics

Adsorption kinetics describe the changes in the adsorbent and model adsorbent with
contact time [42]. The influence of contact time on the adsorption capacity of RhB and TH
by LLB-MB and LLB-Mb@Fe3O4 was explored at different initial solution concentrations
at 303 K, and the results are shown in Figures 6 and 7. It can be seen that if the adsorbent
was LLB-MB or LLB-Mb@Fe3O4 and if the pollutant was RhB or TH the overall trends of
each adsorption process were similar. that is, the adsorption capacities rapidly increased in
the first 15 min and then reached equilibrium in 60 min. Further increasing the adsorption
time did not lead to an obvious increase in the adsorption amount. To study the control
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mechanism of the chemical reactions in the adsorption processes, three common adsorption
kinetics models, including pseudo-first-order kinetic (PFK, Equation (1)), pseudo-second-
order kinetic (PSK, Equation (2)), and intraparticle diffusion models (IPD, Equation (3)),
were used to analyze the adsorption kinetic data (Tables 2 and 3), shown as follows:

ln(Qe −Qt) = ln Qe − k1t (1)

t
Qt

=
1

k2Q2
t
+

t
Qe

(2)

Qt = k3t0.5 + C (3)

where Qt (mg/g), C (mg/g), k1 (min−1), k2 (g mg−1 min−1), and k3 (mg g−1 min−0.5)
represent the adsorption capacities of samples at different time points (t); the thickness of the
boundary layer; and the PFK, PSK, and IPD adsorption kinetic rate constants, respectively.
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Lagergren’s PFK model was used to investigate the adsorption process, and the correla-
tion coefficients (R2) of LLB-MB and LLB-MB@Fe3O4 ranged from 0.9842 to 0.9957 and from
0.9451 to 0.9987 for RhB. The PFK correlation coefficients (R2) of TH were 0.9450−0.9953 and
0.9863−0.9939 for LLB-MB and LLB-MB@Fe3O4. Although the theoretical adsorption capac-
ities (Qe.cat) calculated from the model (904.1, 1356.3, and 1571.5 mg/g of LLB-MB for RhB;
988.3, 1415.9, and 1670.0 mg/g of LLB-MB@Fe3O4 for RhB; 798.3, 1237.1, and 1570.1 mg/g
of LLB-MB for TH; and 874.8, 1413.7, and 1680.4 mg/g of LLB-MB@Fe3O4 for TH) were
slightly lower than the experimental Qe (941.6, 1386.6, and 1606.5 mg/g of LLB-MB for RhB;
998.1, 1502.2, and 1698.2 mg/g of LLB-MB@Fe3O4 for RhB; 831.4, 1298.0, and 1602.4 mg/g
of LLB-MB for TH; and 896.1, 1453.5, and 1749.9 mg/g of LLB-MB@Fe3O4 for TH), they
still indicated that the PFK model may be applicable to the adsorption process in some
aspects. At the same time, it also showed that the adsorption capacity will increase with
the initial concentration increasing to some extent [42,43]. While Ho-McKay’s PSK model
was used to fit the data, the correlation coefficients (R2) of LLB-MB and LLB-MB@Fe3O4
ranged from 0.9987 to 0.9998 and from 0.9964 to 0.9998 for RhB and ranged from 0.9989 to
0.9998 and from 0.9983 to 0.9994 for TH, which showed the applicability of PSK in the
adsorption process. In addition, the adsorption processes of LLB-MB and LLB-MB@Fe3O4
for RhB and TH may be chemical reactions, and the adsorption behaviors of chemisorption
bonds formed by transfer, exchange, or sharing can control the adsorption rate and affect
the adsorption process of the adsorbents [28,42,43].
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Table 2. PFK and PSK model parameters for RhB and TH at 303 K.

Adsorbates Adsorbents Models Parameters
C0 (mg/L)

100 200 300

RhB

LLB-MB

PFK

Qe (mg/g) 941.6 1386.6 1606.5
k1 (min−1) 0.0087 0.0046 0.0038

Qe.cat (mg/g) 904.1 1356.3 1571.5
R2 0.9842 0.9957 0.9928

PSK

k2 (g mg−1

min−1)
0.0006 0.0007 0.0005

Qe.cat (mg/g) 943.3 1395.7 1625.2
R2 0.9987 0.9998 0.9995

LLB-MB@Fe3O4

PFK

Qe (mg/g) 998.1 1502.2 1698.2
k1 (min−1) 0.0033 0.0059 0.0045

Qe.cat (mg/g) 988.3 1415.9 1670.0
R2 0.9981 0.9457 0.9965

PSK

k2 (g mg−1

min−1)
0.0006 0.0005 0.0006

Qe.cat (mg/g) 1024.2 1513.0 1716.2
R2 0.9964 0.9994 0.9998

TH

LLB-MB

PFK

Qe (mg/g) 831.4 1298.0 1602.4
k1 (min−1) 0.0059 0.0066 0.0078

Qe.cat (mg/g) 798.3 1237.1 1570.1
R2 0.9845 0.9450 0.9936

PSK

k2 (g mg−1

min−1)
0.0005 0.0005 0.0004

Qe.cat (mg/g) 842.0 1321.4 1628.6
R2 0.9998 0.9989 0.9996

LLB-MB@Fe3O4

PFK

Qe (mg/g) 896.1 1453.5 1749.9
k1 (min−1) 0.0061 0.0035 0.0085

Qe.cat (mg/g) 874.8 1413.7 1680.4
R2 0.9939 0.9933 0.9863

PSK

k2 (g mg−1

min−1)
0.0005 0.0004 0.0003

Qe.cat (mg/g) 917.5 1469.3 1756.1
R2 0.9983 0.9994 0.9994

As for the Weber–Morris IPD model, which was used to fit the experimental data
(Table 3), if the curve of Qt relative to t0.5 is a straight line through the origin, then it
can be speculated that IPD should be an important step in determining the adsorption
rate [27]. However, no single linearity can be observed in Figure 6B,D or Figure 7B,D
but rather three linear regions with different adsorption rate constants. In the first stage
(0−5 min), the rapid adsorption of LLB-MB and LLB-MB@Fe3O4 was due to the abundant
adsorption sites on the outer surface. At this stage, the mass transfer behavior of the
boundary layer diffusion was considered possible [27]. The second stage (5−15 min) was
the IPD stage. At this stage, RhB or TH gradually entered the pore and bound to the inner
surface of LLB-MB and LLB-MB@Fe3O4. The diffusion resistance caused by the small
pore size of the adsorbent reduced the adsorption rate. In the third stage (20−60 min), the
diffusion resistance continued to increase, and the adsorption rate continued to decrease
and finally reached the adsorption equilibrium. The above results indicated that IPD played
an important role in the adsorption process of RhB and TH. However, in the second and
third adsorption stages, the linear fitting curves did not cross the origin, so it was not the
only factor affecting the adsorption processes [27].
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Table 3. IPD model parameters for RhB and TH at 303 K.

Adsorbates Adsorbents Parameters
C0 (mg/L)

100 200 300

RhB

LLB-MB

k3 (5−15 min) 12.01 16.92 20.92
R2 0.9783 0.9678 0.9950

k3 (20−60 min) 1.58 1.13 1.54
R2 0.9865 0.9734 0.8933

LLB-MB@Fe3O4

k3 (5−15 min) 19.43 22.55 20.15
R2 0.9646 0.9529 0.9712

k3 (20−60 min) 0.77 1.88 1.19
R2 0.7960 0.9586 0.9067

TH

LLB-MB

k3 (5−15 min) 14.90 22.13 24.71
R2 0.9686 0.9399 0.9875

k3 (20−60 min) 1.70 1.53 1.72
R2 0.9313 0.9160 0.9258

LLB-MB@Fe3O4

k3 (5−15 min) 18.91 22.86 26.14
R2 0.9467 0.9378 0.9856

k3 (20−60 min) 1.40 1.78 2.64
R2 0.8833 0.9247 0.9656

2.3.2. Adsorption Isotherm

The effect of concentration on adsorption capacity of adsorbent has usually been
studied by studying adsorption isotherms [44,45]. The adsorption behaviors of adsorbents
(LLB-MB and LLB-MB@Fe3O4) and adsorbates (RhB and TH) at 303 K were investigated
with different initial solution concentrations, and the results are shown in Figure 8. It
can be seen from the results that the adsorption capacities of the adsorbents increased
with increases in the initial concentrations of the solutions. The adsorption isotherm data
(Table 4) were investigated using the Langmuir isotherm model (Equation (4)) and the
Freundlich isotherm model (Equation (5)):

Ce

Qe
=

Ce

Qm
+

1
QmKL

(4)

lnQm =
1
n

ln Ce + ln KF (5)

where Qm (mg/g), KL (L/mg), and KF (mg g−1(L mg−1)1/n) represent the maximum
adsorption capacity of sample, calculated by the adsorption isotherm model, the Langmuir
model, and the Freundlich adsorption isotherm constants, respectively.

The Langmuir isotherm model was often used to describe the adsorption of homo-
geneous monolayer molecules, while the Freundlich isotherm model was used to analyze
heterogeneous multilayer adsorption processes. The Langmuir correlation coefficients (R2)
were 0.8738 for RhB and 0.9662 for TH for LLB-MB and were 0.8637 for RhB and 0.9728
for TH for LLB-MB@Fe3O4. The Freundlich correlation coefficients (R2) were 0.9972 and
0.9991 for LLB-MB for RhB and TH, and 0.9957 and 0.9912 for LLB-MB@Fe3O4 for RhB and
TH. Meanwhile, the intensity factors (nF) of LLB-MBand LLB-MB@Fe3O4 were 6.30 and
9.13 for RhB, and 3.27 and 4.01 for TH, respectively. In conclusion, it can be inferred that
the adsorption processes of RhB and TH were not simple single-layer adsorption processes
but were likely to accumulate in heterogeneous multilayer adsorption [44–46].
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Table 4. Adsorption isotherm parameters for RhB and TH at 303 K.

Adsorbates Adsorbents Types Parameters Values

RhB

LLB-MB

Langmuir
Qm (mg/g) 1531.6
KL (L/mg) 0.2699

R2 0.8738

Freundlich
KF (mg g−1(L mg−1)1/n) 725.93

nF 6.30
R2 0.9972

LLB-MB@Fe3O4

Langmuir
Qm (mg/g) 1582.6
KL (L/mg) 1.4446

R2 0.8637

Freundlich
KF (mg g−1(L mg−1)1/n) 995.64

nF 9.13
R2 0.9957

TH

LLB-MB

Langmuir
Qm (mg/g) 1788.0
KL (L/mg) 0.0456

R2 0.9662

Freundlich
KF (mg g−1(L mg−1)1/n) 355.54

nF 3.27
R2 0.9991

LLB-MB@Fe3O4

Langmuir
Qm (mg/g) 1844.6
KL (L/mg) 0.0870

R2 0.9728

Freundlich
KF (mg g−1(L mg−1)1/n) 533.27

nF 4.01
R2 0.9912

2.3.3. Adsorption Thermodynamics

Temperature was one of the most important factors affecting adsorption, which usu-
ally affected the adsorption process by influencing the thermal motion of molecules and
promoting or inhibiting the formation of chemical bonds [47]. The effects of different
temperatures (293, 298, 303, 308 K, and 313 K) on the adsorption of organic pollutants by
LLB-MB and LLB-MB@Fe3O4 are shown in Figure 9. With the increase in temperature from
293 K to 313 K, the adsorption capacities were both increased. Obviously, the temperature
increase promoted the adsorption process. That is, the influence of a high-temperature
environment on the adsorption of organic pollutants (RhB and TH) by biochar adsorbents
(LLB-MB and LLB-MB@Fe3O4) was favorable.
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To further describe the effects of temperatures on the adsorption process, the data
were analyzed by the thermodynamic parameters (Table 5). The thermodynamic equations
are as follows:

ln(KT) = −
∆H
RT

+
∆S
R

(6)

KT =
qe

Ce
(7)

∆G = ∆H − T∆S (8)

where ∆S (J mol−1 K−1) and ∆G (kJ/mol) represent the thermodynamic parameters stan-
dard entropy and standard free Gibbs energy, while ∆H (kJ/mol) and R represent the
standard enthalpy and the gas constant (8.314 J/K·mol), respectively.

Table 5. Adsorption thermodynamic parameters for RhB and TH.

Adsorbates Adsorbents T (K) ∆G
(kJ/mol)

∆H
(kJ/mol)

∆S
(J mol−1 K−1)

RhB

LLB-MB

293 −6.92

16.23 79.00
298 −7.34
303 −7.86
308 −8.21
313 −8.50

LLB-MB@Fe3O4

293 −7.70

26.98 118.36
298 −8.22
303 −8.69
308 −9.40
313 −10.07

TH

LLB-MB

293 −6.78

6.47 45.22
298 −7.09
303 −7.36
308 −7.52
313 −7.68

LLB-MB@Fe3O4

293 −7.46

15.45 78.18
298 −7.86
303 −8.31
308 −8.73
313 −9.02
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It was not difficult to find that if the adsorbent was LLB-MB or LLB-MB@Fe3O4 and
if the model pollutant was RhB or TH, the adsorption process was spontaneous, because
all the ∆G values were negative [48]. The thermodynamic enthalpy (∆H) values for the
LLB-MB and LLB-MB@Fe3O4 adsorption were 16.23 and 26.98 kJ/mol for RhB and were
6.47 and 15.45 kJ/mol for TH, which further confirmed the endothermic property of the
adsorption process. At the same time, the absolute values of the enthalpy change of all
adsorbents were greater than 4.2 kJ/mol, in the range of 6.78−10.07 kJ/mol, which further
indicated the existence of chemisorption in the adsorption process [49]. The ∆S values of
adsorption were all positive, which indicated that the randomness and chaos degree of the
interface between hierarchical porous biochars and solutions increased with the increasing
temperatures [32,33,50].

2.3.4. Effect of pH

The pH value of the solution environment was an important factor affecting the ad-
sorption process by affecting the surface properties of the adsorbents and the chemical
properties of the adsorbed pollutant molecules to promote or inhibit the adsorption capaci-
ties [32,33]. The effect of pH on the adsorbents’ (LLB-MB and LLB-MB@Fe3O4) abilities to
remove organic pollutants was studied in the pH range from 2 to 10, and the results are
shown in Figure 10. With increases in the initial pH values, the adsorption capacities of
LLB-MB and LLB-MB@Fe3O4 for RhB increased and then stabilized, while the TH removal
capacities increased and then decreased. This phenomenon can be explained by the fact that
RhB is a cationic dye, and the presence of a large amount of H+ in the solution at a lower
pH value will compete with RhB for adsorption sites on the surfaces of biochars [27,28].
In addition, when the pH value of a solution is less than the pHpzc of biochars (LLB-MB
= 4.22 and LLB-MB@Fe3O4 = 4.45), the surfaces of biochars were positively charged and
had electrostatic repulsion to RhB. With increases in pH, especially while the pH was
greater than pHpzc, the surfaces of biochars started to become negatively charged, and the
electrostatic attraction between the biochar and the cationic dye promoted the adsorption
process. However, the enhancement of the RhB adsorption capacity by higher pH was not
endless. When the pH value was greater than 6, increasing the pH value did not continue
to significantly improve the RhB removal abilities of biochars, which indicated that electro-
static attraction was not the only force affecting the adsorption of cationic dye by biochars.
For the adsorption of TH by biochars, pH had a more obvious influence, probably because
it not only affected the surface electrochemical performance of biochars but also had great
influences on the adsorbed molecular properties of TH. That is, TH existed in different
forms (TH+, TH0, TH−, and TH2−) under different pH values [34,51]. When the pH value
was lower than 3.30, TH+ was dominant and the zeta potential of biochars was positive. At
this time, the mutually repulsive electrostatic attraction inhibited the adsorption processes.
When the pH was higher than 3.30 and lower than 7.68, TH existed in the form of TH0 or
TH+−. When the pH was greater than 7.68 and less than 9.68, TH existed in the form of
TH−. Further, when the pH was greater than 9.68, TH was dominated by TH2−, which was
not conducive to the adsorption of biochars with negative charges.

2.3.5. Results of Cycle Tests

The regeneration capacities of adsorbents were one of the most important parameters
to evaluate the practical performance of biochar adsorbents [34,51]. Through the cycle tests,
the cycling abilities of biochars to remove organic pollutants over ten cycles was tested,
and the results are shown in Figure 11. By increasing of the number of cycles, the removal
abilities of LLB-MB and LLB-MB@Fe3O4 decreased significantly. Although their removal
efficiencies were significantly reduced, this reduction is inevitable for most lignocellulosic
biochar. This may be caused by two reasons. On one hand, with the increase in cycles,
the organic pollutants adsorbed by biochars form by-products on their surfaces in the
process of re-carbonization, which may lead to a reduction in adsorption sites [28,51]. On
the other hand, with increasing re-carbonization times the porous structures and surfaces
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of biochars become more fragile, which further affects the adsorption performance [39].
After 10 cycles, the RhB and TH removal efficiencies of LLB-MB were 50.1% and 51.3%, and
the RhB and TH removal efficiencies of LLB-MB@Fe3O4 were 70.4% and 72.3%. Compared
with LLB-MB, the cycle stability of LLB-MB@Fe3O4 was significantly higher. It can be
speculated that the presence of magnetic nanoparticles may give the structure of LLB-
MB@Fe3O4 higher mechanical strength than LLB-MB [39], either during adsorption or
during re-carbonization.
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2.4. Probable Adsorption Mechanisms

In this study, the large specific surface area and high total pore volume (2565.4 m2/g
and 1.4643 cm3/g) of LLB-MB@Fe3O4 provided a large number of adsorption sites. There-
fore, pore filling might exist and may have played an important role during the adsorption
processes of efficient organic pollutant removal. In addition, there was a large number
of unsaturated functional groups containing carbon, oxygen, and nitrogen on the surface
of LLB-MB@Fe3O4, according to the results of the FT-IR and XPS tests. These functional
bonds were likely to form hydrogen bonds between LLB-MB@Fe3O4 and RhB and TH
molecules, which also could improve the removal ability. In addition, aromatic rings exist in
LLB-MB@Fe3O4, which may also have π–π interactions with aromatic rings in RhB and TH
to enhance the adsorption capacity. Finally, in the appropriate pH environment, there was
a strong electrostatic attraction between LLB-MB@Fe3O4 and RhB and TH, which further
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promoted the adsorption process. According to some reported studies, magnetic nanoparti-
cles may also exchange electrons with pollutant molecules to promote the chemisorption
process. However, based on the above data in this work, the existence of this force was not
confirmed, and we will focus on it in subsequent research. Thus, it can be speculated that
LLB-MB@Fe3O4 exhibited a powerful ability for efficient organic pollutant (RhB and TH)
removal in water under the joint action of pore filling, π–π interactions, H-bond interactions,
and electrostatic attraction (Figure 12).
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2.5. Comparison

The adsorption capacity was one of the most important parameters to evaluate the
actual performance of the adsorbents. Therefore, the adsorption capacities of biochars were
compared with those of other carbon-based adsorbents, including our previous reported
results, and the results are shown in Table 6. It can be seen that LLB-MB and LLB-MB@Fe3O4
had some of the highest adsorption capacities among the carbon-based adsorbents, which
fully indicated that the prepared biochars have great potential in wastewater treatment and
can be used for efficient organic pollutant removal.

Table 6. Comparison of biochars with other carbon-based adsorbents.

Adsorbents Qe for RhB (mg/g) Qe for TH (mg/g) References

LLB-MB@Fe3O4 1701.7 1755.9 This work

LLB-MB 1608.1 1602.2 This work

Magnetic K2CO3-activated carbon 229.9 - [52]

Magnetic ordered mesoporous carbon 468.0 - [53]

Sibipiruna activated carbon 630.9 - [54]

Quinoa-husk-based porous carbon 759.4 - [40]

Boron-doped activated carbon 1337.2 - [55]

Zoysia sinica Hance-based carbon 1375.8 - [56]

Edible fungus substrate porous carbon 1497.0 - [27]

Corn straw porous carbon 1578.0 - [26]

Fungal hyphae porous carbon 1912.0 - [41]

Cow-dung-based biochar 1241.0 1105.0 [28]

Hyphae/starch porous carbon composites 1185.7 1386.0 [51]

Trichoderma reesei-based magnetic biochar - 171.3 [39]

Xanthate-modified activated carbon - 210.9 [57]

Carbon nanotubes - 756.2 [58]

Carbon-Fe3C/lignin composites - 760.4 [59]

Magnetic carbon - 769.4 [60]

Lignin-based biochar - 1163.0 [61]

3. Materials and Methods
3.1. Materials and Reagents

In 2022, Luffa leaf (LL) was obtained from the experimental area of Jilin Agricultural
University (Changchun, China), washed, dried, and crushed. NaOH, HCl, KOH, FeSO4,
and FeCl3 were purchased from Beijing Chemical Works (Beijing, China) and used without
further purification. RhB (CAS: 81-88-9, ≥95%) and TH (CAS: 64-75-5, 96%) were supplied
by Aladdin Chemical (Shanghai) Co., Ltd. (Shanghai, China), and the structural formulas
are shown in Figure S1 (Supplementary Material).

3.2. Preparation of LLBs

The obtained LL was carbonized at 500 ◦C for 60 min with a heating rate of 10 ◦C/min
under the protection of nitrogen atmosphere. After the carbonized LL (CLL) cooled to
room temperature, the CLL was mixed with a NaOH, KOH, or MB activator at a ratio of
4:1 and heated at 700 ◦C for 60 min. Then, the activated mixture was washed with HCl and
deionized water until reaching a neutral pH. Afterwards, the biochars were dried and kept
in a desiccator. The abbreviations LLB-K, LLB-Na, and LLB-MB represent the LL-based
biochars activated by using KOH, NaOH, and MB as activators, respectively.
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3.3. Preparation of Magnetic Biochar

First, 1.0 g of biochar was added to a flask containing 50 mL of Fe2+ (5 mM) and
Fe3+ (10 mM) under N2 protection. The reaction system was placed in an 80 ◦C ultrasonic
oscillator. After mixing evenly, a 0.1 M NaOH solution was added to adjust the solution’s
pH to 10.0 and hold for 30 min. After the mixture cooled to room temperature, the composite
sample was recovered with a magnet, washed with deionized water to neutral, and dried
in vacuum to a constant weight.

3.4. Adsorption Performances

In a batch adsorption experiment, 0.10 g/L of adsorbents were added to a flask contain-
ing organic pollutant solutions (RhB or TH). The flask was placed in a constant-temperature
shaker at 150.0 RPM in the dark. After the adsorption process reached equilibrium, the
suspension was centrifuged and diluted with the supernatant. The concentration of the so-
lution was determined with an Agilent Cary-300 UV-vis spectrophotometer. The adsorption
capacities of the samples were calculated with Equation (9):

Qe =
(C0 − Ce)×V

M
(9)

where Qe (mg/g), Ce (mg/L), C0 (mg/L), M (g), and V (L) represent the adsorption capacity
of the adsorbent, the equilibrium concentration of the solution, the initial concentration of
the solution, the mass of the adsorbent, and the volume of the solution, respectively.

The organic pollutant solutions were prepared at different concentrations (100, 200,
and 300 mg/L), and 0.1 g/L of adsorbents were dispersed into flasks containing RhB or TH
solutions at 303 K. Then, the concentrations of the solutions were determined at preset time
intervals.

The organic pollutant solutions at different initial concentrations (100, 150, 200, 250,
and 300 mg/L) were prepared and used to test the adsorption isotherm at 303 K. After
adsorption saturation, the absorbances of the solutions were measured.

The effects of temperatures (293, 298, 303, 308, and 313 K) on the adsorption capacity of
the RhB and TH were investigated with the initial concentration of 200 mg/L with 0.1 g/L
of adsorbents.

The variation in the adsorption capacities of the adsorbents with pH (2, 4, 6, 8, and 10)
was also investigated. The solutions were adjusted with 0.1 M HCl and NaOH solutions.

3.5. Cycling Stability Studies

In each cycle, 1.0 g/L of adsorbents were placed into a flask containing 100 mg/L
of organic pollutants. After adsorption, the recycled adsorbents were washed and re-
carbonized at 500 ◦C under the protection of nitrogen atmosphere for 60 min. Then, the
re-carbonized adsorbents were re-used as new adsorbents in the next cycle test.

3.6. Characterization Methods

Scanning electron microscopy (SEM, Hitachi S4800, Hitachi, Japan) and transmission
electron microscope (TEM, FEI Tecnai G2 S-Twin F20, Hillsboro, USA) were used to examine
the morphology of the materials. A thermogravimetric analysis of the samples was carried
out under the protection of nitrogen flow (TGA, Netzsch STA409PC, Selb, Germany). An
FT-IR spectrometer was used to characterize the surface functional groups of the materials
between 400 and 4000 cm−1 at a resolution of 1 cm−1 (FT-IR, Thermo Fisher Nicolet iS50,
Waltham, MA, USA). The X-ray diffraction patterns of the powders were observed by
an X-ray diffractometer with a filtered Cu-Ka X-ray source (XRD, Bruker D8 Advance,
Bremen, Germany). The Raman spectra of the samples were obtained using a Renishaw
2000 model Raman spectrometer with a laser power of 100 mW and a 20 s exposure
time at 514 nm to investigate the presence of defects in the biochar materials. X-ray
photoelectron spectroscopy was used to test the electronic binding energies of the samples
(XPS, Thermo Escalab 250Xi+, USA). A zeta potential instrument was used to characterize
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the surface charges of the samples (zeta potential, Zetasizer Nano ZS90, Malvern, UK).
N2 adsorption–desorption isotherms were used to obtain the porosities of the samples at
77 K (N2 adsorption–desorption isotherms, Quantachrome Autosorb iQ2, Boynton Beach,
USA). The Brunauer–Emmett–Teller (BET) theory was used to calculate the surface area.
The non-local density functional theory (NLDFT) and the Barrett–Joyner–Halenda (BJH)
model were used to analyze the pore size distribution of the samples.

4. Conclusions

In this study, LL was used as a biomass carbon source to prepare magnetic lignocellulose-
derived hierarchical porous biochar via carbonization, activation, and chemical co-precipitation
methods. The specific surface area and total pore volume were 2565.4 m2/g and 1.4643 cm3/g,
and the surface was rich in carbon and oxygen functional groups. The synthetic dye RhB
and the antibiotic TH were selected as organic pollutant models to explore the abilities for
the removal of organic pollutants, and the results showed good adsorption performances.
The maximum adsorption capacities were 1701.7 mg/g for RhB and 1755.9 mg/g for TH,
which were higher than most carbon-based adsorbents. After 10 cycles of use, the removal
efficiencies were still maintained at more than 70%, showing good stability. Finally, the
probable mechanisms affecting the adsorption process were studied, which may include
pore filling, π–π interactions, hydrogen bond interactions, and electrostatic attraction. This
work not only verified the feasibility of LL as a carbon source for lignocellulose but also
prepared a magnetic hierarchical porous biochar with good performances that can better
treat RhB and TH, which provided a new idea and direction for the efficient removal of
organic pollutants in water.
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