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Abstract: Cisplatin (CDDP) is an efficient chemotherapeutic drug, whose use is associated with
the development of serious undesired toxicities, such as nephrotoxicity. The human organic cation
transporter 2 (hOCT2), which is highly expressed in the basolateral membrane domain of renal
proximal tubules seems to play an important role in the development of CDDP nephrotoxicity. The
role of angiotensin II (AII) signaling by binding to the AII receptor type 1 (AT1R) in the development
and/or progression of CDDP nephrotoxicity is debated. Therefore, in this work, the regulation of
hOCT2 activity by AII and its role in the development of CDDP cellular toxicity was investigated. To
do this, hOCT2 was overexpressed by viral transduction in Madin–Darby Canine Kidney (MDCK)
cells which were cultivated on a filter. This approach allows the separation of an apical and a
basolateral membrane domain, which are easily accessible for experimentation. In this system, hOCT2
was mainly localized on the basolateral plasma membrane domain of the cells. The transporter was
functional since a specific uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-
methylpyridinium (ASP+) with an affinity (Km) of 35 µM was only detectable by the addition of ASP+

to the basolateral compartment of hOCT2 expressing MDCK (hOCT2-MDCK) cells. Similarly, CDDP
toxicity was evident mainly by CDDP addition to the basolateral compartment of hOCT2-MDCK
cells cultivated on a filter. The addition of 1 nM AII stimulated hOCT2 function via PKC activation
and worsened CDDP cytotoxicity via binding to AT1R. Therefore, the AII signaling pathway may
be implicated in the development and/or progression of CDDP nephrotoxicity. This signaling
pathway may be a target for protective interventions for example by blocking AT1R in the kidneys.
However, it should be further investigated whether these findings obtained in a cell culture system
may have translational relevance for the clinical situation. For toxicity experiments, a 100 µM CDDP
concentration was used, which is high but allows us to identify clearly toxic effects due to hOCT2. In
summary, down-regulation of hOCT2 activity by the inhibition of the AII signaling pathway may
protect against CDDP nephrotoxicity.

Keywords: cisplatin; renin-angiotensin-aldosterone-system; transport; organic cation transporter;
regulation; toxicity

1. Introduction

Platinum derivatives such as cisplatin and oxaliplatin are important and efficient
chemotherapeutic drugs used in the treatment of solid cancers [1]. A major problem of
cancer chemotherapy with Platinum derivatives is the development of severe side effects,
which can compromise the efficacy of tumor treatment and life quality after cancer. For
example, chemotherapy with cisplatin (CDDP), which is considered to be curative against
testicular cancer [2], can induce nephrotoxicity [3] and ototoxicity [4], while oxaliplatin
treatment causes peripheral neurotoxicity in most patients [5]. Therefore, it seems that
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platinum derivatives have specific toxicity against selected organs. A possible explanation
for these specific toxicities is that these Platinum derivatives interact with transporters for
organic cations (OCT), a family of transport proteins that are highly expressed in organs
and structures such as the kidneys, the inner ear, and the peripheral root ganglia, which are
a target of CDDP and oxaliplatin undesired toxicities. Indeed, it has been demonstrated that
CDDP [6–8], oxaliplatin [9], the third-generation Platinum derivative picoplatin [10] and
the recently synthesized Platinum agent phenanthriplatin [11] are substrates for OCT2. The
OCT2 is an OCT subtype, which is highly expressed on the basolateral membrane domain
of renal proximal tubules cells [12,13], on the plasma membrane of Corti organ outer hair
cells and stria vascularis cells [14], and in peripheral root ganglia [9]. By interacting with
OCT2, these Platinum agents may enter these cells and cause specific toxicity. Mutations of
hOCT2 may modulate the sensitivity against CDDP toxic effects [15].

Focusing on the kidneys, CDDP is excreted not only by glomerular filtration but also
via secretion by proximal tubules [16]. The OCT2 expressed in the basolateral plasma
membrane domain of renal proximal tubules’ cells mediates the first step of CDDP renal
secretion, the CDDP uptake into the proximal tubules’ cells [17]. In this way, OCT2 plays a
prominent role in the development of CDDP nephrotoxicity. The inhibition of OCT2 by
substances such as cimetidine and pantoprazole may represent a useful approach to protect
cells against undesired toxicity caused by Platinum agents [14,18–23] since cancer cells
seem to express no or only low levels of this transporter [14]. Interestingly, the activity of
OCT2 can be rapidly regulated by several signaling pathways [24–26] and by pathological
states [27–29], suggesting a possible role of transporter regulation for modulating side
effects of chemotherapy with Platinum agents. The hOCT2 regulation can be dependent
on cell polarization [26], that is the formation of distinct apical and basolateral membrane
domains, which is typical for renal epithelial cells.

The signaling pathway associated with angiotensin II (AII), a key member of the
renin-angiotensin-aldosterone-system (RAAS), is a potent regulator of renal hemodynamic
and tubular function to conserve salt and water, in this way influencing arterial pres-
sure. These AII effects are mediated by its binding to the angiotensin II receptor type 1
(AT1R) [30]. Dysregulation of RAAS can cause hypertension and its pharmacological inhi-
bition, e.g., blocking the AT1R with specific inhibitors such as Losartan is an option to treat
hypertension [30]. Among other actions, in the kidneys, AII regulates tubular epithelial
cell water and NaCl transport [30]. Interestingly, the role of AII and of AT1R in CDDP-
induced renal toxicity is highly debated. Some studies found protection of renal function
against CDDP nephrotoxicity using inhibition of AII synthesis or blocking the AT1R with
Losartan [31–33]. Of note, in rodent models of CDDP nephrotoxicity, the protective effect
of AT1R inhibition seems to be evident only in male animals, suggesting a sex-related
difference [34]. Conversely, other studies found an exacerbation of CDDP nephrotoxicity
by RAAS inhibition [35]. To summarize, hOCT2 accepts CDDP as a substrate and mediates
CDDP-induced nephrotoxicity. The activity of hOCT2 can be regulated by many signaling
pathways. The extent of CDDP nephrotoxicity may be changed by activation of the AII
signaling pathway, which is an important regulator of kidney function.

Therefore, in this work, it was investigated whether OCT2 activity can be regulated by
AII and whether such regulation can modulate CDDP cellular toxicity. These studies were
performed using Madin–Darby–Canine–Kidney (MDCK) cells, a cellular model, where the
cells polarize and form distinct apical and basolateral membrane domains, a feature typical
of renal epithelial cells.

2. Results
2.1. Characterization of MDCK Cells Used in This Study

An empty vector containing a sequence coding for green fluorescent protein (GFP)
(EV) or a hOCT2-GFP construct was inserted in MDCK cells by viral transduction to
generate EV- and hOCT2-MDCK cells. While in EV-MDCK cells the GFP fluorescence
was distributed across the cells (Figure 1, panel Ai), in hOCT2-MDCK cells it was mainly
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localized in the plasma membrane (Figure 1, panel Bi). Labeling with an antibody against
hOCT2 did not show any signal in EV-MDCK cells (Figure 1, panel Aii). In hOCT2-MDCK
cells, the GFP fluorescence colocalized with the antibody labeling of hOCT2, confirming the
correspondence of the GFP fluorescence with hOCT2 (Figure 1, panel Biv). In Figure 1, the
experimental setup used in this study, where MDCK are cultivated on a transwell permeable
support, which provides independent access to both the apical and basolateral side of the
monolayer, is illustrated in panel C. Both the apical and basolateral compartments are
accessible for experimentation. The immunofluorescence analysis of hOCT2-MDCK cells
growing on filters is shown in panel D of Figure 1, where the basolateral hOCT2 localization
is evidenced by the hOCT2-associated GFP fluorescence.
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Figure 1. This figure summarizes the cells and experimental setups used in this work. Panel (A) 
shows an immunofluorescence analysis of MDCK cells stably expressing the GFP vector (EV-MDCK 
cells). Panel (Ai) shows the GFP green fluorescence, which is distributed across the entire cell. In 
panel (Aii) no signal is visible when the cells were stained with an antibody against hOCT2. Panel 
(Aiii) shows the nuclei labeling with 4′,6-diamidino-2-phenylindole (DAPI) and panel Aiv is an 
overlay picture of the three labelings. Panel (B) shows an immunofluorescence analysis of MDCK 

Figure 1. This figure summarizes the cells and experimental setups used in this work. Panel
(A) shows an immunofluorescence analysis of MDCK cells stably expressing the GFP vector (EV-
MDCK cells). Panel (Ai) shows the GFP green fluorescence, which is distributed across the entire
cell. In panel (Aii) no signal is visible when the cells were stained with an antibody against hOCT2.
Panel (Aiii) shows the nuclei labeling with 4′,6-diamidino-2-phenylindole (DAPI) and panel Aiv
is an overlay picture of the three labelings. Panel (B) shows an immunofluorescence analysis of
MDCK cells stably expressing the hOCT2-GFP (hOCT2-MDCK cells). Panel (Bi) shows the GFP green
fluorescence, which is mainly associated with the plasma membrane. Panel (Bii) shows the staining
of the cells with an antibody against hOCT2 (red). Panel (Biii) shows the nuclei labeling with DAPI
and panel (Biv) is an overlay picture of the three labelings, where co-localization of GFP (green) and
hOCT2 (red) staining is evident (yellow color). In both panels (Aiv,Biv) a 10 µm scale bar is shown.
Panel (C) shows a schematic representation of the MDCK cells growing on filters. Growing on a filter,
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MDCK cells form a monolayer, which separates an apical and a basolateral compartment. Both
compartments are accessible to experimental maneuvers. In panel (C) the small blue dots in the MDCK
cells represent the hOCT2 cellular distribution. Panel (D) shows a representative immunofluorescence
analysis of MDCK-hOCT2 cells growing on filter. The green labeling represents the GFP signal of
the hOCT2-GFP construct and the red color labels the zona occludens 1 protein (ZO1), which is an
important component of the tight junctions. On the projections, orthogonal views of z-stack images
are shown. A 10 µm scale bar is also shown. The image shows a clear basolateral localization of
hOCT2-GFP.

The hOCT2 expression in EV- and hOCT2-MDCK cells was further investigated by
Western blot analysis. As evident from the inspection of Figure 2, only the hOCT2-MDCK
cells express hOCT2. Both detections with antibodies against hOCT2 and with antibodies
against GFP revealed the transporter expression (Figure 2, lanes 4–6 in panel A and 4–5
in panel B).
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Figure 2. This figure shows a Western blot analysis of hOCT2 expression in the MDCK cells stably
expressing hOCT2-GFP (hOCT2-MDCK) or the GFP empty vector (EV-MDCK). Panel (A) shows the
hOCT2 labeling in lysates from EV (lanes 1–3)- and hOCT2 (lanes 4–6)-MDCK cells. Only lysates
from hOCT2-MDCK cells showed signals corresponding to hOCT2 at a molecular weight of around
90 and 120 kDa, while no band was visible in lysates from EV-MDCK cells. The labeling of hOCT2 in
hOCT2-MDCK cells resulted in two bands, which were already characterized as a glycosylated and a
non-glycosylated form of hOCT2 [36]. The lower part of panel (A) shows the signal deriving from
labeling with an antibody against GAPDH as a loading control. Panel (B) shows the GFP labeling in
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lysates from EV (lanes 1–3)- and hOCT2 (lanes 4–5)-MDCK cells. Lysates from EV-MDCK cells (lanes
1–3) show GFP signals below the 35 kDa molecular weight, probably corresponding to cytosolic GFP
and its degradation products. Lysates from hOCT2-MDCK cells (lanes 4–5) show GFP signals at
around 90 and 120 kDa molecular weight, confirming the presence of hOCT2-GFP in this preparation.
α-actinin and GAPDH were used as a loading control for EV-MDCK (lanes 1–3) and hOCT2-MDCK
(lanes 4–5) cells, respectively. Antibodies against GAPDH are well known to be able to detect also a
band below 36 kDa, which probably corresponds to an isoform or a spliced product of GAPDH [37,38].
M indicates the lane containing the molecular weight markers, which are given as kDa.

2.2. Characterization of Organic Cation Transport in MDCK Cells Stably Expressing GFP
or hOCT2-GFP

The transport characteristics of the fluorescent organic cation 4-(4-dimethylaminostyryl)-
N-methylpyridinium (ASP+) in EV- and hOCT2-MDCK cells cultured on a filter were
determined at different times after the addition of 10 µM ASP+ to the basolateral compart-
ment of the transwell in the presence or not of a large excess of cimetidine (1 mM). The
large excess of cimetidine is used to completely block the ASP+ transport by hOCT2 in
this way determining the cellular ASP+ accumulation, which is not mediated by hOCT2
(unspecific uptake). ASP+ is a well-known fluorescent substrate of transporters for organic
cations, which allows for measuring the transporter activity [39–41]. As shown in panel A
of Figure 3, only hOCT2-MDCK cells showed an inhibitable ASP+ uptake at each investi-
gated time point. After 1 h incubation, a striking difference in the accumulation of ASP+

was observed between EV- and hOCT2-MDCK cells. Therefore, in further experiments,
the cellular ASP+ content was measured after 1 h incubation of MDCK cells. As shown in
panel B of Figure 3, hOCT2-MDCK cells showed a cimetidine inhibitable ASP+ uptake at
every tested concentration, in contrast to EV-MDCK cells.

As the next step, the saturation curve of ASP+ accumulation in cellular lysates from
EV- (panel C of Figure 3) and hOCT2-MDCK cells (panel D of Figure 3) after 1 h incubation
with increasing ASP+ concentrations (2–50 µM) was determined. EV-MDCK cells showed
under these conditions no saturable specific (total minus “unspecific”) ASP+ accumulation
and, therefore, no kinetic parameter could be determined with precision. Conversely,
hOCT2-MDCK cells showed a saturable specific ASP+ uptake with a Km value of 35 µM.
Therefore, further transport experiments were performed using incubation with 20 µM
ASP+ for 1 h.

Next, the ASP+ transport and CDDP toxicity were investigated in hOCT2-MDCK cells
by adding these substances to the apical or basolateral compartment of the transwell. As
shown in panel A of Figure 4, the addition of 20 µM ASP+ to the basolateral compartment
of hOCT2-MDCK cells growing on the filter resulted in a higher accumulation of the
fluorescent tracer than in experiments performed starting the 1 h incubation period by
adding ASP+ to the apical compartment, confirming the functional importance of hOCT2
presence in the basolateral plasma membrane. The hOCT2 localization on the basolateral
plasma membrane domain is also important in determining CDDP cellular toxicity, which,
as shown in panel B of Figure 4, was evident only upon the addition of CDDP to the
basolateral compartment. The importance of hOCT2 expression for CDDP toxic cellular
effects is also shown in panel C of Figure 4, where an increase in the permeability of the
cell layer for 70 kDa dextran as an index of cellular toxicity was only measurable upon
incubation of hOCT2-MDCK cells with CDDP from the basolateral compartment.

Since hOCT2-MDCK cells cultivated on filter seem to be a suitable model to study
the properties of hOCT2 in an environment resembling the physiological situation, where
hOCT2 is localized in the basolateral plasma membrane domain, the regulation of hOCT2
by AII was investigated in this setting. Incubation of hOCT2-MDCK cells from the baso-
lateral compartment with 1 nM AII, a concentration in the affinity range for AT1R [42],
significantly stimulated hOCT2 activity (Figure 5, panel A). This effect seems to be AT1R-
specific since it was suppressed by co-incubation with the AT1R inhibitor Losartan at a
concentration of 10 µM (according to previous in vitro studies, this Losartan concentration
acts specifically on AT1R and the serum Losartan concentration in patients reaches low
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µM values, depending on the doses [43,44]) and was not present under incubation with
Ang (1–7), a heptapeptide formed from angiotensin I and II, which has opposite actions
compared to those of AII [45]. Interestingly, MDCK cells show an endogenous expression of
AT1R in an intracellular compartment (Figure 5, panel B). AT1R translocates to the plasma
membrane under incubation with AII, and partially co-localizes with hOCT2, as shown in
Figure 3, panel B. The endogenous AT1R expression in MDCK cells and its translocation to
the plasma membrane by incubation with 1 nM AII have already been described in [46].
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Figure 3. The graph shows the characteristics of ASP+ transport after addition of this fluorescent
hOCT2 substrate to the basolateral compartment of EV- and hOCT2-MDCK cells growing on a
filter. Panel (A) shows the time-dependent ASP+ cellular content after incubation with 10 µM ASP+

for 15–120 min. In EV-MDCK cells, a small increase in cellular ASP+ content over time was mea-
sured (white columns). However, this uptake was not significantly inhibited by co-incubation with
1 mM cimetidine (grey columns). Only hOCT2-MDCK cells showed an ASP+ accumulation (closed
columns), which was significantly inhibited in the presence of 1 mM cimetidine (grey columns). The
first incubation time, where ASP+ cellular content of hOCT2-MDCK cells was clearly higher than
in EV-MDCK cells was 60 min. Therefore, in further experiments, this incubation time was used.
Panel (B) shows the ASP+ cellular content after incubation of EV- and hOCT2-MDCK cells growing
on a filter with 2–50 µM ASP+ for 60 min from the basolateral compartment. Again, only hOCT2-
MDCK cells showed an ASP+ accumulation (closed columns), which was significantly inhibited in
the presence of 1 mM cimetidine (grey columns). The numbers on the columns show the replicates
measured in at least three independent experiments. The star (*) shows a statistically significant
difference (p < 0.05, unpaired t-test) compared to correspondent experiments performed using a
large excess of cimetidine (1 mM). Panels (C,D) show the ASP+ cellular content after addition to the
basolateral compartment of EV- and hOCT2-MDCK cells, respectively, of 2–50 µM ASP+ for 60 min.
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Measurements (4–17 replicates for every concentration, measured at least in three independent
experiments) were performed in the presence (open circles, unspecific ASP+ accumulation, dotted
lines) or not (closed circles, total ASP+ accumulation, solid lines) of 1 mM cimetidine to determine
the part of ASP+ cellular accumulation, which is probably not mediated by OCT2. By subtracting
the unspecific from the total ASP+ accumulation, the “specific” (hOCT2-mediated, dashed lines)
transport was determined. Only for hOCT2-MDCK cells (panel (D)) this transport reached saturation,
allowing us to calculate its Km (35 ± 9 µM).
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Int. J. Mol. Sci. 2022, 23, 15866 8 of 19

numbers on the columns show the replicates measured in at least three independent experiments.
Panel (B) shows toxicity of 100 µM CDDP addition to the apical or to the basolateral compartment
of hOCT2-MDCK cells growing on a filter. After 4 h incubation with 100 µM CDDP from the
apical or basolateral compartment, CDDP was replaced by a Ringer-like solution and the cells were
further incubated for 48 h before determination of cell viability with a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium (MTT) test. A significant decrease in cell viability was observed only after CDDP
incubation from the basolateral side. The numbers on the columns show the replicates measured in at
least three independent experiments. The star (*) shows a statistically significant difference (p < 0.05,
ANOVA test with Tukey multiple comparison) compared to control experiments and experiments,
where CDDP was added to the apical membrane domain. Panel (C) shows the results of permeability
measurements performed using FITC-dextran 70 kDa. CDDP (100 µM) was added to the apical or
basolateral compartment of EV- or hOCT2-MDCK cells growing on a filter. After 4 h, CDDP was
replaced by medium without phenol red and 1 mg/mL dextran was added to the apical compartment.
The concentration of dextran in the basolateral compartment was measured after 10, 30, 180, and
240 min and after 72 h (only these results are illustrated in the figure). Only addition of CDDP to the
basolateral compartment of hOCT2-MDCK cells caused after 72 h a significant increase in dextran
concentration in the basolateral compartment. The numbers on the columns show the replicates
measured in at least 3 independent experiments. The star (*) shows a statistically significant difference
(p < 0.05, ANOVA test with Tukey multiple comparisons) compared to control experiments and
experiments, where CDDP was added to the apical compartment of the transwell.
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Figure 5. Effects of AII addition to the basolateral compartment of MDCK cells cultivated on filter
on basolateral ASP+ transport. Panel (A) shows the ASP+ cellular content after 1 h incubation of
EV- or hOCT2-MDCK with 20 µM ASP+ in the presence or not of 1 nM AII alone or together with
10 µM Losartan. The effect of 1 h incubation with 10 nM Ang (1−7) on basolateral ASP+ transport in
hOCT2-MDCK cells is also shown. Incubation with AII significantly increased ASP+ cellular content
only in experiments with hOCT2-MDCK cells. The numbers on the columns show the replicates
measured in at least 3 independent experiments. The star (*) shows a statistically significant difference
(p < 0.05, ANOVA test with Tukey’s multiple comparisons) compared to control experiments and
to experiments with Ang (1−7). Panel (B) shows an example of immunofluorescence analysis of
AT1R (red) and hOCT2 (green) distribution in dependence from AII incubation in hOCT2-MDCK
cells. Nuclei are stained with DAPI in blue. Under control conditions, AT1R seems to localize both in
intracellular compartments and partially also in the plasma membrane (control, panel (i), red color),
while hOCT2 is mainly present in the plasma membrane (control, panel (ii), green color). Addition of
1 nM AII for 1 h to the basolateral compartment induces a strong translocation of AT1R to the plasma
membrane (+ 1nM AII, panel (i), red color), where it partially co-localizes with hOCT2 (+ 1nM AII,
panel (ii), green color; the yellow color shows an AT1R-hOCT2 co-localization).

2.3. Pathways Possibly Involved in the Regulation of hOCT2 by AII

The binding of AII to AT1R is known to activate a G protein-dependent signaling
pathway, which involves heterotrimeric G proteins, including Gq/11, G12/13, and Gi, and a
subsequent second messenger including inositol trisphosphate (IP3), diacylglycerol (DAG),
phospholipase C (PLC), and PKC. PLC stimulates IP3-mediated Ca2+ release and the
subsequent activation of other kinases (for a detailed review of the AII signaling pathway
please see: [47]). In an attempt to identify the AT1R downstream pathways involved in
the AII regulation of hOCT2 activity, the effect of AII on hOCT2 was measured under
stimulation/inhibition of PKC using 1,2-dioctanoyl-sn-glycerol (DOG), a cell-permeable
activator of PKC, or rottlerin, a cell-permeable specific PKC inhibitor. Moreover, the
involvement of Ca2+ was investigated using 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-
tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), a cell-permeable selective Ca2+

chelator. As shown in panel A of Figure 6, the addition of 1 µM DOG to the ASP+ solution in
the basolateral compartment significantly increased ASP+ cellular accumulation. However,
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DOG did not further augment the transport of ASP+ when administered together with AII,
suggesting a maximal PKC activation by these substances. Furthermore, the addition of
40 µM rottlerin, a concentration able to inhibit most PKC subtypes, clearly suppressed both
the AII and DOG stimulation of hOCT2-mediated ASP+ transport. Interestingly, rottlerin
alone strongly decreased ASP+ cellular accumulation, suggesting an endogenous activity
of PKC in MDCK cells. Chelation of intracellular Ca2+ by the addition of 5 µM BAPTA-AM
to the incubation solution did not change the stimulatory effect of AII on hOCT2, pointing
to a minor role of Ca2+ in AII regulation of hOCT2 in this polarized experimental system.
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Figure 6. Possible downstream pathways involved in hOCT2 regulation by 1 nM AII in hOCT2-
MDCK cells growing on a filter. All substances were added to the basolateral compartment and
their influence on cellular ASP+ accumulation as a marker of hOCT2 function was evaluated.
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Panel (A) shows the effect of PKC activation or inhibition with 1 µM DOG or 40 µM rottlerin,
respectively, on stimulation of hOCT2 by AII. DOG stimulated hOCT2 activity and its addition
to AII did not further increased hOCT2 function. Rottlerin alone inhibited hOCT2 activity and
completely suppressed the effects of DOG and AII on cellular ASP+ accumulation. The numbers
on the columns show the replicates measured in at least 3 independent experiments. In panel (A)
the star (*) shows a statistically significant difference (p < 0.05, ANOVA test with Tukey’s multiple
comparisons) compared to control experiments, while § shows a statistically significant difference (p
< 0.05, ANOVA test with Tukey’s multiple comparisons) compared to all other experiments except +
AII, + DOG, and +AII + DOG. Panel (B) shows the effect of Ca2+ chelation with 5 µM BAPTA-AM on
stimulation of hOCT2 by AII. Addition of BAPTA-AM did not change the regulation of hOCT2 by AII.
The numbers on the columns show the replicates measured in at least three independent experiments.
In panel (B) the star (*) shows a statistically significant difference (p < 0.05, ANOVA test with Tukey’s
multiple comparisons) compared to control experiments and to experiments with BAPTA-AM alone.

2.4. Influence of AII on CDDP Toxicity

Since AII stimulates hOCT2 activity, the effect of this regulation on CDDP cellular
toxicity was investigated using an MTT assay of hOCT2-MDCK cells growing on a filter,
which were incubated for 4 h with 100 µM CDDP alone or together with 1 nM AII added to
the basolateral compartment. Thereafter, the incubation solution was replaced with cell
culture medium and the cells were further cultivated for 72 h before the MTT assay. As
shown in Figure 7, CDDP caused a significant decline in cell viability, which was further
worsened by the addition of AII.
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Figure 7. Viability of hOCT2-MDCK cells growing on filter measured by an MTT-test. Cells were
incubated for 4 h with medium (white column), or 100 µM CDDP (grey column), or 100 µM CDDP and
1 nM AII (black column) by addition of these substances to the basolateral compartment. Addition
of CDDP to the basolateral compartment caused a significant decline in cell viability compared to
control experiments (white column). This effect was even worsened by the addition of AII to the
incubation solution. The numbers on the columns show the replicates measured in at least three
independent experiments. The star (*) shows a statistically significant difference (p < 0.05, ANOVA
test with Tukey’s multiple comparisons) compared to the other experiments.

3. Discussion

Platinum agents are important chemotherapeutic drugs that are effective against
solid tumors. However, their use is often hampered by the insurgence of unwanted
toxicities, which compromise the therapeutic effect and/or life quality of patients after
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cancer treatment. Some of these anticancer drugs interact with organic cation transporters
(OCT), which are expressed in tissues, which indeed are especially sensitive to toxicity from
Platinum agents such as cisplatin (CDDP) and oxaliplatin. Therefore, it can be supposed
that the interaction between OCT and Platinum derivatives may play a role in determining
the unwanted toxicities of anticancer treatment. Since most cancer tissues seem not to
express OCT, inhibition of transporter function may be an attractive therapeutic option
to reduce the side effects of chemotherapeutic treatment with Platinum agents, without
changing their antitumor efficacy. In this work, we investigated the effect of regulation
of OCT2, a transporter highly expressed in the kidneys and that has been associated with
CDDP nephrotoxicity, on cellular CDDP toxicity. Specifically, regulation by the renin-
angiotensin-aldosterone-system (RAAS), which is a potent modulator of renal function,
and which has been associated with CDDP nephrotoxicity, was investigated. In particular,
the influence of angiotensin II (AII), a central mediator of RAAS action, on OCT2 function
and CDDP cellular toxicity was studied. Since OCT2 is highly expressed on the basolateral
membrane domain of renal proximal tubular cells, its possible regulation by AII was
investigated in Madin–Darby Canine Kidney cells, which were genetically modified to
express hOCT2 on the basolateral membrane domains, growing on filters. This in vitro
system reproduces important physiological characteristics such as the presence of distinct
apical and basolateral membrane domains, which are easily accessible for experimentation
(see Figure 1). The hOCT2 expressed in these cells by viral transduction showed a clear
basolateral cellular distribution; therefore, the experiments were performed, except when
otherwise stated, by adding substrate and modulator to the basolateral compartment. In
this experimental setting, the affinity of the transporter for ASP+ was 35 µM, reflecting
the micromolar range of ASP+ affinities for hOCT2 found in other studies using different
experimental setups [24,48]. In comparison with MDCK cells which expressed the empty
vector, hOCT2 overexpression made the cells more sensitive to CDDP toxicity. Under the
experimental conditions used in this study, CCDP toxicity was present only upon CDDP
addition to the basolateral compartment, probably because of the presence of a high amount
of hOCT2 in this plasma membrane domain.

In the toxicity experiments, a high CDDP concentration was used (100 µM) because in
the experimental system used, this CDDP concentration induces strong toxicity in hOCT2-
MDCK cells but not in EV-MDCK cells (not shown). In patients treated with CDDP, serum
CDDP concentrations up to 25–40 µM can be detected [49,50].

The binding of AII to the AT1R stimulated hOCT2 function probably in a PKC-
dependent and Ca2+-independent manner. A similar activating effect of AII on transport
mediated by OCT was observed in freshly isolated renal mouse proximal tubules [51].
Using other experimental setups, for example, human embryonic kidney cells stably over-
expressing hOCT2, such regulation by AII was not observed (Supplementary Figure S1),
probably due to the fact that these cells do not express AT1R endogenously or because reg-
ulation pathways can be different in strongly polarized cells, such as the MDCK cells [26].
In this study, AII stimulation of hOCT2 activity increased CDDP cellular toxicity and,
therefore, may be also involved in the development of CDDP-induced nephrotoxicity. In
animal studies, it has been demonstrated that treatment of mice with CDDP increased the
circulating AII concentration [52]. AII with the renal AT1R are important mediators for the
development of hypertension [53]. Interestingly, the presence of hypertension increases the
possibility to develop nephrotoxicity in patients treated with CDDP [54]. Therefore, both 1)
pre-existing hypertension with higher circulating AII levels and activation of renal AT1R,
and 2) AII concentration increase by CDDP treatment may contribute to the worsening of
CDDP toxic effects in the kidneys. Inhibition of AT1R may be a strategy to decrease the
possibility to develop CDDP-related nephrotoxicity. Against this hypothesis, a retrospective
study in cancer patients [55] suggested an association between low blood pressure and
CDDP nephrotoxicity, which, however, was observed only in patients fed with non-solid
food. Other experimental studies on this topic resulted in controversial results: performing
experiments with rats, a clear association between AII-AT1R signaling and CDDP nephro-
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toxicity was observed only in male but not in female animals [31]. Moreover, in studies
with female rats [56], inhibition of AT1R with Losartan even worsened CDDP-induced
nephrotoxicity, probably because of a sex-specific increased renal blood flow induced by
AT1R blocking. In rodents, the expression of OCT2 in kidneys appears to be sex-dependent,
with higher expression in renal tissue from male animals compared with kidneys from
female rats [57]. Therefore, specific regulation of OCT2 by AII/AT1R would more strongly
impact male than female rats. In humans, such a sex-dependent expression of OCT2 in
kidneys could not be detected [58].

In conclusion, in this work, we showed that AII can stimulate the hOCT2 activity when
the transporter is expressed in cells, which polarize and form distinguished apical and
basolateral membrane domains. This hOCT2 stimulation increases the cellular toxicity of
CDDP, suggesting that in cancer patients treated with CDDP an inhibition of AII signaling
may decrease CDDP-induced nephrotoxicity. However, the feasibility of this approach
should be systematically investigated for successful and responsible therapy employment.

4. Materials and Methods
4.1. Cloning of hOCT2-GFP into the Viral Transduction Vector

The full-length human organic cation transporter 2 (Solute Carrier (SLC) 22A2, NM_003058)
cloned into the expression vector pRc/CMV (hOCT2-pRC/CMV) was a kind gift by Prof.
H. Koepsell (University of Würzburg). The hOCT2 from the hOCT2-pRc/CMV was cloned
into the pEGFP-N3 vector (Clontech, Saint-Germain-en-Laye, France) via XhoI and BamHI
sites (using the primers listed in Table 1) to obtain a GFP-tagged hOCT2 (hOCT2-GFP, the
tag is at the carboxy-terminus) construct. The insertion of the GFP-tag did not change
the transport properties of hOCT2 [36,59]. The hOCT2-GFP construct or GFP alone was
inserted into the pQCXIH vector (Clontech) via NotI and PacI using the primers listed
in Table 1.

Table 1. Primers used for cloning (5′-3′).

Cloning of hOCT2 into pEGFP-N3:

Forward: CTC AGA TCT CGA GCT ATG CCC ACC ACC GTG GAC GAT

Reverse: CGG GAT GGA TCC GTT CAA TGG AAT GTC TAG TTT

Cloning of hOCT2-GFP into pQCXIH:

Forward: GAT GCG GCC GCA TGC CCA CCA C

Reverse: AAG CGG CTT CGG CCA GTA ACG TTA

Cloning of GFP into pQCXIH:

Forward: GAT GCG GCC GCA TGG TGA GCA AG

Reverse: GCT TAA TTA ACT TGT ACA GCT CGT CCA TGC

4.2. Generation and Culture of MDCK Cell Lines Expressing hOCT2-GFP or GFP Alone

The full-length hOCT2 tagged with GFP (hOCT2-GFP) or the GFP alone (empty vector,
EV) cloned in the expression vector pQCXIH were expressed in MDCK II cells (ECACC
00062107) using a retroviral transduction system, as already described in [26]. Using this
approach, a high and stable expression of the transferred constructs can be obtained [60–62].
Briefly, the packaging cell line GP2-293 (Retro-X, Clontech) was cultivated in standard
Dulbecco’s modified Eagle medium (DMEM, Biochrom, Berlin, Germany) supplemented
with 10% fetal calf serum (FCS, Biochrom) and 1% antibiotics (penicillin/streptomycin,
Biochrom). A recombinant retrovirus was produced by transfection of GP2-293 cells with a
plasmid encoding for glycoprotein of vesicular stomatitis virus and the pQCXIH-construct
containing hOCT2-GFP or GFP alone. Next, the virus-containing supernatant was filtered
through a sterile 0.45 µm filter unit (Millipore, Schwalbach am Taunus, Germany), and the
MDCK cells were infected using one volume of fresh DMEM medium and one volume of
the virus-containing filtrate supplemented with polybrene (final concentration 1.5 µg/mL)
for 24 h. Thereafter, the virus-containing medium was replaced with fresh medium and
cells were regenerated for 24 h. Afterward, cells were selected by hygromycin treatment
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(400 µg/mL). GFP-positive cells were isolated with a cell sorter and further cultured.
MDCK cells expressing hOCT2-GFP (hOCT2-MDCK) or GFP alone (EV-MDCK) were
cultured in Minimal Essential Medium Eagle (MEM, Sigma/Merck, Darmstadt, Germany)
containing 10% FCS, 2 mM L-glutamine and 1% penicillin/streptomycin. For obtaining a
system, where both the apical and basolateral plasma membrane domains were accessible
to experimentation, cells were seeded on filters (Greiner Bio-one ThinCert # 662641 filters
transparent with a pore diameter of 0.4 µm, Kremsmünster, Austria) and cultivated until
confluence was reached. Overexpression of ectopic GFP- or GFP-tagged hOCT2 in the
stable cell populations was verified by immunofluorescence and Western blot analysis
(Figures 1 and 2). These analyses confirmed the expression of the desired proteins and the
strong basolateral expression of hOCT2.

Culture and functional analyses of these cells were approved by the state government
Landesumweltamt Nordrhein-Westfalen, Essen, Germany (no. 521.-M-1.14/00).

4.3. Immunofluorescence Analysis

For immunofluorescence analysis, MDCK cells growing on filter (Greiner,
Kremsmünster, Austria) were washed on both apical and basolateral side with Dul-
becco’s phosphate buffered saline (PBS, Biochrom) and fixed with 4% paraformaldehyde
solution (PFA) for 10 min. After fixation, the cells were washed three times with PBS and
incubated with 0.2% Triton X-100 for 5 min. After extensive washing with PBS, unspecific
binding sites were blocked by 60 min incubation with 10% bovine serum albumin (BSA,
Sigma/Merck, Darmstadt, Germany) in PBS. Filters were cut and then incubated at 4 ◦C
overnight with anti-hOCT2 (HPA008567, Sigma/Merck, Darmstadt, Germany, diluted 1:100
in 1% BSA in PBS) or anti- zona occludens 1 protein (ZO1-1A12, ThermoFischer, Waltham,
USA, 1:100 in 1% BSA) or anti-AT1R antibodies (sc-1173, Santa Cruz Biotechnology, Dallas,
TX, USA, 1:100 in 1% BSA). After three washing steps in PBS, the secondary antibody (goat-
anti-rabbit or goat-anti-mouse Alexa fluor 594, Invitrogen, Karlsruhe, Germany) at a 1:1000
dilution was incubated for 60 min followed by five more washing steps in PBS. The nuclei
were labeled with 4′,6-diamidino-2-phenylindole (DAPI, 1 mg/mL,1:1000 in 1% BSA). After
30 min the cells were washed with PBS and covered with Fluoromount (Sigma/Merck,
Darmstadt, Germany) and fluorescence photographs were taken with Observer Z1 with
Apotome (Carl Zeiss, Göttingen, Germany) using ZEN software.

4.4. Western Blot Analysis

For Western blot analysis, MDCK cells grown to confluency were lysed on ice for
20 min with 300 µL lysis buffer (10 mM TRIS-HCl, pH 7.4) containing a protease inhibitors
cocktail (c0mplete, Merck, Darmstadt, Germany, 1 tablet/10 mL buffer). Lysates were
vortexed, resuspended, and centrifuged at 10,000 g for 5 min at 4 ◦C. The supernatant
was collected and centrifuged again at 20,500 g for 60 min at 4 ◦C. The supernatant was
collected and mixed with 4x NuPAGE™ LDS sample buffer (ThermoFischer, Waltham,
USA), then heated at 70 ◦C for 10 min. After this, equal amounts of protein were given into
the wells of sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gel
(Mini-Protean TGX gel, Bio-Rad, Munich, Germany). Electrophoresis was performed for
1 h at 100–140 V. The gel was then blotted for 1 h at 100 V on a polyvinylidene difluoride
(PVDF) membrane (Roche Applied Science, Mannheim, Germany). Upon completion of
protein transfer, unspecific binding to the membranes was blocked by 1 h of incubation with
5% BSA dissolved in tris-buffered saline with Tween 20 (TBS-T). Then, the membranes were
cut (to control the loading by GAPDH or α-actinin staining) and incubated with primary
antibodies at 4 ◦C overnight. The antibodies were diluted in TBS-T with 5% BSA as follows:
α-actinin (ALX-210-356-C050, Enzo Life Sciences, Farmingdale, NY, USA) 1:1000; GFP
(MBL, Woburn, MA, USA) 1:200; hOCT2 (HPA008567, Sigma/Merck, Darmstadt, Germany)
1:250; GAPDH (1D4MMS-580S, BioLegend, San Diego, CA, USA) 1:5000. After this, the
PDVF membranes were washed and incubated for 1 h with goat-anti-rabbit antibody (Dako,
Hamburg, Germany) coupled with horseradish peroxidase (HRP) at a 1:10,000 dilution and
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washed again. Immunoreactive bands were detected with an imager system (ChemiDoc™
MP, Bio-Rad Laboratories, Hercules, CA, USA) by enhanced chemiluminescence using
Lumi-Light Plus (Sigma/Merck, Darmstadt, Germany).

4.5. Measurement of OCT Function

The organic cation 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP+) was used
as a fluorescent substrate of hOCT2 [48]. ASP+ is a well-known fluorescent substrate of
OCT, as already shown in numerous publications [39,40,63]. Fluorescence was measured
with a microfluorescence plate reader (Infinite F200, Tecan, Tecan Group Ltd., Crailsheim,
Germany) using excitation at 450 nm and emission at 590 nm [64]. To evaluate hOCT2
function, ASP+ fluorescence was measured in cell lysates prepared after incubation with
ASP+ from the apical or basolateral compartment. Transport measurements were performed
at T = 37 ◦C. Before measurements, cells monolayers were washed with Ringer-like solution
containing (in mM): NaCl 145, K2HPO4 1.6, KH2PO4 0.4, D-glucose 5, MgCl2 1, calcium
gluconate 1.3, and pH adjusted to 7.4 at 37 ◦C. After incubation, cells were washed with
an ice-cold Ringer-like solution and lysed with 4% SDS in 10 mM Tris-HCl (pH 7.4).
ASP+ concentration in cell lysates was quantified by a standard curve, where known ASP+

concentrations were added to cell lysates. The protein content of lysed cells was determined
by absorption measurements using PicoDrop Pico 1000 (PicoDrop, Saffron Walden, UK).
ASP+ cellular content was expressed as µmol ASP+/mg protein. In preliminary experiments
(see Figures 3 and 4), optimal ASP+ concentration (20 µM) and incubation time (60 min)
were established (using these experimental conditions the transport of ASP+ was in the
linear concentration range). Specific hOCT2-mediated ASP+ uptake was calculated by the
subtraction of uptake measured in the presence of a high (1 mM) cimetidine concentration,
a high-affinity hOCT2 inhibitor, from total uptake.

The affinity of hOCT2 for ASP+ was determined by saturation experiments of specific
ASP+ uptake determined in the presence of increasing ASP+ concentrations (0–50 µM).
In further experiments, regulation of hOCT2-mediated transport was evaluated by the
co-incubation of ASP+ with 1 nM AII, or 1 µM DOG (a PKC activator, this concentration
is known to be able to regulate OCT-activity [65]), or 40 µM rottlerin (a PKC inhibitor),
or 5 µM BAPTA-AM (a Ca2+ chelator, this concentration efficiently chelates intracellular
Ca2+ and does not compromise cell viability in MDCK cells [66]), alone or in combination.
Solvents (DMSO or ethanol) at the concentration used in the regulation experiments did
not change the ASP+ uptake (not shown). Cell cultures were grown on filters inserted in
24 or 12 well plates until 80–90% confluence was reached. Experiments were performed
with cells from passages 20–45.

4.6. Cell Viability Test

The CDDP cytotoxicity was measured using a modified MTT test [67]. The MDCK
cells grown to confluency on filters were incubated for 4 h at 37 ◦C with 100 µM CDDP
(Teva Pharm, Ulm, Germany) dissolved in a Ringer-like solution and added to the apical
or to the basolateral compartment. A CDDP concentration of 100 µM was used since
it has already been shown that this CDDP concentration clearly interacts with hOCT2
function [8]. In some experiments, CDDP was incubated together with 1 nM AII. The
CDDP solution was then removed, and the cells were further grown in fresh medium
for 48 or 72 h. Afterward, the cells were incubated with 10 µL MTT (Sigma/Merck,
Darmstadt, Germany) solution containing 5 mg/mL of the dye for three hours at 37 ◦C.
Then, MTT was removed, and the cells were lysed with a solution containing 10% (w/v)
SDS and 40% (v/v) dimethylformamide. Lysates were transferred to a new microtiter plate
and after 90 min, absorption was measured at 570 nm in a multiplate reader (Tecan infinite
m200, Tecan, Tecan Group Ltd., Crailsheim, Germany).
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4.7. Permeability Assay

MDCK cells were seeded on filter as described above and cultivated with medium
lacking phenol red. The same volumes were used for the apical and basolateral chambers.
The cells were cultured until a confluent monolayer developed and a stable value of
transepithelial electrical resistance (around 100–150 Ω/cm2, not shown) was reached. The
medium in the apical chamber was replaced with the same medium containing 1 mg/mL
FITC-dextran 70 kDa (Sigma/Merck, Darmstadt, Germany) and further incubated in the
dark. Aliquots of medium (50µL) were taken from the basolateral chamber after 10, 30, 180,
240 min and 72 h and replaced with fresh medium. The aliquots were transferred to 96-well
plates and fluorescence was measured in the microplate reader described above using
excitation at 492 nm and emission at 518 nm. The dextran concentration in the basolateral
compartment was calculated using a standard curve from 0 to 50 µg dextran/mL.

4.8. Statistical Analysis

Data were analyzed using GraphPad Prism, Version 9.0 (GraphPad Software, Inc., San
Diego, CA, USA). Data presented in this work are expressed as mean values ± SEM, with
(n) referring to the number of replicates and N referring to the number of independent
experiments. Km- and Vmax-values were obtained by a non-linear sigmoidal concentration-
response curve fitting. When it is indicated, unpaired t-test and ANOVA test with posthoc
Tukey were applied to prove statistical significance (p < 0.05).
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