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Abstract: Herein, we aimed to highlight current “gaps” in the understanding of the potential interac-
tions between the Anle138b isomer ligand, a promising agent for clinical research, and the intrinsically
disordered alpha-synuclein protein. The presence of extensive unstructured areas in alpha-synuclein
determines its existence in the cell of partner proteins, including the cyclophilin A chaperone, which
prevents the aggregation of alpha-synuclein molecules that are destructive to cell life. Using flexible
and cascaded molecular docking techniques, we aimed to expand our understanding of the molecular
architecture of the protein complex between alpha-synuclein, cyclophilin A and the Anle138b isomer
ligand. We demonstrated the possibility of intricate complex formation under cellular conditions and
revealed that the main interactions that stabilize the complex are hydrophobic and involve hydrogen.
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1. Introduction

Amyloidosis is a heterogeneous group of diseases characterized by the deposition of
amyloid fibrils in the extracellular matrix of tissues and organs [1,2]. In clinical practice,
nosologies accompanied by amyloid formation are often named after fibrillar proteins
(atrial amyloidosis, prolactinomas, synucleinopathies, etc.) [1,2]. Approximately 95% of
amyloids consist of fibrillar proteins, and the remaining 5% comprise the P-component of
serum amyloid glycoproteins [3]. Insoluble forms of fibrillar proteins are formed via the
misfolding of the soluble form of the precursor proteins. To date, more than 30 proteins have
been discovered to form human amyloid fibrils [4], 18 of which cause systemic amyloidosis
and 22 are localized forms. Systemic amyloidosis develops due to the aggregation of
light (AL) and heavy (AH) chains of immunoglobulin procalcitonin (ACal), which are
α-synuclein (AαSyn), islet amyloid polypeptide C (AIAPP), prolactin (APro), Aβ protein
precursor (Aβ), and lung surfactant protein (ASPCd) [4].

Aggregates of amyloid proteins are assumed to have a wide range of negative effects
on the human body, including cytotoxic effects and tissue damage. Diseases characterized
by the formation of amyloid or other aggregates of amyloid proteins (cytotoxic oligomers,
protofibrils) can be divided into a group of neurodegenerative diseases, which include
Alzheimer’s disease (amyloid protein: Aβ), Parkinson’s disease (PD; amyloid protein:
AαSyn), and type 2 diabetes (amyloid AIAPP protein).

PD is a complex neurodegenerative disease characterized by bradykinesia, resting
tremors, muscle rigidity, and postural instability. The pathogenesis of PD is accompanied
by the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy
bodies (intraneuronal accumulation of aggregated AαSyn molecules) in neurons in various
regions of the brain [5–8]. Owing to the key role of AαSyn aggregation in PD pathogenesis,
AαSyn is an attractive target for potential disease-modifying therapies. However, the
“many-sidedness” [9] of the protein due to (a) the disordered nature of AαSyn (random coil
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in aqueous solution, α-helical structure upon interaction with lipid membranes) [8,10,11];
(b) a complex aggregation mechanism: the nucleation-polymerization and nucleation-
conversion-polymerization model [12–15]; and (c) the lack of structural information on
AαSyn aggregation complicates the discovery of α-synamyloid blockers [9,16].

Turning to evidence-based data, there are low-molecular-weight compounds that
block AαSyn misfolding and aggregation and, in a sense, promote the dissociation of
aggregates [9,16]. Aggregation inhibitors of AαSyn molecules include chemical chaperones,
ligands Anle138b [17–19], SynuClean-D [20,21], and peptidomimetics (NPT100-18a and
NPT200-11) [22–24], which are at different stages of clinical trials [8,16,25].

In the present study, we aimed to focus on the insufficient knowledge about the
structure and, consequently, diversity of the AαSyn protein. Ultimately, we expanded
our understanding of the molecular architecture for the potential formation of protein
complexes under cellular conditions involving the intrinsically disordered protein (IDP),
AαSyn, and the globular protein, cyclophylin A (CypA). These proteins were selected as
targets for flexible docking owing to a lack of knowledge regarding the binding process
of the Anle138b isomer ligand to partner proteins. First, we evaluated the interactions
that stabilized the Anle138b isomer ligand complex with the alpha-synuclein fragment.
Thereafter, we analyzed the ternary complex, AαSyn, with the cellular partner protein
CypA, and the target ligand as the model closest to physiological (cellular) conditions and
assessed the potential binding of the Anle138b isomer ligand to the CypA partner protein
in the monomeric and dimeric forms by all-atom flexible docking. Finally, we analyzed
the results of cascade docking (in the presence of an excess of ligand molecules) for AαSyn
and CypA protein complexes of different compositions. Molecular dynamics experiments
and evaluation of binding energy components showed good agreement with the results of
molecular docking for the most significant amino acids involved in the stabilization of the
studied complexes.

2. Results
2.1. Characterization of the AαSyn–Anle138b Isomer Complex

The structure of the AαSyn target was solved using electron microscopy with a res-
olution of 3.30 Å. The length of the amino acid sequence was 61 residues (Val37–Asp98),
and the intact form of AαSyn was represented by 140 residues. The binding (affinity:
−5.8 kcal/mol) of the Anle138b isomer molecule to a fragment of the alpha-synuclein
monomer (PDB ID: 7V4C) is illustrated in Figure 1a.

The Val37–Asp98 region of AαSyn is rich in disorder-promoting amino acid residues [26,27]
(Figure 1). The protein itself is a prominent representative of internally disordered proteins,
which are characterized by extensive disordered regions. Based on an analysis of the
obtained interactions (LigPlot), the geometry of the complexes was identified to be mainly
stabilized by hydrophobic interactions with valine residues Val48, Val52, Val66, and Val71,
and hydrogen bonding with Val52 of the main chain (Figure 1b).

If the target for the Anle138b isomer ligand is the complete AαSyn structure in the
amino acid sequence (140 amino acid residues, PDB ID 1XQ8), the amino acids responsible
for this binding were also identified (affinity: −6.7 kcal/mol). The results are shown in
Figure 2.

The AαSyn molecule (PDB ID 1XQ8) is characterized by two extensively structured
regions and two alpha helices, Met1–Val37 and Lys45–Thr92 (Figure 2). Alpha helices
form a supersecondary α-hairpin structure which is stabilized by hydrogen and hydropho-
bic interactions [28]. A short Leu38–Thr44 constriction exists between the alpha helices.
According to the molecular docking data, the amino acid residues of this unstructured
region are involved in the stabilization of the ligand/target complex. In this case, the
condensed hydrophobic rings of the ligand are oriented inside the hydrophobic core of the
α-hairpin. Of note, the AαSyn structure retained a large C-terminal unstructured tail in the
Gly93-Ala140 region.
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Figure 1. (a) Binding of the Anle138b isomer molecule to a fragment of the alpha-synuclein monomer
(PDB ID 7V4C); (b) chart of interactions when Anle138b isomer binds to a fragment of the alpha-
synuclein monomer (region: 37–98); (c) the amino acid sequence of AαSyn, the green box represents
the region of the Val37–Asp98 sequence for which the molecular docking experiment was performed
(PDB ID 7V4C), amino acid residues that belong to the disorder-promoting set are marked in red.

Owing to an analysis of the microenvironment of the bound ligand molecule in the
Leu38–Thr44 region of the target protein, Val40, Lys43, Lys32, and Tyr39 were identified as
the main partner residues for stabilizing the spatial position of Anle138b isomer. Of note,
several different interactions were detected for the Lys43 residue: hydrophobic, hydrogen
bonding, and π-cationic interactions, enabling the identification of the Lys43 amino acid
residue as a key partner for binding to the Anle138b isomer ligand (Figure 2d). Attention
should be paid to the rather small distances of bonds between the ligand and target for
the identified types of interactions, which indicates the fundamental possibility of the
formation of such complexes in the cell. However, data from the literature indicate the
formation of the Anle138b isomer complex with different sizes of AαSyn aggregates, but
not with a monomeric form [16].

2.2. Characterization of the AαSyn–CypA and Anle138b Isomer Complex

In cells, AαSyn molecules form complexes with CypA [29,30]. CypA belongs to the
family of immunophilins or chaperones containing the peptidyl prolyl cis/trans isomerase
domain (PPIase). CypA is involved in basic neuronal functions, such as axonal transport
and synaptic vesicle assembly; however, its most interesting role is neuroprotection. CypA
prevents protein aggregation and binds unstructured or irregularly organized proteins [30].
As mentioned before, AαSyn is an unstructured protein, and its cellular partners can be
different proteins and ligands. To study the binding features of the Anle138b isomer ligand
and its partner protein, the experimentally known complex, AαSyn (region: Val48-Lys60),
with the globular partner protein, CypA (PDB ID 6I42), as a target must be considered. The
structure was resolved using X-ray crystallography with a resolution of 1.38 Å [29]. The
results for the molecular docking of the ternary ligand-protein–protein complex are shown
in Figure 3 (affinity: −7.1 kcal/mol).
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Figure 2. (a,b) Anle138b isomer molecule binding to full-length alpha-synuclein molecule (PDB
ID 1XQ8). The 3D structure of the Anle138b isomer ligand is indicated in green. (c) Interactions
diagram of Anle138b isomer with a fragment of the alpha-synuclein monomer. (a) full image size, (b)
enlargement of the binding site image. The figure above shows the amino acid sequence of AαSyn,
the blocks reflect the organization of secondary structure elements: yellow blocks correspond to alpha
helices, gray blocks correspond to unstructured regions (coil). (d) Interaction options for Anle138b
isomer binding to the alpha-synuclein monomer (PDB ID 1XQ8).

As shown in Figure 3, the ligand was located on the mutual surface of AαSyn–CypA
partner proteins, forming non-covalent interactions with each of the partner proteins.
The binding site of the ligand with AαSyn also shifted toward the C-terminus of the
protein, namely the Leu38–Thr44 region for the ligand–AαSyn complex compared to
the Val48–Val52 region for the ligand–AαSyn–CypA complex. This phenomenon may
be due to the experimental AαSyn–CypA structure, which was obtained for the AαSyn
fragment. When interactions that stabilize the Anle138b isomer ternary complex and
the AαSyn fragment with CypA are characterized, the hydrophobic interactions (His50,
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Asn106, Thr107) and hydrogen bonding (Glu81, Lys82) should be noted. The histidine
residue belongs to alpha-synuclein, and the chart of interactions reveals its participation in
π-stacking (Figure 3c). Based on our data, AαSyn in the ternary complex plays an important
role in ligand binding. Currently, the map of interactions of the AαSyn–CypA protein
complex in the absence of a ligand is well studied [29] and is described in more detail in
the Section 3.
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Figure 3. (a) Binding of the Anle138b isomer molecule to the AαSyn–CypA complex (PDB ID 6I42), a
fragment of the surface of the AαSyn molecule is indicated in green, the surface of the CypA globular
protein is indicated in gray, the molecular surface of the Anle138b isomer ligand is indicated in
blue; (b) chart of interactions upon binding of Anle138b isomer to the AαSyn–CypA complex; (c)
interactions diagram of Anle138b isomer with AαSyn–CypA complex.

2.3. Molecular Docking: Characterization of the CypA and Anle138b Isomer Complex

During AαSyn–CypA complex formation under physiological conditions, the potential
role of CypA in the binding of the studied ligand must be examined. To determine whether
the evaluated Anle138b isomer ligand can compete with the binding sites of the globular
cellular partner protein (CypA) as a target (PDB ID 6I42) instead of binding to alpha-
synuclein, all-atom flexible docking was performed (affinity: −7.3 kcal/mol). The results
are shown in Figure 4.

Owing to the chart of this complex, the amino acid residues responsible for its stabi-
lization could be determined (Figure 4d). The main residues that determine the binding of
the Anle138b isomer ligand to cyclophilin include Glu81 and Lys82, which are involved in
both hydrophobic interactions (part of the side chains) and hydrogen bonding (end groups).
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Notably, distances of the revealed probable hydrophobic and hydrogen interactions are
quite small. Accordingly, CypA can also act as a target for the ligand by stabilizing the
ligand molecule on the surface of the protein globule. Similar to the case of the Anle138b
isomer–AαSyn–CypA ternary complex, the same amino acid residues were involved in the
stabilization of the Anle138b isomer–CypA complex. Further, the binding site remained
unchanged.

Int. J. Mol. Sci. 2022, 23, 16096 6 of 22 
 

 

to alpha-synuclein, all-atom flexible docking was performed (affinity: −7.3 kcal/mol). The 

results are shown in Figure 4. 

 
 

(a) (b) 

 

№ Residue AA 
Distance, 

Å  
Angle Ligand atom 

Hydrophobic interactions 

1 81 A Glu 3.99 – 4 

2 82 A Lys 3.83 – 6 

3 82 A Lys 3.63 – 8 

4 106 A Asn 3.70 – 22 

Hydrogen bonds 

5 81 A Glu 2.15 130.60 – 

6 82 A Lys 2.69 113.67 – 
 

(c) (d) 

Figure 4. Binding of the Anle138b molecule to CypA (a cellular partner protein of alpha-synuclein) 

(a) full size image; (b) an enlarged image of a possible CypA binding site; (c) interactions diagram 

of Anle138b with cyclophilin; (d) interaction options for Anle138b binding to CypA. 

Owing to the chart of this complex, the amino acid residues responsible for its 

stabilization could be determined (Figure 4d). The main residues that determine the binding 

of the Anle138b ligand to cyclophilin include Glu81 and Lys82, which are involved in both 

hydrophobic interactions (part of the side chains) and hydrogen bonding (end groups). 

Notably, distances of the revealed probable hydrophobic and hydrogen interactions are quite 

small. Accordingly, CypA can also act as a target for the ligand by stabilizing the ligand 

molecule on the surface of the protein globule. Similar to the case of the Anle138b–AαSyn–

CypA ternary complex, the same amino acid residues were involved in the stabilization of the 

Anle138b–CypA complex. Further, the binding site remained unchanged. 

Recent studies by Lutomski and Zhang have provided information on the formation of 

CypA dimers and trimers [31,32]. However, the biological significance of this phenomenon 

has not been evaluated. Aligning with this data, the binding of Anle138b to the CypA dimer 

proved interesting. This dimer was obtained using ZDOCK (https://zdock.umassmed.edu/), 

(accessed on 25 November 2022). The results are shown in Figure 5 (affinity: −7.5 kcal/mol). 

Figure 4. Binding of the Anle138b isomer molecule to CypA (a cellular partner protein of alpha-
synuclein) (a) full size image; (b) an enlarged image of a possible CypA binding site; (c) interactions
diagram of Anle138b isomer with cyclophilin; (d) interaction options for Anle138b isomer binding to
CypA.

Recent studies by Lutomski and Zhang have provided information on the formation of
CypA dimers and trimers [31,32]. However, the biological significance of this phenomenon
has not been evaluated. Aligning with this data, the binding of Anle138b isomer to the
CypA dimer proved interesting. This dimer was obtained using ZDOCK (https://zdock.
umassmed.edu/), (accessed on 25 November 2022). The results are shown in Figure 5
(affinity: −7.5 kcal/mol).

The location of ligand binding was found to differ from that of the monomer (Figure 5a,b).
In the dimer, the ligand binds to the cleft surface formed by Arg55 (hydrogen bonding
and π-cation interaction), Phe113 (π-stacking), and hydrophobic interactions through the
Gln111 and Trp121 residues (Figure 5d). The chart of the bonds that stabilize the complex
is illustrated in Figure 6c. Thus, for the formation of a CypA dimer, the ligand was located
in the hollow formed by the interaction of the two CypA molecules.

https://zdock.umassmed.edu/
https://zdock.umassmed.edu/
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Figure 5. (a,b) binding of the Anle138b isomer molecule to the cyclophilin dimer (two views); (c)
interactions diagram of Anle138b isomer with cyclophilin dimer; (d) interaction options for Anle138b
isomer binding to the CypA dimer.

To further predict the possible interaction of the Anle138b isomer ligand with cellular
proteins, a molecular docking experiment was conducted for a more intricate complex
by employing the dimeric form of the known AαSyn/CypA (PDB ID 6I42) complex. The
dimer was obtained using ZDOCK, and the results obtained for the binding to Anle138b
isomer are shown in Figure 6 (affinity: −7.7 kcal/mol).

In this version of the analysis, a different position was identified for the most favorable
binding site compared to the dimer without the AαSyn fragment. It was found that the
Anle138b isomer molecule binds on the surface of the globule in the groove under the
chains of the AαSyn residues. Based on an analysis of the chart of the complex, the residues
responsible for such binding could be identified (Figure 6b). The binding of the ligand
occurs in a hollow formed by the surfaces of two cyclophilin globules, covered from above
by the alpha-synuclein chains; the main residues stabilizing the complex are the Lys76
chains A and C (hydrophobic interactions through long chains and π-cationic interactions),
and Thr68 residues (both chains, A and C). Further, Gly75A and Arg69C are involved in the
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formation of hydrogen bonds (Figure 6b). Simultaneously, the AαSyn fragment is directly
involved in the formation of the binding site.
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Figure 6. (a) Binding of the Anle138b isomer molecule to the dimer of the CypA complex (PDB ID
6I42). CypA subunits are shown in purple and orange, the AαSyn fragment is shown in green and
blue, the ligand structure is shown in red; (b) chart of interactions upon binding of Anle138b isomer
to the dimer of the CypA and AαSyn complex; (c) interactions diagram of Anle138b isomer binding
with CypA dimer.

When the binding of a ligand to a molecule is assessed, the interactions that occur with
an excess ligand must be analyzed. Such analysis is provided by cascade docking, in which
a ligand is added in a step-by-step manner, molecule by molecule, after the optimal position
of the previous ligand is incorporated into the target (see the Section 4). This approach
allows full-atomic modeling of the binding of many ligand molecules and the detection of
amino acid residues in the protein globule that can stabilize the formed complexes. Such
calculations were performed for experimentally known molecules: series 1, the AαSyn
fragment (PDB ID 7V4C); series 2, the full form of AαSyn (140 amino acid residues, PDB ID
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1XQ8); and series 3, the CypA complex–AαSyn fragment (PDB ID 6I42). Each structure
was surrounded by five Anle138b isomer ligand molecules.

Series 1. Results of cascade docking for a short AαSyn fragment are shown in Figure 7.
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Figure 7. Five Anle138b isomer ligand binding sites on a filament of AαSyn (PDB ID 7V4C). Individ-
ual Anle138b isomer ligands are numbered: 1—red, 2—yellow, 3—green, 4—blue, 5—violet.

The close localization of binding sites in the target protein should be noted (region:
His50 andThr72). The ligand molecules were oriented close to parallel stacking and were
characterized by similar energy characteristics, −5.7 kcal/mol to −6.9 kcal/mol (Table 1).

Table 1. Interactions of five Anle138b isomer ligand molecules with a filament of AαSyn (PDB ID 7V4C).

Interactions Residue AA Distance, Å Angle Ligand Atom Affinity
(kcal/mol)

First ligand

Hydrophobic

66A Val 3.86 – 95

−5.8

66A Val 3.60 – 95

69 A Ala 3.77 – 95

71 A Val 3.61 – 115

71 A Val 3.87 – 108

Hydrogen bonds

50 A His 3.35 121.47 –

52 A Val 2.18 156.21 –

52 A Val 1.84 157.17 –

Second ligand

Hydrophobic

53 A Ala 3.58 – 84

−6.9

55 A Val 3.94 – 91

71 A Val 3.63 – 75

71 A Val 3.77 – 76

Hydrogen bonds

50 A His 2.50 113.40 –

52 A Val 2.30 130.98 –

54 A Thr 3.00 136.63 –

Third ligand

Hydrophobic

47 A Gly 3.40 122.20 –

−6.372 A Thr 2.41 114.07 –

72 A Thr 2.91 105.00 –
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Table 1. Cont.

Interactions Residue AA Distance, Å Angle Ligand Atom Affinity
(kcal/mol)

Fourth ligand

Hydrophobic

52 A Val 3.48 – 45

−6.3
66 A Val 3.60 – 45

72 A Thr 3.92 – 30

Hydrogen bonds 70 A Val 2.13 149.27 –

Fifth ligand

Hydrophobic
46 A Glu 3.53 – 3

−5.7
49 A Val 3.64 – 23

Hydrogen bonds 48 A Val 2.11 163.86 –

π-cation 50 A His 4.16 – 17–21

The sweeps for this type of interaction are shown in Table 1. It is demonstrated that
structures are mainly stabilized via hydrophobic interactions with the residues, Val66
(Ligands 1 and 4), Val71 (Ligands 1 and 2), and Thr72 (Ligands 3 and 4), and hydrogen
bonds with the residues, His50 (Ligands 1 and 2) and Val52 (Ligands 1 and 2).

Series 2. Results of cascade docking for AαSyn (140 amino acid residues) are shown in
Figure 8.
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Figure 8. Five Anle138b isomer ligand binding sites on micelle-bound AαSyn (PDB ID 1XQ8).
Individual Anle138b isomer ligands are as follows: 1—red, 2—yellow, 3—green, 4—blue, 5—violet.

The analysis of the stabilization features of complexes in the presence of five molecules
of the Anle138b isomer ligand with a full-length AαSyn, as in series 1, revealed an extremely
close localization of the binding sites, which is especially evident against the background
of the extended structure of the molecule and its large molecular surface. The energy
characteristics of the positions of the ligand calculated herein (and for the variant of
cascade docking of the ligand molecules and the AαSyn fragment (series 1) range from
−6.7 kcal/mol to −5.8 kcal/mol (Table 2).

The sweeps for this type of interaction are shown in Figure 8. Consequently, the
structures were stabilized by hydrophobic interactions, hydrogen bonds, π-stacking, and
π-cation interactions. The most significant hydrophobic interactions in the ligand–target
complex include Lys43 (ligands 1 and 3), Val48 (ligands 3 and 4), and hydrogen interactions
with the Lys32 residue (ligands 1–3). Of note, the fourth ligand was only bound to ligands 2
and 3, without contact with the protein chain, forming a second (stacking) layer of Anle138b
isomer ligands (Table 2).
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Table 2. Interactions of five Anle138b isomer ligand molecules with micelle-bound AαSyn (PDB ID 1XQ8).

Interactions Residue AA Distance, Å Angle Ligand Atom Affinity
(kcal/mol)

First ligand

Hydrophobic
40 A Val 3.94 – 108

−6.7

43 A Lys 3.84 – 114

Hydrogen bonds

32 A Lys 3.40 111.29 –

40 A Val 3.36 149.31 –

40 A Val 2.61 108.87 –

43 A Lys 2.56 112.70 –

π-stacking 39 A Tyr 4.71 78.53 94–99

π-cation
43 A Lys 5.48 – 107–109, 111,

114, 115

43 A Lys 5.43 – 109–113

Second ligand

Hydrophobic 33 A Thr 3.79 – 91

−5.8
Hydrogen bonds

32 A Lys 2.47 138.24 –

36 A Gly 2.51 128.51 –

Third ligand

Hydrophobic

43 A Lys 3.96 – 62

−6.2

48 A Val 3.79 – 68

48 A Val 3.96 – 62

52 A Val 3.90 – 68

Hydrogen bonds
32 A Lys 2.37 129.57 –

52 A Val 3.29 112.57 –

Fourth ligand

Hydrophobic

45 A Lys 3.76 – 6

−5.548 A Val 3.55 – 6

49 A Val 3.99 – 7

Series 3. At the final stage of the work, cascade docking was carried out for the
experimentally known (PDB ID 6I42) complex of the AαSyn fragment and its partner
protein, CypA, as shown in Figure 9.

As this AαSyn–CypA target largely consists of a partner protein globule (and only
a short peptide strand of AαSyn), the distribution of binding sites for all five Anle138b
isomer ligands over the surface of the globule was expected. Only ligands 1 and 2 were
found at the peptide interface. The energy characteristics of the five positions of the ligand
calculated herein range from −7.1 kcal/mol to −6.6 kcal/mol (Table 3).

The sweeps for these interactions are shown in Figure 9. It was found that structures
were stabilized by hydrophobic interactions, hydrogen bonds, π-stacking, and π-cationic
interactions. For ligand 2, a halogen bond was found due to the presence of a bromine
atom in the structure of the Anle138b isomer molecule.

In summary, the generally selective nature of the binding of Anle138b isomer ligand
to alpha-synuclein molecules in different forms could be observed. For AαSyn complexes
with the CypA partner protein, the preferred binding site is the interface between the two
proteins. This study sought to assess the interactions of the ligand, whose interaction with
AαSyn was postulated. Further, other ligands with such activity should be examined.
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Figure 9. Five binding sites of the Anle138b isomer ligand of the complex of the AαSyn fragment and
cyclophilin (PDB ID 6I42). Individual Anle138b isomer ligands have the following: 1—red, 2—yellow,
3—green, 4—blue, 5—violet.

Table 3. Interactions of five Anle138b isomer ligand molecules with complex AαSyn–CypA (PDB ID 6I42).

Interactions Residue AA Distance, Å Angle Ligand Atom Affinity
(kcal/mol)

First ligand

Hydrophobic

81 A Glu 3.58 – 107

−7.1

82 A Lys 3.63 – 108

107 A Thr 3.68 – 96

Hydrogen bonds

81 A Glu 2.07 171.41 –

82 A Lys 3.13 146.9 –

82 A Lys 2.43 119.68 –

π-stacking 50 B His 4.00 15.64 107–111, 114, 115

Second ligand

Hydrophobic
76 A Lys 3.92 – 73

−7.0

76 A Lys 3.74 – 72

Hydrogen bonds

68 A Thr 2.33 128.37 –

75 A Gly 3.49 108.72 –

75 A Gly 2.54 109.73 –

Halogen bonds 80 A Gly 3.72 150.45 –

Third ligand

Hydrophobic

46 A Phe 3.79 – 52

−7.0

49 A Lys 3.24 – 62

67 A Phe 3.47 – 52

Hydrogen bonds

47 A Gly 2.94 115.96 –

47 A Gly 2.73 111.32 –

49 A Lys 2.52 129.52 –

49 A Lys 2.94 108.80 –

π-cation 49 A Lys 4.74 – 63–97
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Table 3. Cont.

Interactions Residue AA Distance, Å Angle Ligand Atom Affinity
(kcal/mol)

Fourth ligand

Hydrophobic

26 A Ala 3.74 – 45

−6.7
31 A Lys 3.44 – 625

79 A Tyr 3.57 – 29

π-cation 37 A Arg 5.36 – 40–44

Fifth ligand

Hydrophobic

88 A Phe 3.72 – 4

−6.6

105 A Pro 3.48 – 2

125 A Lys 3.94 – 15

125 A Lys 3.62 – 23

125 A Lys 3.59 – 14

Hydrogen bonds

85 A Asp 3.18 121.95 –

102 A Asn 3.26 127.71 –

104 A Gly 3.06 154.03 –

2.4. Molecular Dinamics: Characterization of the CypA and Anle138b Isomer Complex

Molecular dynamics experiments (GROMACS) were performed to determine the
binding energies for the studied target–ligand complexes. The cumulative evaluation of the
binding energies and the distribution of its components: van der Waal energy, electrostatic
energy, polar solvation energy, and solvent-accessible surface energy (SASA energy) are
presented in Table 4.

Table 4. Free interaction energies for studied ligand–target variant complexes (MM-PBSA analysis).

Ligand Anle138b
and Target

Van der Waal
Energy (kJ/mol)

Electrostatic
Energy (kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA Energy
(kJ/mol)

Binding Energy
(kJ/mol)

AαSyn–CypA
complex (PDB ID 6I42) −67.96 ± 34.5 −26.05 ± 29.6 53.2 ± 34.47 −7.7 ± 3.85 −48.44 ± 26.11

CypA dimer −151.56 ± 18.9 −34.54 ± 13.6 102.59 ± 18.1 −15 ± 1.33 −98.53 ± 22.74

Dimer of the
AαSyn–CypA

complex
−91.36 ± 33.8 −16.58 ± 2.3 71.63 ± 10.2 −9.87 ± 3.36 −46.11 ± 24.69

AαSyn (filament, PDB
ID 7V4C) −140.93 ± 47.68 −14.66 ± 5 78.87 ± 28.95 −14.37 ± 3.32 −91 ± 27.29

All energy components contribute significantly to the stabilization of the investigated
variants of sets, with the exception of polar solvation energy. The calculated binding energy
for ligand Anle138b isomer and AαSyn–CypA complex was −48.44 ± 26.11 kJ/mol, ligand
Anle138b isomer and CypA dimer −98.53 ± 22.74 kJ/mol, ligand Anle138b isomer and
dimer of the AαSyn–CypA complex −46.11 ± 24.69 kJ/mol, and ligand Anle138b isomer
and AαSyn filament (homotrimer) −91± 27.29 kJ/mol. The time bases of the calculated
binding energies are shown in Figure 10. The most stable in terms of cumulative binding
energies are the ligand complexes with CypA dimer and AαSyn (filament).

Next, we calculated the contribution of each amino acid to the calculated values of the
binding energy of each of the studied complex (Figure 10).

It was found that for the Anle138b isomer and AαSyn–CypA complex, the amino acid
residues Ile57, Phe60, Met61, Trp121, Leu122, and Phe113 contribute most to the calculated
binding energies (Figure 10a). At the same time, amino acids that were previously identified
as significant in the stabilization of this complex in molecular docking experiments did not
make a significant contribution to the calculated values of the binding energy.
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Figure 10. Contribution of target protein amino acids to the calculated binding energies (kJ/mol) with
the Anle138b isomer ligand: (a) AαSyn–CypA; (b) CypA dimer; (c) dimer of the AαSyn–CypA com-
plex; (d) AαSyn filament. In the figures, amino acids marked in yellow make a significant contribution
to the stabilization of the complex according to the results of molecular docking experiments.

For the second complex of Anle138b isomer and CypA dimer, we found that the most
significant amino acid residues for the stabilization of the complex are the same as have
been identified by the methods of molecular docking and molecular dynamics (Figure 10b).
Such amino acid residues may include Arg55, Phe60, Gln63, Thr73, Gly74, Ala101, Gln111,
Phe113 and Trp121. For the third Anle138b isomer complex and the dimer of the AαSyn–
CypA, there is also agreement between the results of assessing the contribution of amino
acid residues to complex formation: Thr68, Arg69, and Gly75 (Figure 10c). Additionally,
for the fourth variant of Anle138b isomer and the AαSyn filament, we also observed
the coincidence of the results of molecular docking and molecular dynamics for amino
acid residues: Val48, Val52, Val66, Val71. For the studied complexes, the van der Waal
energy, electrostatic energy, and polar solvation energy make the greatest contribution to
the cumulative estimation of binding energies.

3. Discussion

In this study, we aimed to highlight some “gaps” in understanding the potential
interactions of the Anle138b isomer ligand and the IDP, AαSyn. IDPs act as hubs in
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networks of protein interactions [33,34] and are important participants in cellular signaling
mechanisms, including the regulation of transcription, translation, and the cell cycle [35,36].
The functional “many-sidedness” of IDPs, which is mediated by the formation of different
types of protein complexes (protein–lipid raft, protein–protein, protein–ligand, protein–
nucleic acid), is extremely important for studying the molecular mechanisms implemented
in the cell in the state of “health” and “disease.”

The importance of studying the most probable variants of IDP interactions under
physiological conditions was highlighted herein. These variants are not only closely
associated with the implementation of normal cellular ontogenesis, but also with several
nosologies. Our study focused on neurodegenerative diseases mediated by the formation of
protein fibrils and aggregates (PD and AαSyn). Aligning with the above, the content of IDPs
(25% of the total proteome) in the cell is strictly regulated to ensure accurate signaling in the
cell cycle, while mutations in the protein-coding genes of IDPs or changes in the content of
IDPs in the cell are associated with the development of diseases in humans [37–39]. Point
mutation variants that cause PD have been annotated in the literature with high penetrance:
Ala30Pro [40], Glu46Lys [41], Gly51Asp [42], His50Gln [43], Ala53Val [44], Ala53Glu [45],
and Ala30Gly [46]. In some cases, carriers of point mutations in the AαSyn-coding gene
are characterized by a relatively early onset of the disease (30–40 years), rapid progression,
and severe cognitive impairment [47]. Of note, we revealed the participation (involvement)
of these sites of amino acid substitutions in the formation of different variants of complexes
between the ligand and alpha-synuclein molecule.

The presence of extensive unstructured regions in the AαSyn protein determines
the presence of partner proteins in the cell, primarily chaperones, which are great rep-
resentatives of agents that prevent the aggregation process that is destructive to cell life.
Cellular globular chaperone peptidylprolyl isomerases (PPIases) catalyze the cis/trans
proline isomerization of IDPs [48]. Cyclophilins are prominent representatives of PPIases
and are highly represented in cellular proteins. CypA accounts for 0.1–0.6% of all cytosolic
proteins [29]. Further, CypA plays an important role in the development of neurodegenera-
tive diseases in humans. The role of CypA in neurodegenerative disorders is associated
with the pathogenic aggregation of IDP [29], including the key pathogen in PD, AαSyn [49].
In a study by Favretto, two interaction sites between AαSyn and CypA were identified:
Glu46–Gln62 in the central part of AαSyn and Val118–Glu131 in the proline-rich C-terminal
region of AαSyn [29].

The structural plasticity and functional diversity of IDPs are “encoded” in the amino
acid sequence. Francois-Xavier Theillet (2013) aptly defined such code as the “alphabet
of intrinsic disorder” [26]. The sequences of IDPs are rich in amino acid residues that
promote disorders, such as proline, aspartic acid, methionine, lysine, arginine, serine,
glutamine, and glutamic acid, and contain few residues that promote “order,” namely cys-
teine, tryptophan, tyrosine, isoleucine, phenylalanine, valine, leucine, histidine, threonine,
and asparagine [27]. This alphabet was applied in our study to describe the results of
different docking options. Indeed, the AαSyn protein contains approximately 70% disorder-
promoting residues (Figure 11), which are organized into at least three distinct clusters
(regions: Met1–Val37, Ala56–Ala91, and Gly93–Ala140).

Herein, the possible interactions of the Anle138b isomer with AαSyn and CypA pro-
teins in different versions of the complex was described to enrich the current understanding
of processes that may occur in living cells. Using molecular docking methods and molecular
dynamics, we examined the most important events, in our opinion, that will expand the
current understanding of the pathogenesis of PD. Comparison of the results of molecular
docking and molecular dynamics showed good convergence for the most significant amino
acids involved in the stabilization of the studied complexes.
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Figure 11. Amino acid sequence of AαSyn. Disorder-promoting amino acid residues are marked in
red; pink blocks reflect clusters rich in disorder-promoting residues. Rectangles mark amino acid
residues involved in the stabilization of the Anle138b isomer–AαSyn and Anle138b isomer–AαSyn–
CypA complexes (according to molecular docking data).

4. Materials and Methods
4.1. Objects of Study

The low-molecular-weight drug, Anle138b isomer (Figure 12), is an oligomer modula-
tor and aggregation inhibitor developed based on a systematic high-throughput screening
campaign combined with medicinal chemistry optimization [25].
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Figure 12. Structural formulas 2D (a) and 3D (b) of the Anle138b isomer; (c) electrostatic potential
distribution for the Anle138b isomer molecule (according to the PM3 calculation, MOPAC 2021).

The value of the gas-phase heat of formation of the Anle138b isomer molecule is
positive and amounts to 16.6 kcal/mol, which is typical for aromatic compounds (Figure 12).
The Anle138b isomer ligand was detected after two consecutive screening rounds. Of note,
the ligand does not interact with the AαSyn monomer, but binds to the hydrophobic pocket
in the oligomeric states of the target protein, preventing the formation of the β-layer and
AαSyn aggregates [16]. Anle138b isomer specifically inhibits the formation of AαSyn in
oligomers in vitro and in the human cell line, HEK293 [50]. The physical and chemical
properties of Anle138b isomer are outlined in Table 5.
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Table 5. Physicochemical properties of the Anle138b isomer.

Ligand IUPAC (Formula) Class Mw, Da Donor
HB *

Acceptor
HB

SASA **,
Å2

Dipole
Moment,

Debay
Sizes Clinical

Phase IC50, nM *** Ref.

Anle138b
iso-
mer

(3-(1,3-
benzodioxol-5-yl)-

5-(3-bromophenyl)-
1H-pyrazolidine

pyrazolidine 347.21 2 4 313.74 1.61
13.514 Å
6.402 Å
4.381 Å

Preclinical 900 [51]

* hydrogen bond; ** solvent accessible surface area; *** H-SY5Y neuroblastoma cell model of alpha-
synucleinopathy.

AαSyn and CypA were selected as target proteins for the Anle138b isomer ligand
(Table 6). AαSyn belongs to a large group of internally disordered proteins, while CypA is
a cellular chaperone with a globular and compact structure.

Table 6. Structures of AαSyn and CypA used for molecular docking with Anle138b isomer.

Target PDB ID
(WebLink) Uniprot ID Shape of Protein Resolution, Å Ligand (Locus, a.a.) Method Length, a.a.

AαSyn
(micelle-bounded)

1XQ8
(https://www.rcsb.org/

structure/1XQ8, accessed
on 25 November 2022)

P37840
IDP *

– – NMR ** 140

AαSyn (filament)

7V4C
(https://www.rcsb.org/

structure/7V4C, accessed
on 25 November 2022)

P37840 3.30 – EM *** 140 ****

CypA

6I42
(https://www.rcsb.org/

structure/6I42, accessed on
25 November 2022)

P62937 Globular 1.38 AαSyn (1–13) X-ray 164

IDP * intrinsically disordered protein; NMR ** nuclear magnetic resonance; EM *** electron microscopy;
140 **** homotrimer.

4.2. Molecular Docking

The protein structures (as targets) were prepared for docking according to the standard
scheme for the Autodock Vina package, and the atoms (together with their coordinates) of
the solvent, buffer, and ligand molecules were removed from the PDB input file. Before the
numerical calculations were performed, a charge was placed on the surface of the proteins
using MGLTools. The center of the molecule and the parameters of the box («cells») were set
manually, ensuring that the entire protease molecule was placed within the computational
area of space.

We assembled the AαSyn–CypA dimer complex by rigid protein–protein docking
using the Z-Dock service. This procedure has been repeatedly tested by various teams of
researchers and is described in detail in the article [52].

The Anle138b isomer (ligand) structure model was drawn in the HyperChem molec-
ular designer; this structure was consistently optimized in the AMBER force field, and
then quantum-chemically in the PM3 (пaкeт MOPAC) [53]. The optimization consisted of
calculating the complete electronic structure of the molecule, characterizing the geometry of
all chemical bonds, and valence and torsion angles of the molecule. In the same calculation,
the distribution of partial charges on the surface of the ligand and its dipole moment were
determined. The ligands in the docking calculations had maximum conformational free-
dom. Of note, rotation of the functional groups around all single bonds was allowed. The
charge arrangement on the Anle138b isomer molecule and its protonation–deprotonation
was performed automatically in the MGLTools 1.5.6 package.

To obtain the in silico results, sequential (cascade, multiple) docking was applied. For
Anle138b isomer, the five binding sites were successively modeled as described below.
First, docking was performed for the «protein–ligand» complex. Thereafter, the model was
augmented with another ligand (i.e., three-monomer chain) and so on. Thus, «blind» or
cascade docking was employed. First, the optimal position of the ligand was calculated;
the structure of the ligand (fixed at the docking site) became an integral part of the target.

https://www.rcsb.org/structure/1XQ8
https://www.rcsb.org/structure/1XQ8
https://www.rcsb.org/structure/7V4C
https://www.rcsb.org/structure/7V4C
https://www.rcsb.org/structure/6I42
https://www.rcsb.org/structure/6I42
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Therefore, this binding site (with a high affinity for the ligand) was blocked. The position
of the second ligand, whose molecule (in its optimal position on the globule) also became a
part of the target, was subsequently calculated. Ultimately, both bound ligands become part
of the receptor. These iterative searches and filling of the optimal binding sites on the target
surface were repeated until the positions of all five ligands were calculated. Of note, this
cascade docking is reasonable for modeling ligand–receptor interactions for excess ligand
molecules. Using this procedure, we successively excluded several possible binding sites
of ligands via stepwise filling of the available areas on the surface of the protein–ligand
complex. In the course of the analysis of the obtained complexes, the terms, «bonds»
(understanding drawn interatomic chemical bonds, hydrogen bonds between their donors
and acceptors) and «interactions» (mainly understanding hydrophobic bonds), were used.
In general, cascade docking enables modeling and analysis of the binding between the
protein and ligands in excess of ligands at the atomic level (Anle138b isomer).

The analysis of the docking results was nontrivial. To obtain the «sweeps» of the
interactions, the LIGPLOT+ package [54] was employed. From the three-dimensional
coordinates of the atoms of the protein–ligand complex, interaction diagrams depicting the
schemes of hydrogen bonds and hydrophobic contacts between the ligand and elements
of the main or side chain of the protein were generated. For in-depth analysis of the
interactions between the constituent parts of the complexes, the PLIP (Protein–Ligand
Interaction Profiler) package [55] was employed. They are distinguished by accuracy and
content. The PLIP server can detect and display the following interactions: hydrogen bonds,
hydrophobic interactions, water bridges, parallel stacking, perpendicular stacking, π-cation
bonds, halogen bonds, salt bridges, and metal complexes. In addition to the figure, the
package displays tables with distances, angles, and types of detected interactions, which
are important for the analysis of previously obtained experimental data.

4.3. Molecular Dynamics

Molecular dynamics simulations were performed using GROMACS software packet.
Ligand topology structure were obtained from the Automated Topology Builder (ATB)
resource [56]. Calculations were performed using GROMOS547 forcefield modified by ATB.
This forcefield was chosen because it supports bromine (contained in Anle138b isomer)
and there was already a prepared topology for the ligand in the ATB service (ATB provides
topology for GROMOS54a7 forcefield only). It is not as popular as AMBER Force Field but
still used in MD experiments [57].

The molecular dynamics process was based on one described in GROMACS protein–
ligand tutorial [58]. Simulations were run in cubic boxes. The box size was automatically
calculated by GROMACS based on complex size and adding 1 nm from the complex size to
the box border. The water SPC model was used as a solvent as it is supported by the chosen
forcefield and grants significant simulation performance improvement with acceptable
losses in accuracy. Systems were neutralized automatically with Na+ or Cl− ions (one at
a time). Then, energy minimization and equilibration steps were performed using the
configuration found in the same tutorial [58]. The molecular dynamics themselves were
performed for 100 ns in three different runs (using the same equilibrated complex topology
for each run). The simulation system temperature was set to 300 K.

Analysis was performed for the binding energies of the protein–ligand complex
trajectory following the MM/PBSA approach [59–61]. We performed analyses of the
binding energy of protein–ligand complexes and binding energy distributions for every
residue. This approach to trajectory analysis was based on one found in the study [62].

5. Conclusions

Pathophysiological conditions of neurodegenerative diseases are undoubtedly related
to protein misfolding. The organization of such proteins into relatively ordered structures,
such as fibrillar intracellular and extracellular amyloids, leads to tissue and brain damage.
In these pathologies, the appearance of protein aggregates indicates inefficient cellular
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reactions involving molecular chaperones that contribute to the correct folding of partner
proteins [30]. This study aimed to expand our understanding of the possible mechanisms of
interaction of the Anle138b isomer ligand, which is promising for clinical use and prevents
the aggregation of cellular amyloidogenic proteins. This field of study reflects the urgent
clinical need to develop neuroprotective molecules targeting potentially novel molecular
targets. Our understanding of the interaction of the Anle138b isomer ligand with variants of
the alpha-synuclein molecule was expanded, and the possibility of forming more intricate
complexes with CypA, a partner protein of alpha-synuclein, was revealed.

Our study paves the way for experimental confirmation, including an analysis of
mutant forms of alpha-synuclein, which cause high disease penetrance, early onset, and
rapid progression of PD.
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