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Abstract: Gastrointestinal disease is prevalent and broad, manifesting itself in a variety of ways,
including inflammation, fibrosis, infection, and cancer. However, historically, diagnostic technologies
have exhibited limitations, especially with regard to diagnostic uncertainty. Despite development of
newly emerging technologies such as optoacoustic imaging, many recent advancements have focused
on improving upon pre-existing modalities such as ultrasound, computed tomography, magnetic
resonance imaging, and endoscopy. These advancements include utilization of machine learning
models, biomarkers, new technological applications such as diffusion weighted imaging, and new
techniques such as transrectal ultrasound. This review discusses assessment of disease processes
using imaging strategies for the detection and monitoring of inflammation, fibrosis, and cancer in
the context of gastrointestinal disease. Specifically, we include ulcerative colitis, Crohn’s disease,
diverticulitis, celiac disease, graft vs. host disease, intestinal fibrosis, colorectal stricture, gastric
cancer, and colorectal cancer. We address some of the most recent and promising advancements for
improvement of gastrointestinal imaging, including unique discussions of such advancements with
regard to imaging of fibrosis and differentiation between similar disease processes.
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1. Introduction

Gastrointestinal disease includes a host of pathologies, often associated with inflam-
mation, infection, fibrosis, hemorrhage, malignancy, or some combination thereof. Gastroin-
testinal disease is prevalent, resulting in an estimated annual 3.8 million hospitalizations
and 255,407 deaths [1], with hemorrhage being the leading cause of associated hospital-
ization and colorectal cancer being the leading cause of associated death [2]. Shared signs
and symptomology present challenges with regard to diagnosis and definitive treatment
of gastrointestinal diseases. Priorities in the development of new diagnostic modalities
and techniques should therefore include improved differentiation between similar disease
processes, early diagnosis, and minimizing invasiveness of diagnostic technologies, ulti-
mately leading to improved outcomes and minimal complications. Gastrointestinal disease
diagnostics rely heavily on imaging modalities to provide insight into the macroscopic
structural abnormalities associated with these pathologies. Colonoscopy has supplanted
barium enema as a mainstay for assessment and diagnosis of lower gastrointestinal dis-
eases. However, it nonetheless presents several challenges including risk of complications
from anesthesia and bowel perforation, especially in pediatric patients and those with
co-morbidities [3], as well as issues with patient compliance [4]. This has driven increases
in use of technologies such as computed tomography (CT) and magnetic resonance imaging
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(MRI) which have shown recent potential through greater optimization of equipment set-
tings, increasing their effectiveness and applicability. Further advancements in molecular
imaging of gastrointestinal disease provide greater diagnostic information on a cellular and
molecular level to aid in clinical decision-making. Utilizing advanced imaging modalities
and applications is likely to reduce subjectivity in diagnostics, reduce the risk of observing
a small area not representative of the affected region of the gastrointestinal tract, and
maximize safety. In this review, we address many of the recent advancements regarding
imaging of the gastrointestinal tract, including novel technologies or applications which
allow for fibrosis identification and differentiation between similar disease processes.

2. Inflammation

Inflammation is caused by autoimmunity or an immune response to infection, injury,
irritants, and other triggers. Inflammation and infection account for approximately one
quarter of cancer-causing factors, impacting pathophysiology and progression through their
participation in cell growth, survival, and metastasis [5,6]. A significant challenge faced
by the field of inflammatory gastrointestinal disease diagnostics is differentiation between
similar disease processes, such as ulcerative colitis and Crohn’s disease. Machine learning
technologies, biomarkers, and other recent advancements discussed here aim to address
this. While great strides have been made in gastrointestinal inflammation diagnostics, there
is tremendous room for improvement to maximize safety, specificity, and sensitivity while
minimizing subjectivity in the diagnostic process.

2.1. Inflammatory Bowel Disease

Inflammatory bowel disease refers to chronic gastrointestinal inflammation, encom-
passing ulcerative colitis and Crohn’s disease. While IBD can occur at any age, the peak age
of onset occurs from 15–30 years of age [7]. It is estimated that up to 20% of people with
IBD are diagnosed during childhood [8], and the incidence and prevalence of pediatric IBD
is increasing worldwide [9]. Ulcerative colitis (UC) is a chronic and often intermittent or
relapsing inflammatory disease, characterized by a host of non-specific symptoms. These
include nausea, fatigue, weight loss, bowel obstruction, diarrhea, and abdominal pain [10].
Endoscopic signs include bleeding, ulcerations, granularity, and abnormal vascularity,
among others [11]. The etiology of UC is suspected to be a combination of heritable, envi-
ronmental, and immune factors with intestinal microbiota [12] and disruption by bacterial
infection [13] also potentially playing a role. Additionally, cytomegalovirus increases sever-
ity of inflammation and other symptoms in the context of UC [14,15]. Currently, UC is
primarily diagnosed by clinical signs and symptoms, exclusion of infection, and endoscopy
with more definitive confirmation by biopsy and histopathology [16,17].

Crohn’s disease (CD) generally presents similarly to UC, with the primary distinction
being the potential presence of lesions anywhere along the alimentary canal in CD [18]
as opposed to the relative localization in the colon in UC. Although, disease is localized
exclusively to the colon in 25% of CD patients [19]. The transmural nature of CD is also
unique, predisposing CD patients to penetrating lesions or stenosis of the bowel, and
indicating benefit of cross-sectional imaging modalities such as computed tomography
and magnetic resonance imaging which can better assess this transmural nature [20]. In
addition, cross-sectional imaging allows for assessment of small intestine not amenable to
endoscopic evaluation.

Differences in treatment standards require differentiation between UC and CD, though
this is not achieved in approximately 5% of patients with chronic inflammatory bowel dis-
ease who ultimately remain classified as “indeterminate colitis” [21]. A recently developed
machine learning model may allow for more definitive diagnosis through utilization of
RNA sequencing to differentiate between the two disease processes [22]. The disadvan-
tage to this technique is the biopsy-associated risk, though biopsy is generally already a
component of standard of care diagnostics. Nonetheless, there is certainly potential for
development of a less invasive means of diagnosis and differentiation of CD and UC which
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is not reliant on biopsy. Aside from the biopsy-related risks associated with anesthesia
or potential for bowel perforation, there is a tremendously increased risk associated with
obtaining a biopsy on patients who potentially have bowel infections or are passing large
volumes of diarrhea. Novel molecular biomarkers may provide a strong alternative, rely-
ing on samples such as blood and fecal matter which are non-invasive [23], and imaging
technologies may hold promise in this area as well.

2.2. Diverticulitis

Diverticulitis, diverticular inflammation, is the leading cause of colon operations and
gastrointestinal-related hospitalization [24,25]. It can be classified as uncomplicated or
complicated, with complicated diverticulitis being characterized by abscess, phlegmon,
perforation, obstruction, or bleeding [26]. In addition, there exists a potential for fistula
or stricture formation. Due to the microbial nature of diverticulitis, antibiotics are of-
ten utilized in medical management of acute complicated diverticulitis, though surgical
management is also common.

Diverticulitis patients often present with persistent left lower quadrant abdominal
pain or tenderness, abdominal distention, and a host of non-specific abdominal symp-
toms. Diagnosis of the disease is generally through clinical signs and basic laboratory
testing, including a complete blood count, C-reactive protein measurement, metabolic
panel, and urinalysis, with computed tomography being used to further determine disease
severity [27]. Diverticulitis is frequently misdiagnosed, demanding improvement in diag-
nostic capabilities. A combination of biomarkers, i.e., fecal calprotectin [28] and elevated
C-reactive protein levels [29], with symptomatic presentation may reduce misdiagnosis [30].
To better overcome misdiagnosis of diverticulitis and IBD, use of newly emerging imaging
technologies may also be helpful.

2.3. Celiac Disease

Celiac disease is a prevalent disease which is caused by genetic determinants and
triggered by gluten consumption, impacting 0.5–1% of the population globally [31]. While
multifaceted, celiac disease most often presents as an immune-mediated enteropathy
triggered by development of gluten peptides subsequent to gluten consumption [32]. These
immune responses ultimately result in small intestinal mucosal inflammation and damage
as well as malabsorption in genetically predisposed individuals [33].

While celiac disease has effective diagnostic biomarkers, tremendous gaps in effective
treatment remain. Diagnosis of celiac disease is generally achieved through serological re-
sults prior to and following a change to a gluten-free diet and through duodenal biopsy [31].
However, serology may be sufficient due to its prediction accuracy and minimal invasive-
ness, potentially eliminating the need for biopsy [34]. Novel biomarkers identify potential
informants of celiac disease in response to gluten exposure, such as inflammatory plasma
cytokines, with IL-2 being the most prominent and longstanding [35,36]. Overall, diagnosis
of celiac disease largely depends upon biomarker assessment, eliminating the need for
imaging modality use.

2.4. Imaging Inflammation

Colonoscopy is perhaps the most common and important mechanism by which inflam-
matory bowel disease is imaged and pathologically diagnosed [37]. However, extraordinary
expertise and precision are required for proper interpretation of and differentiation between
images from UC and CD patients. Recently, a convolutional neural network was established
to mitigate this issue. ResNeXt-101 classified endoscopic images of CD, UC, and healthy
bowel at an accuracy rate of 90.91% in per-patient analysis, superior to rates of a majority
of clinicians, indicating its potential for future clinical application [38] (Table 1; Figure 1).
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Table 1. Summary of pre-existing and newly developed imaging modalities for inflammation, fibrosis,
and cancer in the GI tract.

Disease Modality Citation

Inflammation

IBD

Endoscopy and Convolution Neural Network (CNN) [38]

Endoscopy [39]

Endoscopy and Deep Learning CNN [40]

Computed Tomography (CT) Enterography [41]

Magnetic Resonance (MR) Enterography [42]

MR Enterography: Diffusion Weighted Imaging [43]

Chromoendoscopy [44]

Transabdominal Ultrasound [45]
18F-FDG Positron Emission Tomography (PET)/MR
Enterography

[46]

Multispectral Optoacoustic Tomography (MSOT) [47]
[48]

Diverticulitis

Ultrasound [49]

Colonoscopy [50]

Magnetic Resonance Imaging (MRI) [51]

CT [52]

Celiac Disease

Endoscopy [53]

CT [54]

Ultrasound [55]

Fibrosis

Graft versus Host Disease

18F-FDG PET [56]

MRI [57]
18F-FDG PET and MRI [58]

Ultrasound [59]

CT [60]

Intestinal
Fibrosis

MRI: Diffusion Kurtosis Imaging [61]

CT Enterography:
Radiomic Model [62]

CT Enterography: Deep Learning Model [63]

Magnetization Transfer Imaging and Native T1 Mapping [64]

Cancer

Gastric Cancer

Multidetector Row Computed Tomography [65]

MRI [66]

Endoscopic Ultrasound [67]
18F-FDG-PET/CT and Laparoscopy [68]
18F-FDG-PET/CT [69]

Colorectal
Cancer

Colonoscopy and Sigmoidoscopy [70]
18F-FDG-PET/CT [71]

CT [72]

CT + Artificial Intelligence (AI) and MRI + AI [73]

MRI [74]

Similarly, a deep learning convolutional neural network-based diagnosis system has
been developed based on endoscopic images and videos to score and predict gastrointesti-
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nal inflammatory activity [40]. However, applications of these deep learning advancements
reach beyond endoscopy. Another recently developed system utilized multiple deep
learning networks to classify intestinal inflammation based on micro-ultrasonography,
allowing detection prior to human detectability by micro-ultrasound or endoscopy [75].
Machine learning opportunities to minimize inconsistency and remove subjectivity from
the diagnosis process are becoming increasingly abundant (Figure 1).
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Figure 1. Machine learning- and clinician-derived data [38,62,63] were compiled into the depicted
graph to demonstrate accuracy as measured by either percent or AUC. In each case, machine learning
algorithms performed on par or better. This is anticipated to reduce human error in accurate diagnosis
(original graph).

The associated hallmarks of inflammation provide several surrogates for measuring
inflammatory disease processes. In addition to endoscopy, CT enterography (CTE) is
often used as a means of imaging IBD to identify increased thickening of the intestinal
wall [11,41]. Similar parameters can also be measured using intestinal ultrasonography [76]
and magnetic resonance enterography [77]. A recent development in the use of the latter
involves utilization of very small superparamagnetic iron oxide nanoparticles (VSOPs) as
a contrast agent to detect intestinal inflammation and extracellular matrix composition
changes. The mechanism depends on the altered abundance of glycosaminoglycans such
as hyaluronic acid in response to changes to the extracellular matrix and inflammation.
These factors impact VSOP binding and, thus, MRI image enhancement by VSOPs [78].
18F-fluorodeoxyglucose (FDG)-PET/CT and ultrasonography techniques can also be used
to determine molecular information about the gastrointestinal tract including protein
dysregulation [79], immune cell presence [80], or biochemical activity [81] through use of
targeted contrast, all suggesting future improvements in these fields.

Multispectral optoacoustic tomography (MSOT) is a non-invasive imaging technology
which utilizes near infrared light to reduce photon scatter compared to optical imaging
modalities [82]. It thus provides increased imaging depth without the sacrifice of resolution
observed in optical imaging modalities. Exogenous agents are utilized to visualize select
chromophores in the NIR-II window for high-resolution imaging of ulcerative colitis [83] or
microparticles within the gastrointestinal tract [84]. In addition to use of exogenous contrast
agents, MSOT can provide visualization and quantification of endogenous contrast agents
such as oxygenated and deoxygenated hemoglobin which serve as proxies for perfusion
and, thus, inflammation [85]. MSOT has been shown to be effective in preliminary clinical
and pre-clinical models of CD [48,86] and colitis [47,87] (Figure 2). While no studies
to date have directly investigated the efficacy of MSOT in diverticulitis assessment, the
properties and advantages of the optoacoustic effect suggest potential benefit for diagnostic
application in determining diverticular inflammation.
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Figure 2. MSOT can visualize colitis (A,B) and Crohn’s disease (C,D) by utilizing differential levels of
oxy- and deoxyhemoglobin. (A) Control murine model with no detectable areas of colitis. (B) Murine
model treated with enterotoxigenic Bacteroides fragilis, resulting in visually concentrated areas of
colitis (yellow arrows). (C) Intestinal wall of a patient in remission from Crohn’s disease, showing
previous inflammation seen as deoxyhemoglobin in the white box. (D) Intestinal wall of a patient
with active Crohn’s disease, showing inflammation seen as oxy-hemoglobin in the white box. Panels
A and B are adapted with permission from [47]. Panels C and D adapted with permission from [86].

3. Fibrosis

Fibrosis is the accumulation of extracellular matrix components, primarily collagen,
in tissues of various organ systems, often leading to organ dysfunction and increased
mortality. Fibrosis generally occurs in response to inflammation, cancer, and trauma, as
well as heritable diseases such as cystic fibrosis. Gastrointestinal fibrosis and stricture often
play a role in diseases such as Crohn’s disease [88,89]. Meanwhile, other gastrointestinal
pathologies such as graft versus host disease (GvHD) or post-endoscopic submucosal
dissection stricture are almost exclusively characterized by fibrosis. Historically, gastroin-
testinal fibrosis has been difficult to identify. However, recent imaging advancements
provide promise to improvement of diagnostics and thus patient outcomes in this area.

3.1. Graft Versus Host Disease

Graft versus host disease is a life threatening disease process in allogeneic hematopoi-
etic stem cell transplantation as a result of donor T lymphocyte rejection of recipient
tissue [90]. The risk of this increases in cases of greater HLA disparity between the donor
and recipient, with other risk factors also having an impact [91]. GvHD is notably different
from graft failure, the rejection of donor tissue by the host. Briefly, the pathophysiology of
GvHD includes pre-transplant host tissue damage, followed by activation of donor T-cells
and inflammatory factor release which results in amplified tissue damage [92,93]. This
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ultimately results in widespread inflammation and multiorgan system fibrosis [94]. One
of the greatest challenges of GvHD is its nearly identical symptomatic presentation and
appearance on most imaging devices to colitis. Further, the immune suppressants required
for bone marrow transplantation put patients at greater risk of bacterial or viral-mediated
colitis, such as cytomegalovirus-driven colitis. As both diagnoses are therefore likely and
have divergent treatments, this diagnostic ambiguity can be associated with significant
morbidity and mortality. A relatively new and currently accepted diagnostic approach,
The Mount Sinai Acute GvHD International Consortium algorithm probability (MAP),
utilizes serum biomarkers ST2 and REG3α to determine damage to intestinal crypts in
the context of GvHD [95]. MAP is believed by many to be a superior prognostic indicator
to previous clinical standards, Glucksberg criteria and the International Bone Marrow
Transplant Registry severity index [96], which rely on patterns of organ involvement and,
in the case of Glucksberg criteria, clinical performance [97,98]. However, while the MAP
test may provide significant value in predicting non-relapse mortality, the acuity of the
disease in many patients calls for a more rapidly and readily available means of obtaining
diagnostics which can inform acute treatment. Recently, we have aimed to address this
through use of 18F-fluorothymidine (18F-FLT) for GvHD assessment (Figure 3).
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3.2. Intestinal Fibrosis and Colorectal Stricture

Intestinal fibrosis, specifically including colorectal strictures, can provide an extreme
degree of patient discomfort, potentially detrimental to quality of life [99]. Due to the
relationship between inflammation and fibrosis, colorectal strictures are not uncommonly
observed in patients with inflammatory bowel disease or diverticulitis. Strictures can also
occur in response to surgical intervention or ischemic events [100]. Yet another potential
cause of intestinal stricture is procedural intervention. A prime example is that which occurs
in response to endoscopic submucosal dissection (ESD), known as post-ESD stricture. ESD
is a relatively recent advancement in gastrointestinal neoplastic therapy. Stenosis, among
other complications, occurs much more frequently in ESD relative to endoscopic mucosal
resection, the comparable technique [101]. However, these risks may be outweighed by
the decreased recurrence rates following ESD procedures relative to endoscopic mucosal
resection [102]. Nonetheless, the fibrosis resulting from the procedure can result in strictures.
ESD procedures involving circumferential ESD or subtotal dissection of ≥90% of the rectal
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circumference serve as an independent risk factor for strictures [103]. This calls for an
efficient and non-invasive means of monitoring stenosis of post-ESD lesions, as well as
gastrointestinal tissue in patients with other risk factors, to allow for medical management
when appropriate. Imaging may provide that monitoring mechanism.

3.3. Imaging Fibrosis

Though the gap in adequate technologies suitable for imaging fibrosis has historically
been vast, a host of recent developments address this issue. While computed tomography
enterography (CTE) is not a novel imaging modality for gastrointestinal disease diagnostics,
various recent developments provide potential for improving its effectiveness as CTE was
not previously a reliable technology for imaging fibrosis. In 2021, a radiomic model was
developed which provided significantly greater accuracy in characterizing enteric fibrosis
than human radiologist capability [62] (Figure 1). However, while development of a
radiomic model made great strides in providing a method of evaluating intestinal fibrosis,
it has limitations which were addressed by the investigators through another machine
learning-based approach. As in intestinal inflammation, recent development of a deep
learning system has also provided increased accuracy and objectivity in interpretation
of intestinal fibrosis. Accuracy of fibrosis severity assessment by this novel CTE-based
deep learning model was greater than CTE assessment by two radiologists [63] (Figure 1).
Another recent study aimed to further characterize and resolve intestinal fibrosis grading,
also utilizing CTE. The authors developed a nomogram which combined clinical markers
and CTE-derived mesenteric abnormality findings, resulting in a successful differentiation
model between severity levels of intestinal stenosis [104].

As with CTE, MRI has long been used for gastrointestinal imaging. Benefits of MRI
include the ability to observe the bowel transmurally and from various perspectives. Recent
advancements have made MRI increasingly effective for imaging fibrosis. For example,
magnetization transfer imaging, a contrast mechanism sensitive to intestinal collagen, and
native T1 mapping, a quantitative technique capable of identifying fibrosis characteristics,
have both been established as promising advancements in the field of magnetic resonance
with regard to bowel fibrosis detection and differentiation [64]. Another example involves
use of diffusion weighted imaging. Diffusion weighted imaging capitalizes on the fact that
when tissues are inflamed, diffusion of water molecules is restricted [43]. Mapping of water
molecule diffusion is utilized, as quantified by the apparent diffusion coefficient (ADC).
With regard to fibrosis, the apparent diffusion coefficient has been found to be significantly
correlated with histopathologically derived inflammation and fibrosis scores, as well as per-
cent gain. Further, based on an established cutoff value, the apparent diffusion coefficient
correctly distinguished fibrosis with 72% sensitivity and 94% specificity, proving its po-
tential usefulness as a non-invasive technology contributing to fibrosis identification [105].
Building upon this is diffusion kurtosis imaging which allows for identification of tissue
diffusional heterogeneity through dimensionless quantification of deviation from Gaussian
behavior [106]. A study which confirmed significant ADC correlation with histologically
derived inflammation grades also showed that ADC and apparent diffusional kurtosis
were significantly correlated to histologically derived fibrosis grades. The authors further
showed that apparent diffusional kurtosis was able to differentiate absence of fibrosis or
mild fibrosis from moderate to severe fibrosis with a sensitivity of 95.9% and specificity
of 78.1%, indicating its potential for beneficial application to MRI use in bowel fibrosis
assessment [61]. Additionally, the aforementioned MSOT imaging technology has potential
for future intestinal fibrosis diagnostics due to the capability to detect collagen as a result
of exhibited optoacoustic signal [107]. Overall, relatively new technologies, as well as
numerous improvements and developments building on pre-existing technologies, have
potential to revolutionize the field of imaging fibrosis, improving diagnostic outcomes for
countless patients.
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4. Cancer

Cancer is a disease marked by the toxic over-proliferation of cells within the body.
Gastric cancer and colorectal cancer are both devastating diseases with complex, multifacto-
rial etiologies including causal influences such as diet, bacterial infection, and pre-existing
medical history. The biggest prognostic indicator for cancer is the stage at diagnosis, mak-
ing it imperative that the disease is identified early and that the stage of disease is precisely
determined. This staging uses a combination of biomarker testing and imaging techniques.

4.1. Gastric and Colorectal Cancer

Gastric cancer ranks fifth among cancers in diagnostic prevalence and third in mortality
worldwide [108]. Anatomically, gastric cancer is observed as cardia or non-cardia by
location in the uppermost and more distal portions of the stomach, respectively [109]. While
there are some similarities between the etiologies of cardia and non-cardia gastric cancer,
there are differences as cardia risk factors include obesity and gastroesophageal reflux
disease [110], while non-cardia risk factors include dietary factors, atrophic gastritis, and
Helicobacter pylori infection [110,111]. Gastric cancer patients commonly present with upper
abdominal pain and weight loss, as well as potential nausea, melaena, or dysphagia [112].
Biomarker testing and pathology reports are often used as diagnostic tools along with
traditional imaging technologies. Despite use of multiple standard imaging techniques, in
many instances poor molecular understanding and inter-reader variability result in ultimate
reliance on biopsy for improved diagnostic accuracy. Current diagnostic limitations result
in approximately 50% of patients presenting with advanced stages of the disease at time
of diagnosis and therefore having poor prognoses [108]. As technologies and contrast
agents are developed further, improvements in diagnosis and monitoring of gastric cancer
should follow.

Colorectal cancer (CRC) is the third most prevalent with the second highest mortality
rate of cancers worldwide [113]. While the disease is decreasing in overall incidence due to
improved screening, CRC is rising in the younger patient population [114]. CRC patients
often present with abdominal pain, lack of appetite, constipation, diarrhea, abdominal
distention, intestinal bleeding, and a host of non-specific symptoms [115]. There are many
additional non-invasive biomarker screenings which can be performed using stool samples,
including the fecal immunochemical test (FIT), high-sensitivity guaiac fecal occult blood
testing (gFOBT), and multitarget stool DNA (mtsDNA) tests [116]. Using biomarkers in
conjunction with one another, i.e., a combination of FIT and Fusobacterium nucleatum tests,
provides improved accuracy of diagnosis with regard to sensitivity and specificity [117].

More specifically, rectal cancer is defined as adenocarcinoma cases arising within
15 cm from the anal verge. Rectal cancer comprises around 30–40% of colorectal cancer
cases [118]. Successful management following endoscopic and radiographic staging is
achieved through a multidisciplinary approach including appropriate surgical intervention.
The prognosis is directly related to tumor extent, mesorectal infiltration, and achievement
of disease-free circumferential surgical margins [119].

4.2. Imaging Gastrointestinal Tract Cancers

Colonoscopy is a standard of care technology in the area of colorectal cancer (CRC)
screening, primarily due to its high sensitivity and specificity for detecting cancerous and
pre-cancerous lesions [120]. Colonoscopy utilizes a flexible endoscope to evaluate the
entire colon and rectum. Both colorectal cancer and adenomas ≥10 mm can be detected by
colonoscopy with a sensitivity of approximately 95% [121]. Sigmoidoscopy, a technology
which generally utilizes a similar preparation and mechanism to colonoscopy, can be per-
formed without anesthesia or oral bowel preparation when necessary [122], circumventing
some of the limitations of colonoscopy. However, as this modality is limited by failure to
evaluate the proximal colon, patients with positive sigmoidoscopy results generally will
require a colonoscopy follow up [123].
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In gastric cancer, endoscopic ultrasound is a preferred modality for differentiation
between submucosal and mucosal lesions due to its enhanced ability to distinguish distinct
layers of the gastric mucosa relative to other modalities [124]. Notably, EUS has been
demonstrated to distinguish T1 and T2 from T3 and T4 gastric cancers with 86% sensitivity
and 90% specificity [125] and detect N stage with an accuracy of 76.2% for staging and
88.5% for restaging, significantly higher than that of PET-CT [67]. However, despite its
strong ability to distinguish between the different gastric layers, EUS does have limitations,
specifically with regard to invasiveness and potential for human error.

In addition to conventional endoscopic imaging methods, MSOT has the potential
to expand into an endoscopic technique through development of specialized probes as
evidenced by related applications in gynecological disease [126]. MSOT not only benefits
from the aforementioned advantages related to circumventing photon scatter, but this
technique may offer advanced functional information compared to EUS. As stated, MSOT
has shown potential for imaging diseases that include fibrosis and inflammation due to dif-
ferential oxy/deoxyhemoglobin and collagen concentrations, the most viable endogenous
optoacoustic contrast agents [82]. This includes GI defects such as Crohn’s disease [48]
and ulcerative colitis [87]. As evidenced by MSOT imaging in dermatologic cancer [127],
breast cancer [128–130], and thyroid cancer [131], development of specific exogenous con-
trast agents will facilitate application of MSOT in a clinical setting for gastrointestinal
cancer imaging.

Computed tomography remains a first line imaging modality in cancer patients and
others presenting with abdominal pain. This is due in large part to its availability and
ability to identify a wide variety of pathological changes [28], despite risks associated
with ionizing radiation [132] and requirement for adequate gastric distention [133]. Recent
improvements to the spatial resolution of CT, specifically with multidetector computed
tomography (MDCT), prove to be beneficial in improving diagnostic accuracy, notably
evident in locoregional staging. MDCT demonstrated a 76.9% diagnostic accuracy for T
staging of gastric cancer compared to 74.7% by EUS in a comparative study, though EUS
outperformed MDCT in N staging accuracy [134].

The specificity of CT in detection of regional and distal lymph node metastasis can be
enhanced upon integration with 18F-fluorodeoxyglucose positron emission tomography
(18F-FDG- PET). As CT detects lymph node metastasis based on anatomical abnormality,
the presence of enlarged inflammatory nodes and minimally enlarged tumor-harboring
lymph nodes can impair accuracy of detection [133]. Therefore, 18F-FDG PET/CT is able
to further inform the diagnostic process as compared to routine CT alone. Though less
sensitive than conventional CT, the increased specificity provided by 18F-FDG PET/CT has
potential to reduce unnecessary interventions [69].

In addition to 18F-FDG PET, other PET techniques have been explored for gastric imag-
ing. A recent alternative method for assessment of tumor-positive sentinel lymph nodes
includes a colloidal solution of albumin which has been labeled with 89Zr for preferential
uptake in sentinel lymph nodes, detectable with PET/CT. The study yielded clear visual-
ization of cancerous foci, providing the surgeon with valuable information pre-operatively
to ensure complete removal of cancerous lesions (Figure 4) [135].

An additional example of PET imaging that differs from conventional 18F-FDG-based
contrast is the use of radiolabeled I124-trastuzumab. I124-trastuzumab undergoes pref-
erential uptake in HER2-positive tumors relative to HER2-negative ones, allowing for
visualization of HER2 positivity in both primary and metastatic lesions in gastric cancer pa-
tients using PET imaging [136] (Figure 5). Yet another PET application, the aforementioned
18F-FLT imaging, has been utilized in imaging of proliferative processes, specifically in
cancer and to identify repopulation in proliferative systems such as the hematopoietic and
lymphocyte systems [137–140]. Touted as a major advantage over 18F-FDG, 18F-FLT does
not identify predictably inflammatory events in differentiated hematopoietic cells such as
neutrophils [141]. However, 18F-FLT does identify certain disease processes that have been
considered inflammatory systems. Furthermore, in the explosion of therapies that modulate
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the immune system, including drugs such as checkpoint inhibitors, 18F-FLT imaging has
been useful to identify strong lymphocyte proliferation associated with immunologic re-
sponse [138,142,143]. Utilization of 18F-FLT as a modality to evaluate and monitor response
of lymphocytic systems continues to expand and 18F-FLT could be utilized as an imaging
biomarker of lymphocytic inflammatory response via identification of lymphocyte prolif-
eration [144]. Overall, while PET imaging is not without its disadvantages, namely high
expense and low sensitivity, it provides unique benefits to the diagnostic process [132,145].
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With regard to rectal cancer specifically, the initial local staging after endoscopic evalu-
ation is performed using either magnetic resonance imaging (MRI) with rectal protocol,
using thin-section MRI with pelvic phased-array coil, or transrectal ultrasound (TRUS)
which is also known as endorectal ultrasound [119,146]. While, overall, TRUS represents a
strong staging option, it is limited by the patient’s active symptoms, the tumor characteris-
tics and bulkiness, tumor location [147,148], and the inherent operator-dependent nature
of the procedure [149]. Other modalities such as MDCT may also be used to image rectal
cancer. However, although MDCT is often used in evaluation of metastatic rectal lesions, its
applicability for local rectal cancer staging has been challenged due to its limited sensitivity
in resolving bowel wall layers compared to other modalities. Therefore, it is considered
to be “usually not appropriate” as a modality for locoregional rectal cancer staging based
on the American College of Radiology (ACR) appropriateness criteria for pre-treatment
staging [150].

Radiomics is an increasingly attractive artificial intelligence-based imaging application
for rectal cancer in particular, and can be applied to multiple different imaging modali-
ties [151]. Use of radiomic features on MRI images improves sensitivity and specificity to
100% and 91%, respectively, while demonstrating a positive predictive value of 72–92% and
negative predictive value of 96–100% when used to assess treatment response [152,153].
Radiomics offers a non-invasive option and the ability to obtain high-quality imaging,
improving upon conventional MRI use in terms of lesion characterization, detection of pre-
treatment rectal cancer pathological feature biomarkers [154], and post-treatment surveil-
lance [152].

5. Conclusions

Gastrointestinal disease, specifically with regard to its inflammatory, cancerous, and fi-
brotic manifestations, is a significant issue with regard to hospitalizations, patient wellbeing,
financial implications, and more. The increasing prevalence of inflammatory gastrointesti-
nal diseases such as IBD is particularly striking, as observed in both adult and pediatric
patients. An ongoing clinical challenge involves refining the diagnostics of these disease
processes, related to both detection and, in many instances, differentiation. This is fur-
ther complicated by the co-presentation of many of these disease processes, making both
development and use of these differential diagnostic mechanisms difficult. Use of biomark-
ers and up-and-coming applications of imaging technologies prove to be promising in
mitigating this issue. In the future, the imaging technologies discussed in this review,
among others, could be combined in a multimodal context to provide a better picture of a
given pathology. Further, multiplexed diagnostics with these imaging technologies and
biomarkers or other diagnostic methods could provide an even greater comprehensive
analysis of patients’ individual disease processes.
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