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Abstract: Adverse drug reactions (ADRs) are a major issue to be addressed by the pharmaceutical
industry. Early and accurate detection of potential ADRs contributes to enhancing drug safety and
reducing financial expenses. The majority of the approaches that have been employed to identify
ADRs are limited to determining whether a drug exhibits an ADR, rather than identifying the exact
type of ADR. By introducing the “multi-level feature-fusion deep-learning model”, a new predictor,
called iADRGSE, has been developed, which can be used to identify adverse drug reactions at the
early stage of drug discovery. iADRGSE integrates a self-attentive module and a graph-network
module that can extract one-dimensional sub-structure sequence information and two-dimensional
chemical-structure graph information of drug molecules. As a demonstration, cross-validation and
independent testing were performed with iADRGSE on a dataset of ADRs classified into 27 categories,
based on SOC (system organ classification). In addition, experiments comparing iADRGSE with
approaches such as NPF were conducted on the OMOP dataset, using the jackknife test method.
Experiments show that iADRGSE was superior to existing state-of-the-art predictors.

Keywords: adverse drug reactions; graph isomorphism network; self-attention; multi-label learning

1. Introduction

Adverse drug reactions (ADRs) or side effects are substantially harmful or distress-
ing reactions, and are described as adverse responses to drugs beyond their anticipated
therapeutic effects [1]. In the United States, it is estimated that ADRs result in over 100,000
patient deaths per year [2] and the cost of ADRs-related morbidity was USD 528.4 billion in
2016 [3]. The process of drug-development involves a lot of monetary resources because it
involves a lot of clinical trials and tests [4]. Many ADRs are not detected in the early stages
of drug development, owing to restricted trial samples and time [5]. Thus, ADRs not only
jeopardize patient health but also result in wasted healthcare costs, and are considered
as a major global public-health problem. Traditional laboratory experiments to identify
potential ADRs are not merely cumbersome and low cost-effective, but also less effective in
the earlier phase. In recent years, algorithms in silico have been employed to speed up the
prediction process and reduce drug-development costs.

Among the existing studies, some utilize data mining to analyze potential ADRs from
large amounts of data and various sources of information; others adopts machine learning
methods to predict ADRs.

The available databases of ADRs have some limitations at present. The data collected
by the spontaneous reporting systems (SRS) and FDA Adverse Event Reporting System
(FAERS) are not comprehensive enough, and there are problems such as repeated declara-
tion. Drugs in the Side Effect Resource (SIDER) are limited to FDA-approved drugs only.
The content of the European Medicines Agency (EMA) and other large-scale databases
is complicated, and has no special retrieval of ADRs, which cause a lot of inconvenience
for the use of data. Considering the limitations of the existing database, some researchers
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have mined the relationship between drugs and ADRs from texts, including SRS (cover-
ing spontaneous reports of adverse drug-events by healthcare professionals or patients),
clinical narratives written by healthcare professionals, and electronic health records where
diagnostic records are stored [6]. Other valuable big-data sources include social media
posts such as health-related tweets, blogs, and forums [7]. Jagannatha and Hong trained
the recurrent-neural-network framework (RNN) at the sentence- and document-levels to
extract medical events and their attributes from unstructured electronic health records, and
revealed that all RNN models outperform the counterfactual regret minimization (CRF)
models [8]. An RNN model based on bi-directional long short-term memory (BiLSTM)
networks has been proposed to treat text in social media posts as a sequence of words, and
two BiLSTM models (BiLSTM-M2 and BiLSTM-M3) initialized with pre-trained embed-
dings perform significantly better than the BiLSTM-M1 model using random initialized
embedding, because the pre-trained word embeddings are more effective in capturing
the semantic similarity of words [9]. Ding et al. adopted character embedding and word
embedding and combined them via an embedding-level attention mechanism to permit the
model to determine how much information was used from the character-level or word-level
component [10]. Although the previous attention methods have obtained good results
in predicting ADRs, they only extract the individual semantic information entailed in
a single sentence representation. In order to capture the different semantic information
represented by different parts of the sentence, Zhang et al. developed a multi-hop self-
attention mechanism (MSAM) model, in which each attention step aims to obtain different
attention weights for different segments, in an attempt to capture multifaceted semantic
information for ADR detection [11]. A weighted online recurrent extreme-learning-machine
(WOR-ELM) method has been exploited to discriminate the boundaries of adverse drug
reactions mentioned in biomedical texts [12]. It can be concluded from the above studies
that both LSTM and the gate recurrent unit (GRU) are valuable tools for extracting ADRs
from textual data. However, the methods of mining the ADRs from the text can only be
used after the drug has been introduced onto the market, and cannot be used for the drugs
in the research process.

Machine learning methods used to identify ADRs can be divided into three categories:
similarity-based, network-topology-based, and matrix-decomposition-based.

The similarity-based methods are based on the fact that similar drugs have similar
properties. It has been recognized that drugs with similar chemical structures exhibit
similar biological activities; similar drug targets induce similar signal-cascade reactions, so
they have similar ADRs [13]. Zhang et al. proposed a new method of measuring drug–drug
similarity named “linear neighborhood similarity” to predict potential ADRs of drugs [14].
The diversification of drug information can enhance the predictive capability of such meth-
ods. In addition to drug chemical structures, drug target proteins, and drug substituents,
Zheng et al. also used drug treatment information to identify ADRs [15]. Seo et al. ap-
plied the similarity of single-nucleic-acid polymorphism, side-effect anatomical hierarchy,
drug–drug interaction, and target, and finally achieved better results by integrating the
four predictors, random forest, logic regression, XGBOOST, and naïve bayes, using neural
networks [13]. Liang et al. used a novel computational framework based on a multi-view
and multi-label learning method to construct important drug features to improve predictor
accuracy [16]. These predictors are similar in the use of learning classification models, and
the key difference lies in the vectorized representation of drugs and ADRs.

The associations between drugs and other entities in the above methods are not
integrated into the vector, so useful information may be lost. For this reason, the network-
based method is also used to predict ADRs, and the new ADRs are inferred from the
constructed network. Emir established a structural similarity network of drug chemical
formulas and an ADRs transmission network to predict the potential ADRs [17]. Knowledge
graphs (KGs) and their embedding process have become a useful tool in recent years, as
they can not only represent the rich relationships between entities, but also directly encode
these complex relationships as vectors. Using KG embedding to vectorize drugs and other
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entities is expected to better characterize drugs and other nodes. Bean et al. constructed a
KG with four nodes, and vectorized it using an adjacent matrix of drug nodes to predict
ADRs [18]. Emir et al. used KG to unify heterogeneous data from multiple databases,
and the prediction of ADRs was regarded as a multi-label classification [19]. Zhang et al.
designed a novel knowledge-graph-embedding method based on the Word2Vec model,
and constructed a logistic-regression classification model to detect potential ADRs [20].

The matrix-decomposition algorithm decomposes the adjacency matrix of drug-ADRs
pairs into multiple matrixes, and reconstructs an adjacency matrix to identify new drug-
ADRs pairs. Liu et al. proposed a method based on structural matrix-decomposition named
as LP-SDA, which is a label communication framework that links the chemical structure
of a drug with the FDA Adverse Event Reporting System to predict ADRs [21]. Timilsina
et al. integrated the bipartite graph which expressed the drugs and ADRs’ interactive
relationship and the drug–drug network, where the edges represent semantic similarity
between drugs using a matrix factorization method and a diffusion-based model [22].
DivePred was developed by Xuan et al., based on non-negative matrix factorization using
disease similarity, various drug features of drug chemical substructures, and drug target-
protein domains [23].

In recent years, graph neural networks (GNN) have been widely applied in vari-
ous fields, and focus on mining potential information from the network structure. GNN
has demonstrated its outstanding capability in the representation of biomolecular struc-
tures and relationships between molecules, and has received wide attention in the life
sciences [24]. Withnall et al. introduced attentional and limbic memory-schemes into an
existing message-passing neural network framework, and the prediction performance of
molecular properties has been improved [25]. Furthermore, self-attentive mechanisms are
frequently utilized in the field of natural language processing and are capable of efficiently
processing text sequence-data [26]. In training the DDI prediction model, Schwarz et al.
found that the model with an attention mechanism performed better than deep-neural-
network models without attention [27].

In the early stage of drug design, there is no other information except the chemical-
structure information of the drug. If the above methods relied only on the molecular
formula structure to predict ADRs, the performance was very poor. For example, Dey et al.
achieved an AUC of only 0.72 when using only the chemical structure of the drug to predict
side effects [28]. Inspired by the advantages of GNN and self-attentive mechanisms, we pro-
pose an ADR multi-label prediction model called iADRGSE, which includes a self-attentive
module based on drug substructure sequences and a graph network module on drug
chemical-structure maps. The structure of this dual-channel model can effectively adapt
to the different structural information of drugs, and improve the ability to predict ADRs.
To verify the performance of the model, we collected data from the adverse drug reaction
classification system (ADRECS), and classified the types of ADRs into 27 categories, in
accordance with system organ type (SOC). The iADRGSE demonstrated better performance
than other state-of-the-art methods in a multi-label ADRs prediction task.

2. Results and Discussion
2.1. Evaluation Metrics

ADRs prediction is a multi-label classification problem. The quality of multi-label
learning is evaluated as more complex than single-label classification, because each sample
is a label set. The metrics such as accuracy, precision, recall, AUC, and AUPR are frequently
used. The last four metrics set the parameter average = ‘macro’, which represents the
average of the metrics independently calculated over the 27 labels. Their formulas are
as follows:

Accuracy =
1
N

N

∑
j=1

(
TPj + TNj

)(
TPj + FNj + FPj + TNj

) (1)



Int. J. Mol. Sci. 2022, 23, 16216 4 of 17

Precision(macro) =
1
L

L

∑
i=1

(
N

∑
j=1

TPij

TPij + FPij

)
(2)

Recall(macro) =
1
L

L

∑
i=1

(
N

∑
j=1

TPij

TPij + FNij

)
(3)

where TP, TN, FP, and NP denote true positive, true negative, false positive, and false
negative, respectively. N stands for the count of samples, and L represents the number of
labels. Accuracy represents the proportion of drugs that are correctly predicted. Precision
stands for the fraction of drugs that are predicted to be positive which is actually correct.
Recall means the fraction of drugs that are truly labeled as positive which is correctly
predicted; AUC is the area under the receiver operating characteristic curve; AUPR indicates
the area under the precision recall curve.

2.2. Parameter Setting

We randomly selected 90% of the collated 2248 drugs as a training dataset for construct-
ing and training the prediction model, and the remaining 10% as an independent-testing
dataset, to test the constructed model. The selection of hyperparameter and feature-
evaluation experiments were all optimized by a five-fold cross-validation test.

There are four parameters which have the greatest impact on the performance of
the iADRGSE deep learning model: parameter h for the number of heads in attention,
parameter ε for the dropout rate, parameter ξ for the learning rate in the model training,
and parameter δ for the L2-regularization. It was observed from Figure 1 that when h = 2,
ε = 0.5, ξ = 0.001, δ = 0.001, the performance reached its optimal value. Generally speaking,
multiple heads are preferable to single heads, but more heads are not necessarily better.
As shown in Figure 1a, the performance of the model is similar when the heads are set
to 4 or 8, and the AUC is increased by 4.41% when the heads are 2. The effect of L2-
regularization on the model is illustrated in Figure 1b, where the model works better with
this hyperparameter of 0.001.
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(c) The performance of models under different dropout. (d) The performance of models under
different Learning rate.
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2.3. Feature Evaluation

We assessed the impact of various combinations of drug features on the forecasting
of ADRs, and used the model’s metric scores as an indicator of the usability of the feature
combinations. The results for different hierarchical feature combinations are displayed in
Table 1.

Table 1. Results for different combinations of baseline, iADRGSE, and iADRGSE features.

Features Set Accuracy Precision (Macro) Recall (Macro) AUC (Macro) AUPR (Macro)

CNN_FP2 0.7802 ± 0.0089 0.6474 ± 0.0213 0.7255 ± 0.0125 0.6726 ± 0.0145 0.7037 ± 0.0156
BERT_smiles 0.7754 ± 0.0084 0.6266 ± 0.0251 0.7246 ± 0.0091 0.6587 ± 0.0202 0.6987 ± 0.0150
Attentive_FP 0.7638 ± 0.0099 0.6748 ± 0.0130 0.7431 ± 0.0153 0.5669 ± 0.0234 0.6362 ± 0.0137

E + S 0.8074 ± 0.0083 0.7241 ± 0.0280 0.7350 ± 0.0145 0.7519 ± 0.0210 0.7590 ± 0.0156
C + S 0.8008 ± 0.0071 0.7251 ± 0.0120 0.7342 ± 0.0260 0.7545 ± 0.0163 0.7605 ± 0.0810
I + S 0.8044 ± 0.0081 0.7136 ± 0.0286 0.7282 ± 0.0172 0.7479 ± 0.0172 0.7533 ± 0.0172

E + C + S 0.8100 ± 0.0081 0.7369 ± 0.0256 0.7384 ± 0.0136 0.7628 ± 0.0148 0.7709 ± 0.0135
E + I + S 0.8078 ± 0.0081 0.7251 ± 0.0234 0.7342 ± 0.0138 0.7545 ± 0.0181 0.7605 ± 0.0138
C + I + S 0.8065 ± 0.0083 0.7245 ± 0.0305 0.7393 ± 0.0123 0.7580 ± 0.0125 0.7682 ± 0.0145

iADRGSE_Gin 0.7992 ± 0.0022 0.7450 ± 0.0103 0.7235 ± 0.0063 0.7358 ± 0.0113 0.7526 ± 0.0088
iADRGSE_no_Gin 0.7900 ± 0.0057 0.6888 ± 0.0323 0.7506 ± 0.0176 0.7098 ± 0.0179 0.7428 ± 0.0120

iADRGSE_
no_attention 0.8028 ± 0.011 0.7451 ± 0.0257 0.7302 ± 0.0117 0.7410 ± 0.0192 0.7619 ± 0.0139

iADRGSE_mean 0.7938 ± 0.0062 0.6793 ± 0.0352 0.7441 ± 0.0132 0.7206 ± 0.0161 0.7426 ± 0.0156
iADRGSE (ours) 0.8117 ± 0.0089 0.7434 ± 0.0266 0.7421 ± 0.0105 0.7674 ± 0.0147 0.7760 ± 0.0130

Note: E: Gin_Edge; C: Gin_Context; I: Gin_Infomax; S: based on sequence channel. iADRGSE_Gin: no sequence
channel; iADRGSE_no_Gin: no graph channels; iADRGSE_no_attention: sequence channel has no self-attention;
iADRGSE_mean: use the mean operation to fuse features. The best performance for each metric is shown in bold.

In this study, the graph channel generated the mutual information, the edge informa-
tion, and the context information of the drug molecule graph. We found that removal of
one or two of the graph channel features had little effect on the performance of the model,
but if the graph channel features were all removed, the performance of the model decreased
significantly, and the AUC especially was reduced by 5%. Consequently, graph-embedding
features are fairly significant in the model. In addition, in order to demonstrate that self-
attentive coding of sequential channels can extract task-related features, we carried out
experiments without encoders. The experiments demonstrated that the performance of the
model without the encoders decreased in all metrics, and the AUC was reduced by close
to 3%. We also compared feature-fusion methods by applying the mean value algorithm
with our method, and the results revealed that our model feature- fusion method was
more competitive.

2.4. Comparison of Feature-Extraction Methods of iADRGSE and Several Classic
Feature-Extraction Methods

We compared the feature-extraction methods of iADRGSE with other feature-extraction
methods, such as CNN_FP2, BERT_smiles [29], and Attentive_FP [30]; the hyperparameter
settings for these three baseline methods are given in Supplementary Table S1. CNN is
the most frequently used deep learning method in the field of vision. CNN_FP2 is the
method of mining FP2 information through the convolution neural network. BERT_smiles
use pre-trained bidirectional encoder representations from transformers (BERT) to extract
SMILES sequence features. Attentive is the method of mining molecular fingerprint infor-
mation though the graph attention-based approach. The results of the proposed iADRGSE
predictor and the above three feature-extraction methods are also presented in Table 1. It is
not difficult to find that the CNN_FP2 approach is better than the BERT_smiles and Atten-
tive_FP. Moreover, the iADRGSE_no_Gin method, which also uses FP2 as input, remarkably
outperforms CNN_FP2 by approximately 4% in AUC and AUPR. This demonstrates the
superiority of sequence-based self-attentive encoding methods in feature extraction. The
proposed iADRGSE predictor in this paper remarkably outperformed the above three
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feature-extraction methods in all metrics from Table 1, and outperformed CNN_FP2 by
approximately 3.15% in accuracy, 6.86% in precision, 9.19% in AUC, and 7.23% in AUPR.

Independent tests can better verify the robustness of the prediction models. We also
tested the performance of the iADRGSE and the above three feature-extraction methods
using the independent test set, and the results are listed in Table 2. The predictive results
of iADRGSE are very stable, at approximately 0.8196, 0.7632, 0.7461, 0.7735 and 0.7950 for
accuracy, precision, recall, AUC and AUPR, respectively. It can be observed from the table
that the accuracy score obtained by the current iADRGSE is significantly higher than that of
the other three models, as are the other three indicators, except that recall is slightly lower
than for BERT_smiles.

Table 2. Results of the baseline and iADRGSE on independent test sets.

Features Set Accuracy Precision
(Macro)

Recall
(Macro)

AUC
(Macro)

AUPR
(Macro)

CNN_FP2 0.8021 0.6960 0.7391 0.6990 0.7566
BERT_smiles 0.7949 0.6436 0.7523 0.6547 0.7196
Attentive_FP 0.7794 0.5791 0.7314 0.5398 0.6507

iADRGSE 0.8196 0.7632 0.7461 0.7735 0.7950

2.5. Comparison with Existing Predictor

Our model only used the chemical structure of the drug, which is helpful for the
detection of ADRs in the preclinical stage of drug development. To further illustrate
our approach, we compared the performance of iADRGSE with those of other models
employing only chemical structures (NFP [28], circular fingerprinting [31]), and two drug-
safety signal-detection algorithms (MGPS [32] and MCEM [33]), using the jackknife test
method. For convenience of comparison, the scores of the five indexes obtained by these
five predictors based on the OMOP dataset are listed in Figure 2. It can be observed from
the figure that the AUC obtained by the iADRGSE model is significantly higher than that
of the existing predictors, and remarkably outperforms the finest result of the comparison
method by approximately 7%, in AUC.
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In addition, using only the chemical-structure information of the drug, our model
achieved good performance on the drug-safety signal-detection task (AUC = 0.7877), which
provides a favorable complementary approach for toxicity detection in the early stages of
drug design.

2.6. Case Study

In this section, we undertake a case study to demonstrate the usability of iADRGSE in
practice. In accordance with the loss value, the top 100 drugs were selected for case analysis
to verify the ability of the model to predict potential ADRs. Next, comparing the predicted
results of these 100 drugs with the true values, we found 21 drugs with potential adverse
effects, whose predicted values are found in Supplementary Table S2. These 21 drugs had
a total of 23 pairs of potential adverse reactions, as shown in Figure 3. Finally, we analyzed
the predicted results in detail, and mainly focused on 23 pairs of potential adverse reactions,
in Table 3.
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Table 3. Potential adverse-drug-reactions.

Drug Name ADR Evidence

Pomalidomide Surgical and medical procedures clinicaltrials.gov (all accessed on 2
December 2022)

Pomalidomide Social circumstances PMID: 35085238
Ketorolac Surgical and medical procedures cdek.liu.edu

Prochlorperazine edisylate Infections and infestations baxter.ca
Trametinib dimethyl sulfoxide Ear and labyrinth disorders clinicaltrials.gov

Trifluoperazine Infections and infestations healthline.com
Desipramine hydrochloride Respiratory, thoracic and mediastinal disorders rxlist.com

Chlorpromazine hydrochloride Infections and infestations Unconfirmed
Eletriptan Congenital, familial and genetic disorders Unconfirmed

2-[1-methyl-5-(4-methylbenzoyl)
3-pyrrol-2-yl]acetate Musculoskeletal and connective-tissue disorders medthority.com

Alpelisib Ear and labyrinth disorders clinicaltrials.gov
Imipramine Musculoskeletal and connective-tissue disorders cchr.org.au

Delavirdine mesylate Congenital, familial and genetic disorders rochecanada.com
Delavirdine mesylate Delavirdine mesylate Unconfirmed

Tiagabine Congenital, familial and genetic disorders Unconfirmed
Minocycline anion Endocrine disorders medthority.com

Naratriptan hydrochloride Hepatobiliary disorders medthority.com
Sertraline Social circumstances medthority.com

Amlodipine besylate Injury, poisoning and procedural complications PMID: 25097362
Palonosetron Pregnancy, puerperium and perinatal conditions Unconfirmed

Rufinamide Neoplasms: benign, malignant and unspecified
(incl cysts and polyps) clinicaltrials.gov

Carvedilol phosphate Neoplasms: benign, malignant and unspecified
(incl cysts and polyps) clinicaltrials.gov

Maprotiline Neoplasms: benign, malignant and unspecified
(incl cysts and polyps) Unconfirmed

For these 23 pairs of potential adverse reactions, we applied the search tools provided
by medthority.com (accessed on 2 December 2022), reports from clinicaltrial.gov, and the
related literature in PubMed and et al., to find the supporting evidence for them. From
Table 3, we can observe that 17 of the 23 pairs of potential adverse reactions have evidence
for them, indicating that the accuracy of the model iADRGSE has been further improved.
For instance, the drug Pomalidomide carries a risk of social circumstances, which was
reported in the literature [34].

3. Materials and Methods
3.1. Dataset

ADRECS [35] is an adverse-drug-reaction database that contains 2526 drugs and
9375 types of ADRs. To guarantee the quality, the drugs data were screened strictly ac-
cording to the following criteria: (1) drugs without PubChem_ID were removed because
PubChem_ID should be used to acquire the drug SMILES in the PubChem database; (2)
drugs having no SMILES were removed. After following strictly the above two procedures,
we finally obtained an ADRs dataset that contained 2248 drugs. We classified the 9375
adverse-drug-reaction types into 27 categories according to system organ classification
(SOC). Finally, we obtained 2248 drugs, of which 27 belong to one ADR attribute, 32 to two
different ADR attributes and so on. Detailed information is shown in Figure 4.

clinicaltrials.gov
cdek.liu.edu
baxter.ca
clinicaltrials.gov
healthline.com
rxlist.com
medthority.com
clinicaltrials.gov
cchr.org.au
rochecanada.com
medthority.com
medthority.com
medthority.com
clinicaltrials.gov
inicaltrials.gov
clinicaltrial.gov
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For other details of the dataset, please see Figures 5 and 6. It is apparent that the
data is unbalanced. The label base and density of the dataset are 16.5 and 0.6111, re-
spectively. The base and density are relevant to the learning hardness of the multi-
label classifier, i.e., the lower the density and the larger the base, the more difficult
the multi-label learning process [36]. The dataset can be downloaded from the website
https://github.com/cathrienli/iADRGSE (accessed on 10 December 2022).

https://github.com/cathrienli/iADRGSE
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Figure 6. Label co-occurrence diagram, referring to the simultaneous occurrence of two labels; the
green circle represents the label, and the size of the circle is the frequency of that ADR label; the red
line connecting the two circles represents the simultaneous occurrence of these two ADR labels; the
color shade of the edges indicates the number of times this group of labels appears; the darker the
color, the more often this group of labels appears.

In this study, the same dataset as that investigated in Harpaz et al. [37] was adopted
for demonstration. The reason we chose it as a comparison dataset for the current study is
that the OMOP dataset is derived from real-world data, such as the FDA Adverse Event
Reporting System (FAERS) and data reported in recent papers. This dataset consisted of 171
drugs and four ADRs (acute kidney injury, acute liver injury, acute myocardial infarction,
and gastrointestinal bleeding). Dataset statistics are provided in Table 4.

Table 4. Dataset statistics.

Datasets Drug ADRS Labels

ADRECS 2248 27
OMOP 171 4

3.2. Problem Formulation

The core of our work is to construct a one-to-many mapping F : di →
{

lij
}Nl

j=1 between

a set of drugs D = {di|1 ≤ i ≤ Nd} and a set of ADR labels L =
{

lj
∣∣lj ∈ [0, 1], 1 ≤ j ≤ Nl

}
,

where Nd is the number of drugs and Nl represents the number of labels. For the multi-label
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ADR task, we define the label lj = 1 if the drug belongs to the j-th ADR class; otherwise,
lj = 0. In this study, each drug is expressed by two parts: molecular structure maps and
substructure sequences.

3.3. Overview of iADRGSE

The system architecture of iADRGSE is shown in Figure 7. The architecture can be
divided into feature extraction and prediction modules. In the feature-extraction module, a
dual-channel network with sequence channel and graph channel is constructed, to learn the
various structural features of drugs. In the graph channel, drug molecules are represented
as chemical structure graphs, and we use the pre-trained graph isomorphism network
(GIN) [38] to obtain various physicochemical properties of drugs. The sequence channel
is connected by three units of preprocessing, encoder and feedforward in tandem, which
aims to extract the substructural features of drug molecules. In the preprocessing unit,
word embedding is applied to generate dense vectors from drug substructure sequences,
and these vectors are fed to a downstream module for feature mining. The encoder mainly
utilizes the multi-head self-attention mechanism from the transformer [26] network to
perform a weighted combination of substructure embeddings. The feedforward unit
reduces the dimensionality of the encoded features to adapt to the subsequent prediction
task. Finally, in the prediction module, we concatenate diverse structural features learned
from the upstream phase and input them into the deep neural networks (DNN) to predict
the ADR labels.
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encoder unit with a multi-head self-attention mechanism. Finally, the feed-forward unit (a multi-
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Figure 7. iADRGSE framework. (a) Graph channel. We perform the RDKit tool to convert the
drug SMILES into chemical structure graphs and feed them into a pretrained GIN network, to
learn graph-based structural information. (b) Sequence channel. The preprocessing unit utilizes
Open Babel software to generate molecular substructure sequences from the SMILES of drugs.
Then, the substructure sequences are represented as one-dimensional sequence vectors through the
embedding layer. Next, the correlation information of each substructure is extracted further, using the
encoder unit with a multi-head self-attention mechanism. Finally, the feed-forward unit (a multi-fully
connected layer) receives encoded data from the upper layer to obtain the final sequence-based
structural information of drugs. (c) Prediction module. These two types of structural information
are concatenated and then mapped to the size of the labels, through an affine transformation for
multi-label prediction.
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3.4. Drug Molecular Representation

The simplified molecular-input line entry system (SMILES) is a specification in the
form of a line notation for describing the structure of chemical species, using short ASCII
strings [35]. We invoked the RDKit [36] tool to convert the SMILES of the drug, di, into a
molecular structure graph gi = (D, E), where node set D represents atoms and edge set E
represents chemical bonds. Node information carries atomic attributes such as atom type,
atomic number, atom degree, electrons, hybridization, aromatic, etc. Edge information
involves bond type, conjugated, ring, etc. Inspired by MUFFIN [37], in this study, we
adopted the information of the number and chirality of the atom and the type and direction
of the bond.

The FP2 fingerprint format Is a path-based fingerprint, which can be generated by
Open Babel [38]. FP2 can represent drugs as 1024-dimensional binary vectors according
to chemical substructures, with each dimension indicating the presence or absence of the
corresponding substructure. To avoid sparsity, the drug representation thus obtained is a
256-digit hexadecimal string.

3.5. Feature Learning
3.5.1. Graph Channel

In order to parse graph-structured data, the GIN model is used because of its powerful
function in the field of the graph neural network. The GIN model is pre-trained on
individual nodes as well as the entire graph, to learn local and global representations. The
iADRGSE model applies the pre-trained models of deep-graph information maximum [39]
(Infomax), raw edge-prediction [40] (Edge), and context prediction [41] (Context), based on
the GIN architecture, to generate the mutual information, Xm, the edge information, Xe,
and the context information, Xc, of the drug molecule graph, respectively.

The information-extraction process includes a message-passing stage and a readout
stage. The message passing is to conduct the aggregation function, Mt, to collect the
information of neighboring nodes and edges, and to fuse the aggregation information to the
current node through the update function, Ut. Therefore, message passing can be described
as below:

mt+1
u = ∑

vεN(u)
Mt
(
ht

u, ht
v, euv

)
(4)

ht+1
u = Ut

(
ht

u, mt+1
u

)
(5)

where t is the number of iterations, u denotes the uth node in the graph, gi, N(u) represents
the adjacent nodes of node u, ht

u stands for the intermediate state of node u at time, t,
euv ε E indicates the attributes of edge between u and v. In particular, both Mt and Ut
are inherently linear layers with the same dimension weight matrix W, which have been
used to transfer information between nodes. Finally, the eigenvector, Xi, of graph gi is
calculated by MaxPooling on the node representation at the t step. The readout phrase can
be formulated as:

X∗i = MaxPooling
(
ht

u | u ∈ gi), ∗ ∈ [m, e, c] (6)

3.5.2. Sequence Channel

Taking into account the sparsity of the substructure sequences, a word-embedding
layer is used to preprocess the sequences. The substructure sequence is a hexadecimal
string in which each of four substructures is represented by a hexadecimal digit. The
word-embedding module assigns a dense learnable embedding-representation for each
hexadecimal number, which are stored in a simple lookup table. The model retrieves the
homologous word-embedding in accordance with the index (i.e., hexadecimal number) of
the substructure. The layer-normalization [42] module re-standardizes the substructure-
embedding vectors using the mean, µ, and variance, σ2, across the embedding dimension.
Scale, γ, and bias, β, are learnable affine-transformation parameters and ε is a value added
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to the denominator for numerical stability. Therefore, the preprocessing feature, Ei, of the
drug, di, is calculated as follows:

Ei =
Embedding(qi)− µ√

σ2 + ε
∗ γ + β (7)

where Ei ∈ R256×dim′ , dim′ is the word-embedding dimension.
To explore the different types of relevance that may exist between molecular substruc-

tures, we employ a multi-head self-attention mechanism, consisting of multiple parallel
self-attention layers to encode substructure sequences. Each input vector, Ei,s, can be calcu-
lated out three new vectors, Qi,s, Ki,s, and Vi,s based on three different linear transformation
matrices, Wquery , Wkey, and Wvalue, respectively:

(Qi,s|Ki,s|Vi,s) = Ei,s

(
Wquery

∣∣∣Wkey

∣∣∣Wvalue

)
(8)

where s indexes the sth substructure embeddings in Ei, s ∈ [0, . . . , 255],
[Qi, s, Ki, s, Vi, s] ∈ R1×dv , [Wquery, Wkey, Wvalue] ∈ Rdim′×dv , dv is the vector dimension.
Based on the aforementioned three intermediate vector matrices, we perform an attention-
weighted sum over all substructures. The attention scores refer to the influence coefficients
between the upstream and downstream substructures of the sequence, and are computed
by the scaled dot-product of each substructure vector. For each substructure, s, the attention
score, αi,(s,j), of it and the substructure j ∈ [0, . . . , 255] can be calculated as follows:

αi,(s,j) = So f tmax

(
QT

i,sKi,j√
dv

)
(9)

These attention scores, αi,(s,j), and the vector, Vi,j, are weighted sum to generate a new
vector, Oi,s, to represent the substructure, s. All the substructure vectors are simultaneously
operated in parallel to obtain the new latent feature, Oi, of the drug, di.

Oi,s =
255

∑
j=0

αi,(s,j)Vi,s (10)

Oi = {Oi,0, .., Oi,s, .., Oi,255} (11)

For the head number of self-attention H > 1, the model actually runs the single-
head self-attention function with H times based on the different parameter matrices
Wh

query, Wh
key, Wh

value in parallel, and a new feature representation, Oh
i , of the drug can be

acquired, based on the hth self-attention head. These output values are concatenated and
once again linearly transformed by the parameter matric Wo ∈ Rhdv×dim′ to obtain output
Oi ∈ R256×dim′ . The multi-head process is depicted as:

Oi = concat
(

O1
i , .., Oh

i , .., OH
i

)
Wo (12)

Note that we set dv = dim′/H . To avoid the gradient problem, we add residual con-
nection [43] to the input and output of the multi-head self-attention layer. The connection
trick is to element-wise sum the output, Ei, of the previous preprocessing unit and the
output, Oi, of the current multi-head self-attention layer. Finally, the residual features are
transmitted through a layer-normalization module.

The fully connected feedforward-network consists of two linear layers, a batch-
normalization [44] layer and a non-linear activation function, in order to further abstract
and compress the latent encoded representation from the previous unit. Note that the
output, Oi, of the encoder unit is flattened before the linear transformation. The algorithm
of batch normalization is the same as layer normalization, and the difference lies in which
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dimension is biased. The mean and standard-deviation are calculated per dimension, over
the mini-batches. Ultimately, the substructure feature representation of the output of the
sequence channel can be formulated as follows:

X f
i = LeakyReLU

(
BN
(

Flatten(Oi)Wlayer1

))
Wlayer2 (13)

3.5.3. Multi-Label Classification

We spliced four structural features as drug representation, including mutual informa-
tion Xm

i , edge information Xe
i , context information Xc

i and substructure information X f
i .

That is, drug di can be marked as:

Xi = concat
(

Xm
i , Xe

i , Xc
i , X f

i

)
(14)

where Xi ∈ R4dim, dim denotes the dimension of each structural feature.
Subsequently, Xi is fed into a single-layer linear network parameterized by Wpred, and

an activation function is employed to output a predicted probability vector, Pi, where each
component is deemed as the likelihood of a label. The process can be defined as follows:

Pi = σ
(

XiWpred

)
(15)

where Wpred ε R4dim×Nl , σ refers to the sigmoid function for each Pi component.

4. Conclusions

In this study, we design a fast and effective prediction framework based on the fusion
of graph embedding and self-attentive encoder features, named iADRGSE, to predict
ADRs. Based on feature analysis and various kinds of experiments, the robustness and
performance of iADRGSE is testified. The case study is conducted, in which the top 100
drugs are selected for analysis, and the study demonstrates that the model is competent in
predicting the potential ADRs. For practical applications, a user-friendly online web server
for iADRGSE is built at http://121.36.221.79/iADRGSE (accessed on 10 December 2022),
which allows users to easily obtain results and brings great convenience to researchers.

iADRGSE obtains a better prediction performance than that of pervious methods. The
primary reason is that iADRGSE fuses the graph-embedding and self-attentive encoder
features of the drug, and these features are closely related to the prediction of ADRs.

It is anticipated that predictor iADRGSE will become a very useful tool for predicting
ADRs at the early stage of drug discovery.
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