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Abstract: Owing to several mutations, the oncogene Kirsten rat sarcoma 2 viral oncogene homolog
(KRAS) is activated in the majority of cancers, and targeting it has been pharmacologically challenging.
In this study, using an in silico approach comprised of pharmacophore modeling, molecular docking,
and molecular dynamics simulations, potential KRAS G12D inhibitors were investigated. A ligand-
based common feature pharmacophore model was generated to identify the framework necessary for
effective KRAS inhibition. The chemical features in the selected pharmacophore model comprised
two hydrogen bond donors, one hydrogen bond acceptor, two aromatic rings and one hydrophobic
feature. This model was used for screening in excess of 214,000 compounds from InterBioScreen (IBS)
and ZINC databases. Eighteen compounds from the IBS and ten from the ZINC database mapped
onto the pharmacophore model and were subjected to molecular docking. Molecular docking results
highlighted a higher affinity of four hit compounds towards KRAS G12D in comparison to the
reference inhibitor, BI-2852. Sequential molecular dynamics (MD) simulation studies revealed all
four hit compounds them possess higher KRAS G12D binding free energy and demonstrate stable
polar interaction with key residues. Further, Principal Component Analysis (PCA) analysis of the hit
compounds in complex with KRAS G12D also indicated stability. Overall, the research undertaken
provides strong support for further in vitro testing of these newly identified KRAS G12D inhibitors,
particularly Hitl and Hit2.

Keywords: KRAS; in silico; pharmacophore; virtual screening; molecular docking; molecular
dynamics simulations

1. Introduction

RAS genes (KRAS, HRAS, and NRAS) belong to the RAS family of small GTPases.
They cycle between an active GTP-bound state and an inactive GDP-bound state, and hence
function as molecular switches, depending on extracellular signals. The transition from
active to inactive form involves the changes in the conformation which is catalyzed by
guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) [1].
GEFs, primarily Son of Sevenless (S50S) homologs SOS1 and SOS2 help in the exchange
of bound nucleotide GDP into GTP [2]. GAPs aid in enhancing the intrinsic weak RAS
GTPase activity, thus catalyzing RAS inactivation [3]. Among the RAS family, KRAS is
widely mutated, with activating mutations in KRAS witnessed in nearly 30% of cancers.
In RAS protein, three major hotspots, G12, G13, and Q61, have been reported in the lit-
erature, where G12 comprises 83% of all KRAS mutations followed by G13 (14%) and
Q61 (2%) [4]. Various G12 mutations such as G12D, G12V, G12C, G12A, G12S, and G12R
have been reported [5]; however, G12D mutation is one of the most common [6,7] and is
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the focus of our research. The common strategies adopted for anti-RAS drug development
can be broadly classified into direct and indirect approaches. Direct approaches include
compounds that bind directly to RAS and interrupt the interactions between RAS and
GEFs/ effectors. Indirect approaches include: (1) inhibiting proteins such as farnesyltrans-
ferase or PDES that promote the association of RAS with plasma membrane; (2) targeting
proteins involved in RAS downstream signaling; (3) inhibiting synthetic lethal interaction
partners for mutant RAS and (4) targeting processes that are RAS regulated, for example,
macropinocytosis and autophagy [7]. Disappointing clinical trial results from the indirect
approaches have failed to offer any RAS drugs [8], hence, targeting RAS genes directly has
been considered as a viable approach. Relatively extensive research has been conducted on
identifying inhibitors for KRAS G12C, as the mutant cysteine would assist in irreversible
binding to small molecules [7,9,10]. With Sotorasib obtaining its FDA approval in May
2021 [10], a bright outlook is presented among KRAS researchers. Although the approval is
a milestone in the KRAS battlefield, with different mutations presenting different tumor
environments, the war continues. MRTX1133 [11], a selective G12D inhibitor developed by
Mirati Therapeutics, targets both active and inactive KRAS states; however, the mechanism
of action has not been published yet and the drug will most likely enter clinical trials
in early 2022 [7,12]. A cyclic peptide-KD2 showing binding to active state KRAS-G12D
was identified [12]. Nonetheless, owing to permeability issues, the compound is stated
to require further development [6]. Another cyclic peptide, KS-58, which disrupts KRAS
G12D interactions with SOS1 and BRAF, was identified, with suggestions for improving
its pharmacokinetic profile and dosage put forth by the authors [13]. Several computa-
tional groups are also working on identifying KRAS G12D inhibitors and the field seem
optimistic. Although first described as a proto-oncogene nearly 40 years ago [14], the first
FDA approval has come only after four decades. Early on, a high affinity for GTP and
lack of druggable pockets by virtue of its smooth surface were some of the reasons for the
failure to discern a KRAS inhibitor [11-14]. However, as a consequence of the discovery
of two pockets on the surface of RAS, namely, switch I and switch II, the undruggable
KRAS has been shown to be druggable indeed [3,15-18]. It is important to highlight that
the switches have different amino acid residue definitions. Some researchers define switch
I with residue numbers ranging from 2540 [15], 30-37 [16], 3040 [17], and 30-38 [18]. The
beginning of switch II falls between residues 58-60 and ends between 67-76 in different
research papers [19]. In our research, we have adopted the residue definition of Shokat
et al. [18], i.e., switch I spanning residues 30-38 and switch II spanning residues 60-76.
These two switches are held by y-Phosphate of GTP in a manner amenable for interactions
with SOS1 and SOS2 and downstream effectors. Several inhibitors that bind to a region
close to switch II were identified, such as ARS-853 [20], tetrahydropyridopyrimidines [21],
MRTX849 [22], and AMG510 [23]., However, their covalent nature restricts the usage to only
G12C mutations and cancers, with other KRAS mutations such as G12D, G12V, and Q61H
lacking the reactive cysteine to be an effective target for these covalent KRAS inhibitors [24].
Recently, Kessler et al. discovered BI-2852 as a direct inhibitor of KRAS that targets the
region between switch I and II. BI-2852 was shown to form polar interactions with Glu37,
Ser39, and Asp54, and by doing so, it blocks the interaction of KRAS with SOS and also
reduced pERK and pAKT levels [3]. It was observed that BI-2852 bound to GTP-KRAS
G12D with a nanomolar binding affinity (ICsy of 450 nM). Therefore, by using BI-2852
as a chemical probe, the intent of the research was to computationally identify chemical
compounds exhibiting higher KRAS G12D binding capabilities. Our study encompasses
a generation of pharmacophore models from previously reported KRAS G12D inhibitors
to retrieve important features for KRAS G12D inhibition followed by mapping of poten-
tial compounds from drug-like databases. Thereafter, molecular docking and molecular
dynamics simulations were implemented to identify probable KRAS G12D inhibitors.
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2. Results
2.1. Common Feature Pharmacophore Generation

Prior to the generation of the pharmacophore model, by utilizing the three KRAS
G12D inhibitors reported by Kessler et al. [3], we first discerned the important chemical
features for their activity. This was accomplished by the “Interaction Generation” tool in
DS. Based on the results, hydrogen bond acceptor (HBA), hydrogen bond donor (HBD),
ring aromatic (RA), and hydrophobic (HYP) were chosen as a criterion for common feature
pharmacophore generation. Ten common feature pharmacophore models were generated.
Models 1-8 displayed an identical score of 36.17 and models 9 and 10 each scored 35.96.
Further, we also checked for the fit value of our active compounds in models 1-8 and based
on higher fit values of 5.99, 2.88, and 2.48 for compound 1, compound 2, and compound 3,
respectively, Model 3 seemed promising. The selected pharmacophore model containing
2HBD, 2RA, 1HYP, and 1HBA, along with interfeature distances among them, is shown
in Figure 1. The characteristics of all 10 generated common feature pharmacophores are
outlined in Table 1.

B

HYP
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Figure 1. Selected common feature pharmacophore specifics. (A) Essential features for KRAS G12D
inhibition. (B) Interfeature distance (in A) among the features.

Table 1. Characteristics of the generated common feature pharmacophore models.

Model No. Features Score Direct Hit Partial Hit Max Fit
1 RRHDDA 36.17 11 00 6
2 RRHDDA 36.17 11 00 6
3 RRHDDA 36.17 11 00 6
4 RRHDDA 36.17 11 00 6
5 RRHDDA 36.17 11 00 6
6 RRHDDA 36.17 11 00 6
7 RRHDDA 36.17 11 00 6
8 RRHDDA 36.17 11 00 6
9 RRHDDA 35.96 11 00 6

10 RRHDDA 35.96 11 00 6

2.2. Pharmacophore Validation

To validate the chosen model, Model 3, a ROC curve was generated. Model 3 identified
all three active compounds as true positives, while seven out of eight inactive compounds
were identified as true negatives. The sensitivity of Model 3 was 1, thus indicating its
robust ability to pick out active KRAS inhibitors. The specificity obtained was 0.87. The
ROC determined by the area under curve (AUC) achieved a score of 1, thus indicative of a
perfect model. The ROC curve for Model 3 is shown in Figure S1. Although other models
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displayed perfect sensitivity of 1 by accurately discriminating the active inhibitors from
inactive inhibitors, their specificity score indicative of identifying true negatives was less
than that of Model 3. Model 10 displayed a specificity and sensitivity score on par with
Model 3, however, it displayed a score (35.96) lesser than Model 3 (36.17) (Table 1). Further,
a manual assessment of pharmacophore mapping of active and inactive compounds on both
models showed Model 3 to be a better fit. Hence, Model 3 was selected. The pharmacophore
validation parameters are outlined in Table 2.

Table 2. Validation parameters for the common feature pharmacophore models.

Model No.

Total Actives

Total Inactives ~ True Positives True Negatives False Positives False Negatives Sensitivity Specificity
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2.3. Virtual Screening

The compounds from IBS and ZINC were first filtered with Lipinski’s parameters
to ensure drug-likeness of potential inhibitor compounds. This resulted in 50,221 and
122,102 compounds from the respective databases. Further, ADMET filtering, based on
parameters mentioned in the Material and Methods section were performed for each of
the compounds from the two databases. Consequently, 15,603 and 34,329 compounds
were obtained from IBS and ZINC, respectively. These compounds were then mapped
onto the selected pharmacophore, Model 3. Based on this, 18 compounds from IBS and 10
from ZINC were retrieved. Therefore, a total of 28 compounds were subjected to further
molecular docking.

2.4. Molecular Docking

The crystal structure of KRAS G12D in complex with BI-2852 (PDB id: 6GJ8) [3] was
used for this study. The PDB structure has a resolution of 1.65 A. To examine the binding
affinity of 28 compounds obtained after virtual screening, we docked these compounds
at the binding site of the inbound inhibitor, BI-2852, which is used as a reference in this
study. Reference demonstrated -CDOCKER energy and -CDOCKER interaction energy
of 25.01 kcal/mol and 46.9 kcal/mol, respectively. Hitl, Hit2, and Hit4 displayed greater
-CDOCKER energy and -CDOCKER interaction energy than Reference. Hit3 displayed
higher -CDOCKER interaction energy and comparable -CDOCKER energy in comparison
to Reference. These scores are indicated in Table 3.

Table 3. Molecular docking energies of reference and hit compounds.

Compound -CDOCKER Energy (kcal/mol) -CDOCKER Interaction Energy (kcal/mol)
Hit1l 45.6694 53.1082
Hit2 35.3224 51.3697
Hit3 22.8951 49.2084
Hit4 43.3661 49.1899
Reference (BI-2852) 25.0164 46.9

Next, we examined the interactions of these ligands with the target protein. Reference
demonstrated a total of four hydrogen bonds, with switch I residue Glu37 (one bond),
Ser39 (one bond), and Asp54 (two bonds). Hit1 also formed a total of four hydrogen bonds:
one each with Leu6, switch I residue Glu37, Ser39, and Asp54 (as a part of a salt bridge).
Hit2 formed three hydrogen bonds: one with switch I residue Glu37 and two with Asp54.
Hit3 also demonstrated three hydrogen bonds (one each with Lys5, Ser39, and Arg41),
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while Hit4 demonstrated two hydrogen bonds with switch I residue Gly37. The hydrogen
bonds and other interactions between KRAS G12D and hit compounds are demonstrated
in Figure S2. These four hits were further subjected to molecular dynamics simulations.

2.5. Molecular Dynamics Simulations

Molecular dynamics (MD) simulation is a powerful tool to analyze the dynamic nature
of a protein-ligand complex at the atomic level. Accordingly, the best docked pose obtained
from molecular docking analyses of reference and hit compounds were subjected to a 100 ns
MD simulation with KRAS G12D.

2.5.1. RMSD and RMSF Assessment

RMSD is indicative of any changes in the atomic position from the initial structure and
is a quantitative measure for the stability of the structure.The average backbone RMSD for
the four hits was 0.12 nm, with very low standard deviations of 0.01, 0.005, 0.01, and 0.02
among the triplicate MD runs. For the Protein-Reference complex, the average RMSD was
0.15 nm for the three runs. The RMSD profile is shown in Figure 2. The initial increase in the
RMSD observed for all hits—protein complexes are due to system adaptability. Minimum
deviations (<0.3 nm) [25] were seen for Reference and Hitl. That aside, no major RMSD
fluctuations were observed for any of the systems.

B

= Reference ms= Hitl mmm Hit2 me= Hit3 Hit4
0.3

0.25
0.2

0.15

RMSF (nm)

0.1

0.05

40000 60000 80000 100000 0 30 60 90 120 150 180
Time (ps) Residue

Figure 2. System stability analysis. (A) RMSD and (B) RMSF profiles of KRAS G12D in complex with
reference and hits compounds.

To understand the per residue fluctuations upon ligand binding, RMSF calculation
were performed. As in previously published results [26,27], in comparison to the whole
protein, fluctuations were mainly witnessed around switch I and switch II residues. In
comparison to other systems, Hitl saw a higher and insignificant peak around residue
Leu120. Therefore, RMSD and RMSF analyses supported further screening potential of our
hits” compounds.

2.5.2. Binding Dynamics and Molecular Interactions

Binding profiles of the hit molecules with the protein were determined by capturing
and superimposing the snapshots at 0, 25, 50, 75, and 100 ns. The binding profiles are
shown in Figure 3. Reference, Hit3 and Hit4 showed similar binding dynamics. Their
profiles from 25 ns onwards demonstrated that the compounds had moved closer to switch
I residues. On the other hand, Hit2 demonstrated proximity towards switch I. Interestingly,
binding proceedings of Hitl revealed movement away from the two switches, beginning
from 25 ns until the end of MD simulation. Overall, this analysis suggests that the hits
remain in complex with the protein throughout the 100 ns simulation.
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Figure 3. Binding profiles of reference and hits molecules with KRAS G12D at different simulation
intervals represented in ns. The switch I and switch II regions of the protein are indicated in green
and blue colors, respectively.

Next, we sought to determine the intermolecular bonds between the ligands and the
KRAS G12D. Reference displayed hydrogen bonds with Glu37, Asp54, and Thr74. Inter-
estingly, Hitl demonstrated salt bridges with Glu3 and Asp54, while Hit2 demonstrated
salt bridge interaction with Asp38. Additionally, Hitl and Hit2 also formed hydrogen
bonds with GIn25 and Ser39, respectively. Hit3 and Hit4 both interacted with GIn70 via a
hydrogen bond. The residues, along with their interatomic distances between bonds, are
shown in Figure 4.
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Figure 4. Post MD molecular interactions of reference (A) and hit compounds (B-E) with KRAS G12D.
The reference, hit compounds and KRAS residues involved in salt bridge /hydrogen bonding are de-
picted by the stick model. Residues from switch I and switch II contributing to salt bridge /hydrogen
bonds are colored in green and blue, respectively, while residues not part of either switch are colored
in salmon. Interatomic distances in nm are indicated in blue above the dotted lines.

Subsequently, to determine the stability of these bonds, we calculated the distance
between the donor and recipient atoms. The average distance between Hitl atoms involved
in salt bridge formation with Glu3 and Asp54 were 0.3 and 0.2 nm, respectively. The
average atomic distance between Hitl’s O18 and HE21 from GIn25 was 1.25 nm, and
therefore the stability of this bond is questionable. The average distance between Hit2 H60
atom involved in salt bridge formation with OD2 of Asp38 was 0.25 nm and the average
distance between 027 of Hit2 and HN of Ser39 was 0.2 nm. The average distances between
the atoms of Hit3 and Hit4 involved in hydrogen bonding with GIn70 were 0.6 and 0.7 nm,
respectively. Our distance analysis indicates that Hitl and Hit2 are likely to form more
stable interactions with KRAS G12D than Hit3 and Hit4. The distance profiles are shown in
Figure 5.

Additionally, hydrogen bond occupancy, defined as the average number of hydrogen
bonds per time frame, were also calculated for these important residues. The percentages of
hydrogen bond occupancies are shown in Table 4. With an above 85% rate of formation of
hydrogen bonds of Hitl with Glu3 and Asp54 and Hit2 with Asp38 and Ser39, both Hitl and
Hit2 indicated a very reliable hydrogen-bonding profile. Overall, from the intermolecular
interaction analysis of hits with KRAS G12D, it could be inferred that Hitl and Hit2 might
form more stable and consistent interactions than Hit3 and Hit4. Comparison between polar
interactions before MD (i.e., the molecular docking) (Figure S2) and after MD (Figure 4)
were in agreement with our binding dynamics analysis (Figure 3). These interactions, along
with their distance measurements, are shown in Table 5. Hitl lost its interaction with switch
I residue Glu37 and the nearby Ser39. Interaction with Leu6 was lost. However, as a part
of the salt bridge, a hydrogen bond was formed with Glu3. Interaction with Asp54 was
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maintained both before and after MD, although based on the distance of 0.18 nm, after MD,
the hydrogen bond with Asp54 was more stable. Hit2, due to its movement toward switch
I, formed stable polar interactions with Asp38 and Ser39. On the other hand, Hit3 and Hit4,
due to their movement towards switch II, as seen during the binding dynamics (Figure 3),
gained hydrogen bond interaction with GIn70. They also lost their interactions with Switch
1 residue Glu37 and residues close to switch I such as Ser39 and Arg41. Besides this, it
was also learned that hit molecules and reference from MD formed polar interactions with
higher stability, as seen by the reduced distance measurements in Table 5.

A Hit1 B
4 e Glu3 memm GIn25 memsm Asp54 3.5 m— Asp38 Ser39
3.5 3
- 3 — 25
€ 25 £
c c 2
P = 15
B 1s k7
o 1 o 1
0.5 0.5 lad ] |
0 0
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
C Time (ps) D Time (ps)
Hit3 Hit4
2 —
> Gin70 2 GIn70
2
- 1.5
E —
E1s £
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o 1 =1
2 =
(7]
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Figure 5. Distance profiles of important residues with (A) Hitl, (B) Hit2, (C) Hit3, and (D) Hit4
during the MD simulation.

Table 4. Hydrogen bond occupancy of the hits.

Compound Hydrogen Bond Occupancy (%)

Glu3 88.4

Hit1 GIn25 5.8
Asp54 119

. Asp38 94.9

Hit2 Ser39 9.6
Hit3 GIn70 14.6
Hit4 GIn70 8.6

Additionally, Reference formed 7 interactions with Lys5, Val7, Arg4l, Leu56, and
Met67. Van der Waals interactions were witnessed between Reference and KRAS G12D with
switch II residues GIn70, Tyr71, and Gly75 among others. Hitl formed n-alkyl interactions
with Leu52 and Arg41 and van der Waals interactions with residues not falling in either
switch I or II regions. Hit2 demonstrated van der Waals interaction with Glu37, GIn70,
and Tyr40. Hit3 formed 7 interactions with Arg41, Leu56, and Tyr71. Hit3 was involved
in forming van der Waals interactions with Asp38, Ser39, and Thr74 among others. Hit4
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formed 7t interactions with Lys5 and Leu56, and van der Waals interaction were seen with
Glu37, Asp54, and Thr74 among others. A complete list of these interactions is provided in
Figure S3.

Table 5. Pre and Post MD hydrogen bond interactions between the Hit compounds and KRAS G12D.
Distances in nm are given in parentheses.

Hydrogen Bonds Hydrogen Bonds
Compound (Molecular Docking) (MD Simulations)
Leu6 (0.30) Glu3 * (0.17)
. Glu37 (0.19)
Hit1l GIn25 (0.30)
Ser39 (0.26) Asp54 * (0.18)
Asp54* (0.27) p :
Glu37 (0.18) .
Hit2 Asp54 (0.24) Assefigg (é%f)
Asp54 (0.26) ’
Lys5 (0.28)
Hit3 Ser39 (0.30) GIn70 (0.19)
Arg41 (0.33)
. Glu37 (0.22)
Hitd Clu37 (0.28) GIn70 (0.21)

* Denotes a salt bridge formation.

2.5.3. Binding Free Energy

To determine the binding free energy of small ligands to proteins, the molecular
mechanics energies combined with the Poisson-Boltzmann or generalized Born and sur-
face area continuum solvation (MM/PBSA and MM/GBSA) methods are popular ap-
proaches [28]. Using “g_mmpbsa”, we calculated the average binding free energies of refer-
ence and hit compounds with KRAS G12D every 100th frame of the simulation. The average
binding free energy for KRAS G12D in complex with Reference, Hit1, Hit2, Hit3, and Hit4
were —27.888 +/—30.440 k] /mol, —217.091 +/ —41.830 k] /mol, —276.903 +/ —63.029 k] /mol,
—57.011 +/—28.093 kJ /mol, and —51.031 +/—40.608 k] /mol, respectively. It is worth men-
tioning that there could be multiple reasons behind the high error estimations, including
the execution of single long simulations rather than multiple small runs [28], the number of
frames selected [28], and the inclusion of the entire trajectory for analysis. All the hit com-
pounds showed better binding free energies with KRAS G12D than the reference inhibitor,
with Hitl and Hit2 significantly outperforming Hit3 and Hit4. A decomposition analysis of
these binding energies indicated that electrostatic energy was the major contributor. The
binding free energies, along with the decomposition analysis, are shown in Figure 6.

= Reference ms= Hitl mem Hit2 ses Hit3 Hit4 mmm Reference mss Hitl mem Hit2 wes Hit3 Hit4
400
©
g 200
S~
S — R
> |
to
o -200
b
-400
20000 40000 60000 80000 100000 -600 Van der Electrostatic Polar SASA Binding
Energy Energy Solvation Energy  Energy
Time (ps) (ki/mol)  (k}/mol)  Energy (ki/mol) (kl/mol)

(kJ/mol)

Figure 6. Binding free energy analyses. (A) Graphical representation of MM /PBSA estimated binding
free energy of the reference and hits compounds with KRAS G12D throughout 100 ns MD. (B) Binding
free energy decomposition plot.
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2.5.4. PCA

PCA was conducted to assess the ligand binding induced correlated motions. The
overall significant motion of the protein is always controlled by the first few eigenvec-
tors [29,30]. The top 10 eigenvectors accounted for 70%, 72%, 55%, 60%, and 58% motions
for Protein-Reference, Hitl, Hit2, Hit3, and Hit4, respectively. We then plotted the first
10 eigenvectors against their eigenvalues for reference and hits compounds in complex
with KRAS G12D (Figure 7A). As expected, the resulting plot indicated that eigenvalues for
the first few vectors were higher, with the most important motions in our case contained in
the first, second, and third eigenvectors. Figure 7A also demonstrates that values for the
first few vectors were higher for Protein-Reference as compared to Protein-Hits, indicating
that the binding of Reference leads to greater conformational changes in proteins dynamics
as compared to binding of Hits [29]. We generated a 2D projection plot of these components
for both the Protein-Reference and Protein-Hits (Figure 7B). Figure 7B demonstrates that
the components of our hits’ complexes are less scattered and occupy lesser phase space in
comparison to the reference. These observations thus highlight the better integrity of the
Protein-Hits complexes.

A B

mmm Reference ms= Hitl mem Hit2 mes Hit3 === Hit4 == Reference ms= Hitl mmm Hit2 mes Hit3 === Hit4
1.4 2
1
;'E 0.9 0
£ &0
0.4 "
-2
010 2 4 6 8 10 -3 -2 -1 0 1 2 3
Eigenvector Index PC1

Figure 7. Principal component analysis. (A) Eigen values plotted vs eigenvector index, (B) A 2D
projection plot of reference and hits in complex with KRAS G12D.

3. Discussion

Long presumed as an undruggable target, the RAS family has always been a problem-
atic target in drug discovery projects. Because of the lack of a well-defined hydrophobic
pocket on RAS protein surfaces, initially a lot of research was focused on indirect ap-
proaches such as targeting downstream RAS effectors or targeting farnesyltransferase or
PDES$ to curb RAS [7]. However, recently, using chemical screens, several compounds
were identified that directly bind to the KRAS4B variant and disrupt its function. One
such compound is BI-2852, which was discovered as a direct inhibitor of KRAS G12D [3].
BI-2852 binds to a pocket between switch I and II and blocks all GEFs, GAP, and effector
interactions, thus leading to downstream signaling inhibition and anti-proliferative effects.
In the process of discovering BI-2852, two other compounds, 21 and 22, were discovered
that displayed a nM binding potential to KRAS [3,31]. With the purpose of finding more
potent KRAS inhibitors, we conducted this insilico analysis. By utilizing the three com-
pounds (BI-2852, compound 21, and compound 22), we first developed a common feature
pharmacophore model to discern the potential necessary features for KRAS G12D inhibi-
tion. These features included HBD, HBA, RA, and HYP, as shown in Figure 1. Having
completed this, we also put forward a limitation that since the three active compounds were
very similar in their structure, the pharmacophore might have missed compounds that in
reality may be active KRAS G12D inhibitors but possess different features. Additionally,
negative results are rarely published and the limited inactive dataset used here might fail to
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completely delineate the selectivity and sensitivity during the validation of the model [32].
It is also important to take into account that the active compounds may demonstrate their
effect via other mechanisms than the intended one, while the inactive compounds may
actually interact with the target but, due to poor pharmacokinetic properties, might go
undetected [32].

Poor pharmacokinetic profile often leads to the failure of drugs in pre-clinical/clinical
trials [33]. Thus, prior assessment of these parameters can help mitigate the economic losses
that could occur in later stages. Table S2 lists the drug-likeness and ADMET results of the
hit compounds. All identified hits displayed a favorable Lipinski profile and demonstrate
ADMET properties in agreement with those previously reported for computationally
identified potential cancer drugs [34,35]. The compounds passing the drug assessment tests
were then mapped onto the selected pharmacophore model to retrieve compounds that
would potentially have the ideal features of KRAS inhibition as demonstrated by selected
active KRAS inhibitors.

Binding mechanistic studies of hits through molecular docking indicated that the
hit compounds possessed an enhanced affinity to KRAS G12D in comparison to BI-2852
(Table 3). However, because molecular docking fails to provide real-time drug-target in-
teraction and does not take into account the simulated physiological environment, we
performed MD simulation. Interaction comparison presented in Table 5 also supports the
observation that molecular docking might not always be in agreement with molecular
dynamics data. Usually, an RMSD value below 0.3 nm is well accepted [25]. The average
backbone RMSD analysis of all our Protein-Hit complexes was below 0.3 nm, thus sugges-
tive of a stable protein-ligand complex (Figure 2A). Additionally, apart from switch I and
switch II RMSF fluctuations (Figure 2B) commonly seen in mutated KRAS systems [26,27],
no significant RMSF fluctuations were observed. PCA is a powerful tool to gain knowledge
on conformational changes in a structure, with many researchers now using PCA to study
ligand binding induced protein conformation changes [29,30]. In line with the RMSD and
RMSEF profiles, the PCA results also displayed fewer correlated motions upon hit molecules
binding in comparison to reference. Cumulatively, these analyses indicate that the hit
molecules identified might not impart significant structural changes to the KRAS G12D
and will form a stable complex with it. As inference from molecular interactions might
aid in determining the mechanism of action of a drug, a thorough examination of the
interaction pattern of our hit compounds was conducted. The interactions are presented
in Figures 4 and S3. Salt bridges are a combination of a hydrogen bond and an ionic
bond, and thus are stronger than conventional hydrogen bonds. Hitl formed salt bridges
with Glu3 and Asp54 and formed 7t- alkyl interaction with Arg41. Asp54 and Arg41 from
KRAS have been shown to participate in salt bridges with His911 and Asp910 of SOS,
thereby stabilizing the KRAS-SOS complex [36]. Maurer et al. had discovered 4, 6-dichloro-
2-methyl-3-aminoethylindole (DCAI), a small molecule inhibitor for KRAS. According
to [36], DCAI-induced conformational changes in KRAS disrupted the Asp54-His911 and
Arg41-Asp910 salt bridges between KRAS and SOS and contributed to the inhibitory action
of DCAI We argue that Hitl due to its ability to engage with Asp54 and Arg41 might
function in a similar way. In our analysis, Hit2 has demonstrated a salt bridge with Asp38.
In previous studies, it has been shown that Asp38 is a critical residue for KRAS-RAF [37]
and KRAS-PI3K association [38]. In fact, a reduced binding affinity of KRAS inhibitor-
compound 3144 was observed when Asp38, along with Ile36, was mutated [39]. The results
from these studies thus highlight the importance of Hit2 in engaging the crucial Asp38
residue. Further, it was also noticed that these salt bridges, with their average distances
less than 0.3 nm throughout the simulation runs, were quite stable. It is important to
highlight here that these salt bridges were consistent in all three simulation runs, and were
the crucial electrostatic energy drivers in the protein-ligand binding. The magnitude of
binding free energy could determine how strongly the ligand interacts with the target and
thus can directly relate to its potency [40]. The electrostatic interactions formed by the salt
bridges discussed above are shown to make major contributions to the remarkable binding
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free energy of Hitl (—217.091 +/—41.830 kJ /mol) and Hit2 (—276.903 +/—63.029 kJ /mol)
(Figure 6). Additionally, polar interactions with Ser39 were responsible for the increased
potency of BI-2852 towards KRAS G12D [3]. While the reference pose of BI-2852 with KRAS
after MD displayed no Ser39 bond, Hit2 formed stable hydrogen bonds of distance 0.2 nm
with Ser39 throughout the MD run. Hit3 and Hit4 also displayed moderate stability of
their hydrogen bond with Gly70, with average distances of 0.6 nm and 0.7 nm, respectively
(Figure 7). Pharmacophore mapping of our hits compounds post MD is shown in Figure 8.
Hit2 and Hit4 aligned to all the pharmacophore features. Hitl and Hit3 missed only one
feature (RA) and aligned well to all the other features, thus indicating the robustness of our
pharmacophore model to choose the active KRAS G12D inhibitors.

Figure 8. Post MD pharmacophore mapping of hit compounds (A) Hitl, (B) Hit2, (C) Hit3 and (D) Hit4.

The sequence of the chosen binding site (i.e., the region between switch I and 1II)
is identical in all RAS isoforms [31], thus we were curious to explore the binding affin-
ity of our hit compounds towards HRAS and NRAS. Molecular docking of all four hit
compounds with HRAS G12D (PDB id: 6ZJ0) and NRAS Q61R (PDB id: 6Z1Z) revealed
their higher inclination towards the protein than the inbound inhibitor, i.e., compound 18
or (3~{S})-3-[2-[(dimethylamino)methyl]-1~{H}-indol-3-yl]-5-oxidanyl-2,3-dihydroisoindol-
1-one (Molecular formula: C1I9H19N302). Hit compounds demonstrated hydrogen bonds
with important residues such as Lys5, Glu37, Ser39, Arg41, Asp54, GIn70, and Thr74. Ad-
ditionally, both Hitl and Hit2 demonstrated salt bridge interactions with Glu37. These
results thus suggest that the identified compounds can act as RAS isoform inhibitors. The
CDOCKER energies and the polar interactions are indicated in the Table S3. However, this
would need further validation from molecular dynamics analysis.

This research thus provides accounts of computational testing of natural product-based
potential inhibitors of RAS isoforms, with a specific emphasis on KRAS G12D. The chemical
structures of the four hit compounds, along with their IDs, are provided in Figure 9.
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STOCK1N-98761 (Hit3) STOCK1N-52279 (Hit4)
Figure 9. The 2D structure of the four hit compounds.
4. Material and Methods
The basic outline of the workflow followed is shown in Figure 10.
m m
Pharmacophore Molecular
Validation Docking
Receiver Operating CDOCKER
Curve Tool 05
Tool Discovery studio vi8
01 Discovery studio v18 MO|ECU!3I’
Pharmacophore Dynamics
Generation Simulation
Databases _
Common feature InterBioScreen lool
pharmacophore and ZINC D VIS
generation Tool
Tool Discovery studio vi8
Discovery studio v18
03
Virtual

Figure 10. In silico workflow for identification of KRAS G12D inhibitors.

4.1. Common Feature Pharmacophore Generation

A training set consisting of in vitro tested KRAS inhibitors from [3] and BindingDB
(https:/ /www.bindingdb.org/, accessed on 9 September 2020) [41] was utilized for the
generation of common feature pharmacophore. By using the HipHop algorithm [42], the
“Common Feature Pharmacophore Generation” tool in Discovery Studio v18 (DS) (Accelrys,
San Diego, CA, USA) [43] identifies the key features necessary for the activity of potent
inhibitors. The chemical structure of the active ligands considered are shown in Figure 11.

Firstly, important features in these inhibitors were extracted using the “Interaction
Generation” tool in DS [43] after which the “Common Feature Pharmacophore Generation”
tool in DS was used to generate the model. From the options for the conformation genera-
tion “best” was selected, fitting method was set to “flexible” and interfeature distance was
fixed at 2.97 A. All remaining parameters were kept at default.
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BI-2852(490nM) 22(870nM) 21(5700nM)

Figure 11. Active compounds for common feature pharmacophore generation. BI-2852 is the most
potent and is used as a reference in this study. ICsy values are indicated in parentheses.

4.2. Common Feature Pharmacophore Validation

To predict the efficiency of the model to distinguish between active and inactive sets
of inhibitors, a validation step was performed. The inactive KRAS inhibitors were obtained
from BindingDB [41] with the search term “KRAS” and with IC50 value greater than
6000 nM. Eight inactive inhibitors were identified and their details are provided in Table S1.
In total, 11 inhibitors, of which 3 were active and 8 inactive, were employed and a Receiver
Operating Characteristic (ROC) curve was generated [44]. ROC classifies the true positivity
rate (i.e., sensitivity) from the true negativity rate (i.e., specificity) [45]. The sensitivity and
specificity are defined as:

True Positives
True Positives + False Negatives

Sensitivity =

True Negatives
False Positives + True Negatives

Specificity =

The curves are generated simultaneously, along with common feature pharmacophore
model generation, by setting validation to “True” in the protocol for the “Common Feature
Pharmacophore Generation” tool in DS.

4.3. Virtual Screening

InterBioScreen (https:/ /www.ibscreen.com/) and ZINC (https:/ /zinc.docking.org/) [46]
(accessed on 5 October 2020) harboring 69,234 and 144,766 natural compounds, respectively,
were screened against the selected pharmacophore. The compounds were filtered for their
drug-likeness using “Filter by Lipinski and Veber Rules” with default parameters and
then screened for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)
studies by employing the “ADMET Descriptors” tool in DS. Lipinski’s criteria for a com-
pound to be an effective drug candidate states that its molecular weight should be <500 Da,
hydrogen bond donors (HBD) should be <5, hydrogen bond acceptors (HBA) should be
<10, and an octanol/water partition coefficient (LogP) value should be <5 [47,48]. ADMET
parameters such as absorption level = 0 or 1; solubility level = 3 or 4; and blood brain
barrier (BBB) = 2 or 3 were chosen [34]. Following the drug-likeness and ADMET steps, the
resulting compounds were mapped onto the pharmacophore model by applying the “Lig-
and Pharmacophore Mapping” tool in DS. Similar to generating the pharmacophore step,
the conformer generation and fitting method were set to “best” and “flexible”, respectively.
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4.4. Molecular Docking

To identify the binding potential of mapped compounds, we performed molecular
docking using “CDOCKER” in DS. CDOCKER utilizes CHARMm-based molecular dy-
namics [34] for performing the molecular docking. In CDOCKER-based molecular docking
computations, the receptor is fixed and the ligands are allowed to be flexible [49]. Here,
the greater the -CDOCKER interaction energy, the stronger the affinity of the ligand to
target [50,51]. Prior to molecular docking, the target structure bearing PDB id: 6GJ8 [3] was
cleaned of water and heteroatoms and minimized using the steepest descent algorithm in
DS. The ligands were also minimized using the full minimization tool in DS with default
parameters. Coordinates amenable to ligand binding of 6GJ8 were obtained by inbound
BI-2852 (used as reference in this study). All the parameters of the CDOCKER protocol in
DS were set to default. Clusters of the docked poses were generated manually. Based on
the CDOCKER interaction energy, binding mode, and molecular interactions, the best pose
was selected for each compound from the largest cluster.

4.5. Molecular Dynamics Simulation

To mimic the real-time binding profile of the hit compounds with KRAS G12D, MD
simulations were performed using the GROningen MAchine for Chemical Simulations
(GROMACS) v5.0.6 package [52]. A total of five systems (Protein-Reference, Protein-
Hitl, Protein-Hit2, Protein-Hit3, and Protein-Hit4) were generated for a 100 ns produc-
tion run. The simulations were run in triplicate. Based on previous studies [53-55], a
CHARMM?27 [56] force field was chosen. SwissParam [57] was used for generating ligand
topology. A dodecahedron water box was created around the systems and the TIP3P water
model was utilized for solvation. To neutralize the negative charge of the system, Na* ions
were added. To remove the steric clashes in the system, steepest decent was chosen for
energy minimization. After the system was energy minimized, the protein-ligand complex
was restrained followed by equilibration of the system with a constant number N of parti-
cles, volume V, and temperature T (NVT), and constant number N of particles, pressure P,
and temperature T (NPT). Both NVT and NPT ensembles were run at 100 ps, using a V-
rescale thermostat for temperature coupling and Berendsen barostat for pressure coupling.
Following the volume and pressure equilibrations, the production run was carried out for
100 ns. The “gmx cluster” was used to cluster the poses obtained after the production run.
The RMSD cutoff used for “gmx cluster” was 0.1 nm. The representative pose possessing
lowest RMSD was selected from the largest cluster. Analysis was performed using gromacs
tools and DS.

4.5.1. Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation
(RMSF) Analysis

To determine the effect of ligand binding on the dynamics of protein structure, RMSD
and RMSF calculations were performed. The “gmx rmsd” and “gmx rmsf” commands
were used to evaluate RMSD and RMSEF, respectively.

RMSD is calculated by the following equation [25]:

RMSD, = \/gi(r;(tx)) — (r; (tref) )2

where N is the number of atoms, tref represents the reference time, ' is the location of
the selected atoms within the frame x after superimposing on the reference frame, and £,
represents the recoding intervals of x.

RMSF is calculated by the following equation [25]:

RMSE, = ﬁtil((rf(t)) - (ri(tref>)2>
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where T is the trajectory time, ¢, represents the reference time, 7’ is the location of the
selected atoms within the residue i after superimposing on the reference frame, and (<>) is
for the average of the square distance taken over residue i.

4.5.2. Binding Dynamics and Molecular Interactions

To determine the binding dynamics of hits with KRAS G12D, we took snapshots from
the MD run at 0, 25, 50, 75, and 100 ns and superimposed the structures. The “gmx hbond”
was used to compute the hydrogen bonds between the proteins and ligands throughout
the simulation. In order to access the stability of important interactions, we employed
“gmx_distance”. The complete list of molecular interactions between the proteins and
ligands were determined by using “Show 2D Diagram” in DS.

4.5.3. Binding Free Energy

To predict the ligand-binding affinities to the target protein, binding free energy
calculations were performed. The Molecular Mechanics/Poisson Boltzmann Surface Area
(MM /PBSA) method [58] was used to compute (a) potential energy in vacuum, (b) polar
solvation energy, and (c) non-polar solvation energy throughout the 100 ns simulation. The
binding free energy of a protein-ligand complex (AGy;,;) in solution is specified as:

AGping = Gcomplex - [Gprotein + Gligund}

Here, Geomplex implies the sum of the free energy of the protein-ligand complex and
Gprotein and Giigang imply the free energies of the protein and ligand in their unbound states.
The solvation term (G) is the combination of the polar (Gyj,,) and non-polar contri-
bution (Gnonpolar):
AGgo1p = AGpolar + AGnonpolur

The non-polar contribution (Gj,snpolar) is proportional to the solvent accessible surface
area (SASA):
AGnonpolar = ’Y(SASA) +p

where 7y = 0.0227 k] mol~! A=2 and § = 3.849 k] mol .

4.5.4. Principal Component Analysis (PCA)

PCA is a useful tool to extract the most useful and meaningful elements (or the
principal components) from MD trajectories and would assist in assessing the protein
conformational changes upon ligand binding [29]. This was accomplished by calculating
eigenvalue and eigenvectors for the covariance matrix, where the eigenvalue represents the
magnitude and the eigenvector represents the direction of the motion of the biomolecules
during the simulation. The “gmx covar” was used to build and diagonalize the matrix,
while the “gmx anaeig” was used to extract the dominant eigenvectors and to calculate the
overlap between them and the coordinates of the trajectories.

5. Conclusions

Computer-aided drug discovery techniques have greatly assisted in the rapid and
cost-effective identification of new drug candidates. In the present research, insilico tech-
niques were employed to identify prospective KRAS G12D inhibitors. A common feature
pharmacophore model was generated to extract the important features for KRAS inhi-
bition. ZINC and IBS databases were mapped on the model and mapped compounds
were subjected to molecular docking and dynamic simulations. Four potential inhibitors
displaying favorable stability with KRAS G12D were obtained. Although all four seem to
be promising, substantially better binding free energies to KRAS G12D were obtained with
two compounds, ZINC-85626698 and ZINC-85626710. Further experimental validations
are warranted to corroborate these computational findings.



Int. J. Mol. Sci. 2022, 23, 1309 17 of 19

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/ijms23031309/s1.

Author Contributions: Conceptualization, A.M.K.; methodology, AM.K.; software, G.L. and S.Y;;
validation, A M.K,; formal analysis, AM.K., VK. and S.P; investigation, A.M.K; resources, KW.L.; data
curation, AM.K,, S.P, VK. and KW.L.; writing—original draft preparation, A.M.K,; writing—review and
editing, AM.K. and K.W.L.; visualization, A.M.K,; supervision, K.W.L.; project administration, K. W.L.
funding acquisition, K. W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Bio and Medical Technology Development Program
of the National Research Foundation (NRF) and funded by the Korean Government (MSIT) (no.
NRF-2018M3A9A7057263).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Vetter, L.R.; Wittinghofer, A. The Guanine Nucleotide-Binding Switch in Three Dimensions. Science 2001, 294, 1299-1304.
[CrossRef]

2. Liceras-Boillos, P.; Garcia-Navas, R.; Ginel-Picardo, A.; Anta, B.; Perez-Andres, M.; Lillo, C.; Gémez, C.; Jimeno, D.; Fernandez-
Medarde, A.; Baltanas, EC.; et al. Sos1 disruption impairs cellular proliferation and viability through an increase in mitochondrial
oxidative stress in primary MEFs. Oncogene 2016, 35, 6389—-6402. [CrossRef] [PubMed]

3.  Kessler, D.; Gmachl, M.; Mantoulidis, A.; Martin, L.J.; Zoephel, A.; Mayer, M.; Gollner, A.; Covini, D.; Fischer, S.; Gerstberger, T.;
et al. Drugging an undruggable pocket on KRAS. Proc. Natl. Acad. Sci. USA 2019, 116, 15823-15829. [CrossRef] [PubMed]

4. Hobbs, A.; Der, CJ.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 2016, 129, 1287-1292. [CrossRef]
[PubMed]

5. Mufioz-Maldonado, C.; Zimmer, Y.; Medov4, M. A Comparative Analysis of Individual RAS Mutations in Cancer Biology. Front.
Oncol. 2019, 9, 1088. [CrossRef] [PubMed]

6. Molina-Arcas, M.; Samani, A.; Downward, J. Drugging the Undruggable: Advances on RAS Targeting in Cancer. Genes 2021, 12, 899.
[CrossRef]

7.  Papke, B.; Der, C.]J. Drugging RAS: Know the enemy. Science 2017, 355, 1158-1163. [CrossRef]

8. Tisi, R,; Gaponenko, V.; Vanoni, M.; Sacco, E. Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras
Oncoproteins: State of the Art and Future Perspectives. Biomolecules 2020, 10, 1535. [CrossRef]

9.  Ostrem, ].M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector
interactions. Nature 2013, 503, 548-551. [CrossRef] [PubMed]

10. Sotorasib, F. FDA Grants Accelerated Approval to Sotorasib for KRAS G12C Mutated NSCLC. Available online: https:/ /www.fda.
gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-gl2c-mutated-nsclc (ac-
cessed on 22 June 2021).

11. MRTX1133 n.d. KRASG12D Inhibitor. Available online: https://www.mirati.com/science/programs/kras-inhibitors /kras-g12d-
inhibitor/ (accessed on 22 June 2021).

12.  Zhang, Z.; Gao, R.; Hu, Q.; Peacock, H.; Peacock, D.M.; Dai, S.; Shokat, K.M.; Suga, H. GTP-State-Selective Cyclic Peptide Ligands
of K-Ras(G12D) Block Its Interaction with Raf. ACS Cent. Sci. 2020, 6, 1753-1761. [CrossRef]

13. Sakamoto, K.; Masutani, T.; Hirokawa, T. Generation of KS-58 as the first K-Ras(G12D)-inhibitory peptide presenting anti-cancer
activity in vivo. Sci. Rep. 2020, 10, 21671. [CrossRef] [PubMed]

14. Osborne, J.K.; Minna, J.D. Defining the First Part of the Oncogenic KRAS Journey. Cell Stem Cell 2020, 27, 499-500. [CrossRef]
[PubMed]

15. Menyhard, D.K,; Palfy, G.; Orgovan, Z.; Vida, I.; Keser(i, G.M.; Perczel, A. Structural impact of GTP binding on downstream
KRAS signaling. Chem. Sci. 2020, 11, 9272-9289. [CrossRef]

16. Yin, G; Kistler, S.; George, S.D.; Kuhlmann, N.; Garvey, L.; Huynh, M.; Bagni, R K.; Lammers, M.; Der, C.; Campbell, S.L. A KRAS
GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation. J. Biol. Chem. 2017, 292, 4446—4456.
[CrossRef] [PubMed]

17. Hall, B.E.; Bar-Sagi, D.; Nassar, N. The structural basis for the transition from Ras-GTP to Ras-GDP. Proc. Natl. Acad. Sci. USA
2002, 99, 12138-12142. [CrossRef] [PubMed]

18. Ostrem, ].M.L.; Shokat, K.M. Direct small-molecule inhibitors of KRAS: From structural insights to mechanism-based design. Nat.

Rev. Drug Discov. 2016, 15, 771-785. [CrossRef]


https://www.mdpi.com/article/10.3390/ijms23031309/s1
https://www.mdpi.com/article/10.3390/ijms23031309/s1
http://doi.org/10.1126/science.1062023
http://doi.org/10.1038/onc.2016.169
http://www.ncbi.nlm.nih.gov/pubmed/27157612
http://doi.org/10.1073/pnas.1904529116
http://www.ncbi.nlm.nih.gov/pubmed/31332011
http://doi.org/10.1242/jcs.182873
http://www.ncbi.nlm.nih.gov/pubmed/26985062
http://doi.org/10.3389/fonc.2019.01088
http://www.ncbi.nlm.nih.gov/pubmed/31681616
http://doi.org/10.3390/genes12060899
http://doi.org/10.1126/science.aam7622
http://doi.org/10.3390/biom10111535
http://doi.org/10.1038/nature12796
http://www.ncbi.nlm.nih.gov/pubmed/24256730
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-g12c-mutated-nsclc
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-g12c-mutated-nsclc
https://www.mirati.com/science/programs/kras-inhibitors/kras-g12d-inhibitor/
https://www.mirati.com/science/programs/kras-inhibitors/kras-g12d-inhibitor/
http://doi.org/10.1021/acscentsci.0c00514
http://doi.org/10.1038/s41598-020-78712-5
http://www.ncbi.nlm.nih.gov/pubmed/33303890
http://doi.org/10.1016/j.stem.2020.09.009
http://www.ncbi.nlm.nih.gov/pubmed/33007229
http://doi.org/10.1039/D0SC03441J
http://doi.org/10.1074/jbc.M116.762435
http://www.ncbi.nlm.nih.gov/pubmed/28154176
http://doi.org/10.1073/pnas.192453199
http://www.ncbi.nlm.nih.gov/pubmed/12213964
http://doi.org/10.1038/nrd.2016.139

Int. J. Mol. Sci. 2022, 23, 1309 18 of 19

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Pantsar, T. The current understanding of KRAS protein structure and dynamics. Comput. Struct. Biotechnol. J. 2020, 18, 189-198.
[CrossRef]

Patricelli, M.P; Janes, M.R; Li, L.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, ]. M.; Feng, J.; Ely, T.; et al. Selective
Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. Cancer Discov. 2016, 6, 316-329.
[CrossRef]

Fell, ].B.; Fischer, ].P.; Baer, B.R.; Ballard, J.; Blake, J.F.; Bouhana, K.; Brandhuber, B.J.; Briere, D.M.; Burgess, L.E.; Burkard, M.R,;
et al. Discovery of Tetrahydropyridopyrimidines as Irreversible Covalent Inhibitors of KRAS-G12C with In Vivo Activity. ACS
Med. Chem. Lett. 2018, 9, 1230-1234. [CrossRef]

Papadopoulos, K.P,; Ou, S.-H.L; Johnson, M.L.; Christensen, J.; Velastegui, K.; Potvin, D.; Faltaos, D.; Chao, R.C. A phase I/II
multiple expansion cohort trial of MRTX849 in patients with advanced solid tumors with KRAS G12C mutation. J. Clin. Oncol.
2019, 37, TPS3161. [CrossRef]

Fakih, M.; O’Neil, B.; Price, T.].; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Rasmussen, E.; Morrow, PK.H.; Ngang, J.;
et al. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule
KRASG12C inhibitor, in advanced solid tumors. J. Clin. Oncol. 2019, 37, 3003. [CrossRef]

Chen, H.; Smaill, J.B.; Liu, T.; Ding, K.; Lu, X. Small-Molecule Inhibitors Directly Targeting KRAS as Anticancer Therapeutics. J.
Med. Chem. 2020, 63, 14404-14424. [CrossRef] [PubMed]

Opo, EA.D.M.; Rahman, M.M.; Ahammad, F; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling,
virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP
protein. Sci. Rep. 2021, 11, 4049. [CrossRef] [PubMed]

Pantsar, T. KRAS(G12C)-AMG 510 interaction dynamics revealed by all-atom molecular dynamics simulations. Sci. Rep. 2020, 10, 11992.
[CrossRef]

Vatansever, S.; Erman, B.; Giimiis, Z.H. Oncogenic G12D mutation alters local conformations and dynamics of K-Ras. Sci. Rep.
2019, 9, 11730. [CrossRef] [PubMed]

Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov.
2015, 10, 449-461. [CrossRef]

Patel, D.; Athar, M.; Jha, P.C. Exploring Ruthenium-Based Organometallic Inhibitors against Plasmodium falciparum Calcium
Dependent Kinase 2 (PfCDPK2): A Combined Ensemble Docking, QM /MM and Molecular Dynamics Study. ChemistrySelect
2021, 6, 8189-8199. [CrossRef]

Dhasmana, D.; Singh, A.; Shukla, R.; Tripathi, T.; Garg, N. Targeting Nucleotide Binding Domain of Multidrug Resistance-
associated Protein-1 (MRP1) for the Reversal of Multi Drug Resistance in Cancer. Sci. Rep. 2018, 8, 11973. [CrossRef] [PubMed]
Kessler, D.; Bergner, A.; Bottcher, J.; Fischer, G.; Dobel, S.; Hinkel, M.; Miillauer, B.; Weiss-Puxbaum, A.; McConnell, D.B. Drugging
all RAS isoforms with one pocket. Futur. Med. Chem. 2020, 12, 1911-1923. [CrossRef]

Kaserer, T.; Beck, K.R.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore Models and Pharmacophore-Based Virtual
Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015, 20, 22799-22832.
[CrossRef]

Parasrampuria, D.; Benet, L.Z.; Sharma, A. Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last
Decade and Recommendations. AAPS |. 2018, 20, 46. [CrossRef] [PubMed]

Rampogu, S.; Kim, S.M.; Son, M.; Baek, A.; Park, C.; Lee, G.; Kim, Y.; Kim, G.S.; Kim, ].H.; Lee, KW. A Computational Approach
with Biological Evaluation: Combinatorial Treatment of Curcumin and Exemestane Synergistically Regulates DDX3 Expression
in Cancer Cell Lines. Biomolecules 2020, 10, 857. [CrossRef] [PubMed]

Arora, R.; Sawney, S.; Saini, V.; Steffi, C.; Tiwari, M.; Saluja, D. Esculetin induces antiproliferative and apoptotic response in
pancreatic cancer cells by directly binding to KEAP1. Mol. Cancer 2016. [CrossRef] [PubMed]

Maurer, T.; Garrenton, L.S.; Oh, A.; Pitts, K.; Anderson, D.J.; Skelton, N.J.; Fauber, B.P.; Pan, B.; Malek, S.; Stokoe, D.; et al.
Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl. Acad.
Sci. USA 2012, 109, 5299-5304. [CrossRef] [PubMed]

Fetics, S.K.; Guterres, H.; Kearney, B.M.; Buhrman, G.; Ma, B.; Nussinov, R.; Mattos, C. Allosteric Effects of the Oncogenic
RasQ61L Mutant on Raf-RBD. Structure 2015, 23, 505-516. [CrossRef]

Pacold, M.E.; Suire, S.; Perisic, O.; Lara-Gonzalez, S.; Davis, C.T.; Walker, E.H.; Hawkins, P.; Stephens, L.R.; Eccleston, J.F;
Williams, R.L. Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase y. Cell 2000,
103, 931-944. [CrossRef]

Welsch, M.E.; Kaplan, A.; Chambers, ].M.; Stokes, M.E.; Bos, P.; Zask, A.; Zhang, Y.; Sanchez-Martin, M.; Badgley, M.A.; Huang,
C.; et al. Multivalent Small-Molecule Pan-RAS Inhibitors. Cell 2017, 168, 878-889.e29. [CrossRef]

Bhati, A.P; Wan, S.; Wright, D.W.; Coveney, P.V. Rapid, Accurate, Precise, and Reliable Relative Free Energy Prediction Using
Ensemble Based Thermodynamic Integration. J. Chem. Theory Comput. 2017, 13, 210-222. [CrossRef]

Liu, T,; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined
protein-ligand binding affinities. Nucleic Acids Res. 2007, 35, D198-D201. [CrossRef]

Jones, G.; Willett, P.; Glen, R.C. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J. Comput.
Mol. Des. 1995, 9, 532-549. [CrossRef]

BIOVIA DS. Discovery Studio Modeling Environment, Release 2017; Dassault Systemes: San Diego, CA, USA, 2016.


http://doi.org/10.1016/j.csbj.2019.12.004
http://doi.org/10.1158/2159-8290.CD-15-1105
http://doi.org/10.1021/acsmedchemlett.8b00382
http://doi.org/10.1200/JCO.2019.37.15_suppl.TPS3161
http://doi.org/10.1200/JCO.2019.37.15_suppl.3003
http://doi.org/10.1021/acs.jmedchem.0c01312
http://www.ncbi.nlm.nih.gov/pubmed/33225706
http://doi.org/10.1038/s41598-021-83626-x
http://www.ncbi.nlm.nih.gov/pubmed/33603068
http://doi.org/10.1038/s41598-020-68950-y
http://doi.org/10.1038/s41598-019-48029-z
http://www.ncbi.nlm.nih.gov/pubmed/31409810
http://doi.org/10.1517/17460441.2015.1032936
http://doi.org/10.1002/slct.202101801
http://doi.org/10.1038/s41598-018-30420-x
http://www.ncbi.nlm.nih.gov/pubmed/30097643
http://doi.org/10.4155/fmc-2020-0221
http://doi.org/10.3390/molecules201219880
http://doi.org/10.1208/s12248-018-0204-y
http://www.ncbi.nlm.nih.gov/pubmed/29536211
http://doi.org/10.3390/biom10060857
http://www.ncbi.nlm.nih.gov/pubmed/32512851
http://doi.org/10.1186/s12943-016-0550-2
http://www.ncbi.nlm.nih.gov/pubmed/27756327
http://doi.org/10.1073/pnas.1116510109
http://www.ncbi.nlm.nih.gov/pubmed/22431598
http://doi.org/10.1016/j.str.2014.12.017
http://doi.org/10.1016/S0092-8674(00)00196-3
http://doi.org/10.1016/j.cell.2017.02.006
http://doi.org/10.1021/acs.jctc.6b00979
http://doi.org/10.1093/nar/gkl999
http://doi.org/10.1007/BF00124324

Int. J. Mol. Sci. 2022, 23, 1309 19 of 19

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Pascual, R.; Almansa, C.; Plata-Salaman, C.; Vela, ]. M. A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated
on a Large Experimental Dataset. Front. Pharmacol. 2019, 10, 519. [CrossRef] [PubMed]

Florkowski, C.M. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the
performance of diagnostic tests. Clin. Biochem. Rev. 2008, 29, S83-5S87. [PubMed]

Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. |. Chem. Inf. Model. 2015, 55, 2324-2337. [CrossRef] [PubMed]

Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337-341.
[CrossRef] [PubMed]

Lipinski, C.A.; Lombardo, E; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and
Permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3-26. [CrossRef]

Wu, G.; Robertson, D.H.; Brooks, C.L.; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A
CHARMm-based MD docking algorithm. J. Comput. Chem. 2003, 24, 1549-1562. [CrossRef]

Zhou, X.; Yu, S.; Su, J.; Sun, L. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.
Int. ]. Mol. Sci. 2016, 17, 340. [CrossRef]

Rampogu, S.; Lemuel, M.R. Network Based Approach in the Establishment of the Relationship between Type 2 Diabetes Mellitus
and Its Complications at the Molecular Level Coupled with Molecular Docking Mechanism. BioMed Res. Int. 2016, 2016, 6068437 .
[CrossRef]

Abraham, M.; Hess, B.; van der Spoel, D.; Lindahl, E. Gromacs 5.0.7. WwwGromacsOrg 2015. Available online: https:
//ftp.gromacs.org/pub/manual/manual-5.0.7.pdf (accessed on 14 December 2021).

Udhaya, K.S,; Bithia, R.; Thirumal Kumar, D.; Priya Dos, C.G.; Zayed, H. Mutational landscape of K-Ras substitutions at 12th
position—A systematic molecular dynamics approach. J. Biomol. Struct. Dyn. 2020, 1-15. [CrossRef]

Prakash, P; Sayyed-Ahmad, A.; Gorfe, A.A. The Role of Conserved Waters in Conformational Transitions of Q61H K-ras. PLOS
Comput. Biol. 2012, 8, €1002394. [CrossRef]

Sayyed-Ahmad, A.; Prakash, P; Gorfe, A.A. Distinct dynamics and interaction patterns in H- and K-Ras oncogenic P-loop
mutants. Proteins Struct. Funct. Bioinform. 2017, 85, 1618-1632. [CrossRef] [PubMed]

Zhu, X.; Lopes, PE.M.; Mackerell, A.D., Jr. Recent developments and applications of the CHARMM force fields. WIREs Comput.
Mol. Sci. 2011, 2, 167-185. [CrossRef] [PubMed]

Zoete, V.; Cuendet, M.A; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules.
J. Comput. Chem. 2011, 32, 2359-2368. [CrossRef] [PubMed]

Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. g_mmpbsa—A GROMACS Tool for High-Throughput
MM-PBSA Calculations. J. Chem. Inf. Model. 2014, 54, 1951-1962. [CrossRef]


http://doi.org/10.3389/fphar.2019.00519
http://www.ncbi.nlm.nih.gov/pubmed/31214020
http://www.ncbi.nlm.nih.gov/pubmed/18852864
http://doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/26479676
http://doi.org/10.1016/j.ddtec.2004.11.007
http://www.ncbi.nlm.nih.gov/pubmed/24981612
http://doi.org/10.1016/S0169-409X(00)00129-0
http://doi.org/10.1002/jcc.10306
http://doi.org/10.3390/ijms17030340
http://doi.org/10.1155/2016/6068437
https://ftp.gromacs.org/pub/manual/manual-5.0.7.pdf
https://ftp.gromacs.org/pub/manual/manual-5.0.7.pdf
http://doi.org/10.1080/07391102.2020.1830177
http://doi.org/10.1371/journal.pcbi.1002394
http://doi.org/10.1002/prot.25317
http://www.ncbi.nlm.nih.gov/pubmed/28498561
http://doi.org/10.1002/wcms.74
http://www.ncbi.nlm.nih.gov/pubmed/23066428
http://doi.org/10.1002/jcc.21816
http://www.ncbi.nlm.nih.gov/pubmed/21541964
http://doi.org/10.1021/ci500020m

	Introduction 
	Results 
	Common Feature Pharmacophore Generation 
	Pharmacophore Validation 
	Virtual Screening 
	Molecular Docking 
	Molecular Dynamics Simulations 
	RMSD and RMSF Assessment 
	Binding Dynamics and Molecular Interactions 
	Binding Free Energy 
	PCA 


	Discussion 
	Material and Methods 
	Common Feature Pharmacophore Generation 
	Common Feature Pharmacophore Validation 
	Virtual Screening 
	Molecular Docking 
	Molecular Dynamics Simulation 
	Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) Analysis 
	Binding Dynamics and Molecular Interactions 
	Binding Free Energy 
	Principal Component Analysis (PCA) 


	Conclusions 
	References

