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Abstract: Amphiphilic copolymers are appealing materials because of their interesting architecture
and tunable properties. In view of their application in the biomedical field, the preparation of these
materials should avoid the use of toxic compounds as catalysts. Therefore, enzymatic catalysis is a
suitable alternative to common synthetic routes. Pentablock copolymers (CUC) were synthesized
with high yields by ring-opening polymerization of ε-caprolactone (ε-CL) initiated by Pluronic (EPE)
and catalyzed by Candida antarctica lipase B enzyme. The variables to study the structure–property
relationship were EPEs’ molecular weight and molar ratios between ε-CL monomer and EPE macro-
initiator (M/In). The obtained copolymers were chemically characterized, the molecular weight
determined, and morphologies evaluated. The results suggest an interaction between the reaction
time and M/In variables. There was a correlation between the differential scanning calorimetry data
with those of X-ray diffraction (WAXD). The length of the central block of CUC copolymers may have
an important role in the crystal formation. WAXD analyses indicated that a micro-phase separation
takes place in all the prepared copolymers. Preliminary cytotoxicity experiments on the extracts of
the polymer confirmed that these materials are nontoxic.

Keywords: Candida antarctica lipase B enzyme; ring-opening polymerization; ε-caprolactone; Pluronic;
morphology

1. Introduction

The great interest in amphiphilic block copolymers for biomedical applications, re-
garding specifically drug delivery and tissue engineering, is due to their unique chain
architecture and self-assembling capabilities. In fact, these highly ordered self-assembled
structures display interesting phase behavior in aqueous media with propensity to yield
core-shell-type nanoparticles or polymeric micelles with a hydrophobic inner core and a
hydrophilic outer shell. Such particles are amenable to entrap drugs or bioactive agents
and deliver them under controlled conditions to selected body compartments [1].

Polymeric micelles have good structural stability even at a fairly low critical micelle
concentration (CMC) and display slow dissociation of the polymeric chains. These struc-
tures allow for a good control over the particle size and the hydrophobic drug solubilization,
and are, thus, suitable for drug delivery applications [2–4].

Pluronics (EPE) are a class of flexible and biocompatible polyether, cleared by US FDA
for use as food additives and pharmaceutical ingredients. These materials are amphiphilic
ABA-type triblock copolymers based on ethylene oxide (EO) and propylene oxide (PO)
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arranged in the following structure: EOx-POy-EOx. EPE copolymers have the capability of
forming micelles in an aqueous environment depending on the hydrophilic/hydrophobic
balance and the solution temperature [5]. Their (CMC) and critical micelle temperature
(CMT) are, however, fairly high, due to the low hydrophobicity of the PO block at ambient
temperature. In order to decrease the CMC and the CMT of the EPE copolymer, and
thus its micelle stability, the hydrophobic content has to be increased. Thus, for example,
hydrophobic poly(ε-caprolactone) (PCL) has been grown on EPE hydroxyl end groups,
since it is a well-known biocompatible and biodegradable polymer, widely used in the
biomedical field for controlled drug delivery [6,7].

Ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) initiated by the EPE
hydroxyl end-groups and catalyzed by tin 2-ethylhexanoate [Sn(Oct)2] has been, so far,
the most common synthetic route for PCL–EPE–PCL pentablock copolymers. However,
although FDA approved, tin cytotoxicity is a concern and its use should be avoided,
especially when materials are to be used in vivo [8–10].

The use of enzymatic catalysis for the preparation of materials for biomedical appli-
cations allows circumvention of the toxicity issues related to the commonly used metal
catalysts. Moreover, enzymes provide high catalytic activity, large acceleration of the reac-
tion rate under mild conditions, and high selectivity of the substrates [11]. Candida antarctica
lipase B (CALB) is an enzyme that catalyzes the hydrolysis of fatty acid esters in an aqueous
environment; it can also be stable in organic solvents and used as a catalyst for esterification
and transesterification reactions. Since 1993, polymerizations of various cyclic compounds
using lipase catalysis have been performed and lactones were the most extensively investi-
gated to prepare aliphatic polyesters, thus providing a valid alternative to metal catalysts
for the synthesis of polyesters via ROP [12,13].

In the present work, the synthesis of polyester–polyether pentablock copolymers
based on the ROP of ε-CL, as initiated by dihydroxyl terminated EPE and catalyzed by
CALB, was performed. Different monomer-to-initiator ratios (M/In) were used in order to
investigate the structure–property relationships of the obtained materials. The prepared
polymers were characterized by 1H-NMR, FT-IR, SEC, thermal analysis, WAXD, and optical
microscopy. Preliminary cytotoxicity evaluation of the materials was assessed.

2. Results and Discussion

PCL–EPE–PCL (CUC) pentablock copolymers were synthesized by the reaction of
dihydroxyl-terminated EPE macro-initiator with the enzyme-activated ε-CL (Scheme 1).
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The polymers were recovered with yields of 70–85%, which is in accordance with the yield
value of 86% found in the homopolymerization of ε-CL at the same reaction condition [14].
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2.1. Size Exclusion Chromatography (SEC)

SEC traces of the copolymers showed monomodal peaks, as shown in Figure 1, which
indicates that CUC copolymers were produced without homopolymerization of PCL. The
values of molecular weight (MnSEC ) and dispersity (Ð) are listed in Table 1.
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Figure 1. SEC chromatograms of CUC copolymers compared with respective macro-initiator EPE. (a)
CUC1–CUC4 and (b) CUC5–CUC8 series.

Table 1. Synthesis variables and molecular weight data of CUC copolymers.

Sample MnEPE
a

(Da) M/In b DPPCL
c MnSEC

a

(Da)
Ð Mntheor

a

(Da)
MnNMR

a

(Da)

CUC1 4700 35 34 8921 1.47 8690 8576
CUC2 4700 70 46 9499 1.76 12,680 9944
CUC3 4700 105 74 10,887 1.71 16,670 13,136
CUC4 4700 140 102 13,020 1.70 20,660 16,328

CUC5 8400 70 68 15,375 1.48 16,380 16,200
CUC6 8400 105 92 20,097 1.53 20,370 18,888
CUC7 8400 140 114 24,351 1.56 24,360 21,400
CUC8 8400 175 132 25,229 1.49 28,350 23,448

a MnEPE , MnSEC , Mntheor , MnNMR are number-average molecular weight of EPE macro-initiator and of copolymers
from SEC, theoretical from feed composition and 1H-NMR, respectively. b M/In is the ε–CL/Pluronic molar feed
ratio. c DPPCL is the degree of polymerization of PCL determined by 1H-NMR.

The narrow Ð confirms that the polymerization was fairly controlled. The mean values
and standard deviation for the CUC1–CUC4 and CUC5–CUC8 series were 1.66 ± 0.11 and
1.51 ± 0.03, respectively.

2.2. Molecular Characterization

Figure 2 shows typical FT–IR spectra of the CUC1–CUC4 copolymer series (see Table 1)
compared with pristine Pluronics F38 (EPE(F38)) and a PCL homopolymer. CUC pentablock
copolymers exhibit peaks characteristic of both EPE and PCL. The absorption band at
1107 cm−1 is attributed to the characteristic C–O–C stretching vibrations of the ether units
of EPE, while the peak at 1243 cm−1 corresponds to the absorption of –(C=O)–O–C– bond
stretching vibrations of PCL units. The strong sharp band at 1725 cm−1 is attributed to the
stretching vibration of the ester carbonyl group of PCL block. It is worth noting that, as
expected, the intensity of the ester carbonyl group increases with increasing content of PCL
in the copolymers. Liu et al. found similar results in the PCL–EPE(L35)–PCL copolymers
synthesized with stannous octoate as a catalyzer [15].
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Figure 2. FT-IR spectra of CUC1-CUC4 pentablock copolymers, PCL, and EPE(F38).

1H-NMR spectroscopy provides information about both the chemical composition
and the number-average molecular weight (MnCUC ) of the copolymers. The 1H-NMR
spectrum of CUC4 copolymer is shown in Figure 3, as a typical example. The sharp singlet
at 3.63 ppm is attributed to methylene protons of PEO blocks (–OCH2CH2–) in EPE. The
two small peaks at 3.4 and 3.5 ppm are attributed to –CH– and –CH2– groups, respectively,
while the doublet peak at 1.15 ppm belongs to –CH3 of PPO block in EPE. The spectrum
exhibits two equally intense triplets at 4.05 and 2.30 ppm assigned to –CH2OOC– and
–OCCH2C–, respectively, as well as two multiplets at 1.4 and 1.6 ppm, which are assigned to
methylene protons –(CH2)3 in PCL blocks. Although the characteristic peak of the terminal
–CH2OH group was expected at around 3.5 ppm, it could not be observed due to its small
intensity and the overlapping with the peaks of –CH2CH– in PPO block at ca. 3.4 and
ca. 3.5 ppm. Ha et al. obtained results that agree with those of the present work [16].
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The degree of polymerization (DPPCL) and the number-average molecular weight of
PCL segments (MnPCL ) can be calculated from the intensity ratio of the methyl protons at
1.15 ppm of PPO in EPE and the methylene protons at 4.05 ppm of the PCL blocks by using
Equation (1):

DPPCL = DPPPO
3 × I4.05

2 × I1.05
(1)

where, DPPPO is the degree of polymerization of PPO in EPE, I4.05 is the peak intensity of
CH2 group in CL block, and I1.15 is the peak intensity of CH3 group of PO in EPE.

Considering that the CUC chain has one PCL block at each end of EPE, the calculated
value of DPPCL should be divided by 2. Values of MnCUC of copolymers and Mntheor can be
computed according to Equations (2) and (3), respectively:

MnCUC = MnEPE + DPPCL × 114 (2)

Mntheor = MnEPE + (M/In)× 114 (3)

where, 114 is the molecular weight of ε-CL monomeric unit, and MnEPE and Mntheor are
number-average molecular weight of EPE macro-initiator and theoretical molecular weight
of copolymers, respectively.

The degree of polymerization of PCL (DPPCL) as well as the molecular weight of
the copolymers (MnCUC ) increased with increasing molar feed ratio of monomer to EPE
(M/In) (Table 1). However, the calculated DPPCL values from 1H-NMR data somehow
disagree with the theoretical ones (M/In), except for the first two of each series (CUC1 and
CUC5). The DPPCL values in the series with EPE(F38) (CUC1–CUC4) were about 30% lower
than M/In. On the other hand, in the series with EPE(F68) (CUC5–CUC8), the difference
between calculated and theoretical values were between 12% and 25%, increasing with the
increase in M/In rate. Zhu et al. found the same dependence between DPM and M/In in the
polymerization of diacrylated EPE(F127)/oligoester copolymers catalyzed with stannous
octoate [17]. Comparable behavior was found in the values of dispersity (Ð). That is, the
values of Ð are slightly higher for larger differences between calculated and theoretical
DPPCL. As the reaction time was set at 4 h, it is possible that it was not sufficient to convert
all ε-CL monomer and that the choice of this time depends of M/In ratio.

The “quasi-living” or controlled characteristic of the enzymatic polymerization is sug-
gested in Figure 4. The NMR molecular weights changed linearly, with DPPCL overlapping
the theoretical trace (Mntheor × M/In) for both series of CUC copolymers, even showing a
gap between DPPCL and M/In. On the other hand, this relationship presented different
behavior in the SEC molecular weights and probably depends on the values of the EPE
used as the macro-initiator. The MnSEC values of EPE(F38) series (MnEPE = 4700) were lower
than those of the theoretical trace for M/In higher than 105 (DPPCL > 74), while MnSEC

values of EPE(F68) series (MnEPE = 8400) were slightly higher than the theoretical ones
and exhibited low linearity. It should be remarked that NMR spectroscopy is an absolute
method for molecular weight determination, while the SEC method is relative and depends
not only on calibration standard, but also on the hydrodynamic volume of the polymer in
the specific solvent used in the analysis. Therefore, it is possible that the molecular weight
calibration based on PS standards may not give accurate MnSEC for CUC copolymers due
to a compromise between chain length and polymer architecture. The narrow polydis-
persity indices, varying from 1.47 to 1.76 (Table 1), confirm that the polymerization was
fairly controlled.

2.3. Solid-State Characterization
2.3.1. Differential Calorimetry Scanning (DSC)

The correlation between the thermodynamic parameters of the pentablock copolymers
and their composition was evaluated by DSC. CUC1–CUC4 series represent the typical
DSC traces of CUC copolymers, which are compared with the traces of pristine EPE(F38)
and of a reference PCL homopolymer in Figure 5.
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In the first heating scan, EPE(F38) and PCL presented only one melting temperature
peak (Tm) at 62 ◦C and 68 ◦C, respectively (Table 2). The temperature of these transitions
decreased by 4 ◦C and 8 ◦C in the second heating scan, respectively. Besides, EPE(F38)
melting transition presented a shoulder at the lower temperature side. The appearance of a
shoulder in the melting traces of EPE triblock copolymers was proposed to correspond to
the lamellar structure with different thickness, based on observations in small-angle X-ray
scattering (SAXS) [18]. It was suggested that the origin of these multi-lamellar structures is
the PEO block dispersity length or the presence of di-block copolymers that can be found
in the commercial products. This could explain the low crystallization temperature (Tc1) of
EPE(F38) at –8 ◦C observed in the cooling at 10 ◦C/min, other than the principal one (Tc2) at
30 ◦C (Table 2). Another consideration is that the profiles of the first heating scan represent
the thermal characteristics of powder samples that were obtained; this means that the crys-
talline organization originated from solution-precipitation treatment. On the other hand,
melting transitions observed in the second heating scan have a thermal history correspond-
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ing to melt-cooling at 10 ◦C/min. A similar dependence of the crystal organization with the
thermal history has been found in the literature [18,19]. The supercoolings (∆T = Tm−Tc)
between Tm of the second heating and Tc for both EPE(F38) and PCL polymers were of
28 ◦C (= Tm2−Tc2) and 25 ◦C (= Tm3−Tc3), respectively, under the experimental conditions.
Considering the series with the EPE(F68) (CUC5–CUC8), it is observed that its ∆T value
was equivalent to the previous series, that is, 27 ◦C. Regarding the two series of pentablocks,
more than two crystallization peaks were not always observed. Apparently, the size of
the EPE segment in the pentablock copolymer influences the behavior of its DT with the
increase in the PCL segment. Thus, the results suggest that the effect of increasing the
molecular mass of the PCL segment is to increase the DT of the pentablock copolymer,
bringing consequences to its morphology [18,20].

Table 2. Thermodynamic parameters of CUC1–CUC4 series a.

Sample 1st Heating Cooling 2nd Heating
Tm1 (◦C) Tm2 (◦C) Tm3 (◦C) Tc1 (◦C) Tc2 (◦C) Tc3 (◦C) Tm1 (◦C) Tm2 (◦C) Tm3 (◦C)

EPE(F38) — 62 — −8 30 — 51 58 —
CUC1 44 57 61 nd c 22 nd 47 57 61
CUC2 42 60 63 2.2 22 29 43 60 63
CUC3 41 — (62)65 b −6 15 27 42 62 65
CUC4 28 — (66)68 −15 nd 27 28 — (66)69
PCL — — 68 — — 35 — — 60

a Tm and Tc are melting and crystallization temperatures. b Values in parentheses correspond to the shoulder on
the left side of the peak. c nd is not detected.

Both CUC copolymer series presented up to three melting peaks that are overlapped
and/or a shoulder due to the proximity of the EPE and PCL Tms; these characteristics
have been found in the literature for equivalent copolymers [21,22]. Besides, DSC profiles
are very comparable on both first and second heating scan, with practically the same Tms
(Tables 2 and 3). This means that crystal organization in the CUC copolymers is stable and
probably independent of thermal history.

Table 3. Thermodynamic parameters of CUC5–CUC8 series a.

Sample 1st Heating Cooling 2nd Heating
Tm1 (◦C) Tm2 (◦C) Tm3 (◦C) Tc1 (◦C) Tc2 (◦C) Tc3 (◦C) Tm1 (◦C) Tm2 (◦C) Tm3 (◦C)

EPE(F68) — 67 — nd c 36 — 57 63 —
CUC5 53 60 63 nd 24 28 53 58 63
CUC6 50 — (64)67 b nd 20 26 51 — (64)67
CUC7 45 — (63)65 nd 20 30 46 — (63)5
CUC8 48 — (65)67 nd 18 30 50 — (65)67
PCL — — 68 — — 35 — — 60

a Tm and Tc are melting and crystallization temperatures. b Values in parentheses correspond to the shoulder on
the left side of the peak. c nd is not detected.

In the CUC1–CUC4 series, the peak area and the Tm1 of the first peak (Figure 5) de-
creases with relative decreasing of EPE block length, until it becomes almost imperceptible
in the CUC4 copolymer, as indicated by the arrows (Figure 5). The same behavior was
found by Bogdanov et al., who attributed this transition to the ethylene glycol (EG) block in
the CL–EG–CL triblock copolymers [22]. Furthermore, the authors concluded that the PCL
block crystallized before it would be influencing the PEG crystallization process. Consider-
ing the Tm1 values of the CUC1–CUC4 series, it is verified that they changed from 44 ◦C
to 28 ◦C with the increase in the PCL segment, going from CUC1 to CUC3, respectively,
due to the effect of PCL crystallization [22]. On the other hand, the second peak with Tm2
values over 57 ◦C (CUC1) shifts to a higher temperature overlapping the third peak in
copolymers with higher M/In ratios (Table 1—CUC3 and CUC4). The values of Tm3 of CUC
copolymers ranging from 61 ◦C to 69 ◦C showed a linear relationship with the wt% of the
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PCL, as represented by Equation (4), which indicates that the melting temperatures are
controlled by its molecular weight (or its block size).

Tm3 = 40.243 + 0.445 × PCL wt% (4)

The first peak at the highest crystallization temperature is attributed to PCL, followed
by that related to the ethylene oxide (EO) segment of EPE. So, it was previously observed
that the crystallization of EPE(F38) presents two peaks. Accordingly, in the present work,
Tc1 and Tc2 correspond to crystallization of EO block and Tc3 to CL block. All crystallization
temperature values decreased with increasing of the CL block length. However, this
behavior was more marked for Tc1. Similar thermal behavior was found in the CUC5–CUC8
series where the temperatures of the first melting peak (Tm1) decrease and those of the
third (Tm3) increase with increasing of PCL/PEO ratios. However, the changes in Tms with
compositions were less marked in the CUC5–CUC8 series and the linear dependence of
Tm3 on the wt% of the PCL is given by Equation (5). Besides, in the cooling scan only two
crystallizations were detected.

Tm3 = 57.086 + 0.143 × PCL wt% (5)

The principal difference between the two CUC series is the macro-initiator molecular
weights and their Ð, as shown in the Table 1. In the series with EPE(F38), the values of
Ð were between 1.47 and 1.76, which are higher than those with EPE(F68) (1.48–1.56).
Consequently, it can be supposed that not only the molecular weight (and, therefore, the
length of the amorphous PO block and copolymer) determine the crystal organization, but
probably its dispersion, as proposed by Zhang et al. [18].

The thermal analysis data suggested that the two blocks PCL and EPE in the copoly-
mers tend to crystallize in separate phases. Furthermore, the presence of one component
sensibly affects the crystallization of the other. In particular, since CL block crystallizes
first, probably, the crystallization of the EO in EPE triblock is disturbed and eventually
hampered, such as in the case of CUC4 copolymer.

2.3.2. Wide-Angle X-Ray Diffraction (WAXD)

The phase attribution previously performed in the DSC data for PCL and EO crys-
talline blocks was verified with the WAXD analysis. Figure 6a,b shows WAXD patterns of
CUC1–CUC4 and CUC5–CUC8 series, respectively, compared with pristine EPE triblock
copolymer and PCL homopolymer.
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EPE triblock copolymers have the same EO length and, consequently, the position of
the two most significant diffraction peaks are at 2θ values of 19.1◦ and 23.2◦, while the main
diffractions of PCL are at 2θ values of 21.4◦ and 23.7◦. The WAXD diffractograms of CUC
copolymers basically are a superposition of those corresponding to the reference EPE and
PCL, resulting in at least three diffraction peaks. The intensity of the sharp diffraction peak
ata 2θ value of 19.1◦ (EPEs) decreased with the increasing of the CL block length. Besides,
this peak almost disappears in CUC4 copolymer in agreement with the DSC data. This can
be attributed to the fact that the melting temperature of EO block in CUC4 (Table 2) is very
close to ambient, and thus it would be practically molten during WAXD study. On the other
hand, the diffraction peak of CL block at a 2θ value of 23.7◦ moves to the high angle values
of about 0.2◦, which is in concordance to the Tm3 increase (Tables 2 and 3) with the increase
in the CL block length. This shift may not be considered significant with respect to PCL
homopolymer. So, no change in the unit cell dimensions and, hence, in crystal structure is
evident. The diffraction peak of PCL at a 2θ value of 22◦ appears as a tail in the high angle
side and in the CUC copolymers as a shoulder. This diffraction peak corresponds to the
(111) plane of the orthorhombic PCL crystal, and its intensity decrease in relation to that of
the (110) plane (2θ = 21.4◦) indicates a change in its crystallographic texture, i.e., preferred
orientation [23]. In conclusion, the results of WAXD analyses indicated that a micro-phase
separation takes place in all the prepared copolymers.

2.3.3. Morphology

Figures 7 and 8 show typical polarized light optical micrographs (PLOM) of some
copolymers morphologies crystallized at 35 ◦C after quenching from 90 ◦C. The difference
in morphology between samples as a function of molecular weight of central EPE block
and PCL is clearly observed.
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EPE(F38) crystallized in a large Maltese cross extinction spherulite with some degree
of disordered crystal structure (crystal with open texture), probably due to the amount of
amorphous phase, developed in the crystallization condition used (Figure 7a). A Maltese
cross texture with a smaller size and which was more ordered than EPE was found for
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PCL (micrograph not shown). On the other hand, the spherulite sizes of CUC copoly-
mers were smaller than those of the corresponding EPE macro-initiator and equivalent
to that of PCL but with different textures. Besides, it seems that the crystal size depends
on the EPE molecular weight, as suggested in Figure 7b,c, and Atanase et al. showed
equivalent morphologies in the crystallization of PCL having a triazole “defect” near the
chain center [20].

CUC1 and CUC5 are copolymers with equivalent PCL/PEO ratio (47/42 and 45/44,
respectively) but with MnSEC of ca. 9 kDa and 15 kDa, respectively (Table 1), which could be
the factor responsible for the higher nucleation of CUC5. Moreover, the size of amorphous,
incompatible PPO could also be the cause of the difference between them. Consequently,
the length of the central block of CUC pentablock copolymers may have an important role
in the crystal formation.

The size of spherulite did not show any relationship with the length of CL block in the
CUC1–CUC4 series (Figures 7b and 8). On the other hand, crystal sizes of the CUC5–CUC8
series were all equivalent to CUC5, shown in Figure 7c. This behavior suggests competitive
factors and a systematic work is needed to individuate the key ones.

CUC spherulites showed two other features: one is the change in the interference colors
without the use of a sensitive tint plate, and the other is the irregular “banding” texture. With
the increase in the CL block length, the spherulites present increased yellow–orange–blue
interference colors, an effect which was more significant in the CUC1–CUC4 series (Figure 8).
The appearance of colors depends on the difference in the refractive index of the crystalline
phase, inside the spherulite, and on the orientation of the crystals in relation to their radius.
Regarding the texture of the band, it is optically caused by zero birefringence appearing
as extinction. The lamellar torsion in the spherulite during its radial growth is one of the
hypotheses formulated to explain the appearance of concentric bands.

The appearance of colors depends on the difference in the phase refraction index,
on the crystal within the spherulite, and on the orientation of crystals with respect to the
radius of the spherulite. Regarding the banding texture, it is optically caused by the zero
birefringence appearing as extinction. Lamellar twist in spherulite during radial growth is
one of the hypotheses formulated to explain the appearance of concentric bands [24].

2.4. Cytocompatibility Evaluation

In order to evaluate the biocompatibility of the polymeric materials, in vitro experi-
ments were carried out with a 3T3/Balb clone A31 mouse embryo fibroblast cell line, and
cell morphology and enzymatic activity were used to investigate the material toxicity [25].
Preliminary cytotoxicity tests were carried out on fluid extracts of CUC7 copolymer sample.
Cells were incubated with the prepared extracts, undiluted or diluted 1:2 or 1:4 with com-
plete growth media. Quantitative evaluation of metabolically active cells after exposure
to polymer extracts was performed by incubation of cells with tetrazolium salt WST-1. In
viable cells, mitochondrial dehydrogenase enzymatically converts WST-1 to formazan.

Cell viability was higher than 100% to the control material (glass), as shown in Figure 9,
thus indicating that no cytotoxic compound is extracted from the polymeric material.
Accordingly, this material can be defined as cytocompatible, confirming that the use of the
enzymatic catalyst CALB is extremely convenient for the preparation of polymeric materials
for biomedical applications, since it allows avoidance of the use of toxic metal catalysts.
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3. Materials and Methods
3.1. Materials

All reagents were purchased from Sigma Aldrich Chemical Co., (St. Louis, MI, USA),
Germany, unless otherwise stated. ε-Caprolactone (ε-CL, 98%) was dried over calcium
hydride for 24 h at room temperature, and then distilled at reduced pressure (98 ◦C; 5 mm
Hg) prior to polymerization. Pluronics F38 (EPE(F38)) and F68 (EPE(F68)) (kindly supplied
by BASF Corporation, Mount Olive, NJ, USA) have the same EO content (ca. 80 wt%)
and molecular weights of 4700 and 8400, respectively. EPEs were dried under vacuum at
60 ◦C for 48 h before use. Novozyme-435 (specified activity 7000 PLU/g according to the
supplier) is the immobilized form of Candida antarctica lipase B (CALB) and was dried over
anhydrous phosphorus pentoxide at 0.1 mm Hg for 48 h before use. Toluene was dried by
refluxing over sodium metal, and then distilled under nitrogen atmosphere before use. All
other chemicals were used as received.

3.2. Synthesis of PCL–EPE–PCL Pentablock Copolymers

The synthesis of pentablock copolymers PCL–EPE–PCL (henceforth called CUC) was
carried out under rigorous anhydrous conditions, with a catalyst/ε-CL monomer ratio of
1/10 (w/w), solvent/monomer ratio of 2/1 (v/w), and different M/In ratios (Table 1). As
an example, CALB (0.25 g) was added into a vial containing EPE(F38) (3.0 g, 0.64 mmol),
ε-CL (2.6 g, 22.4 mmol), and 5 mL of toluene and stirred under nitrogen atmosphere at
70 ◦C for 4 h. The reaction was terminated by adding an excess of cold chloroform and
stirring for 15 min. The insoluble enzyme was removed by filtration and washed with
chloroform several times. The concentrated filtrate was precipitated in excess of diethyl
ether. The recovered copolymers were further purified by re-precipitation in diethyl ether
from chloroform solution. The precipitate was then washed with methanol to remove
unreacted ε-CL monomer and EPE macro-initiator. The final product was collected as a
fine white powder, which was dried under vacuum for 48 h.

3.3. Characterization

FT-IR spectra were recorded using a Perkin-Elmer FTIR spectrometer (Spectrum One)
from 4000 cm−1 to 600 cm−1 at a resolution of 2 cm−1 by accumulating 16 scans. The
samples were cast films from chloroform polymer solution on KBr plate. 1H-NMR spectra
were acquired using a 200 MHz Varian Gemini nuclear resonance spectrometer in CDCl3,
with CHCl3 hydrogen as the internal standard.

Size exclusion chromatography analyses (SEC) were performed at a flow rate of
1.0 mL/min by using a Jasco PU-1580 HPLC liquid chromatograph connected to Jasco
830-RI and Perkin-Elmer LC-75 spectrophotometer (λ = 260 nm) detectors, equipped with
two Mixed-D PLgel columns (300 × 7.5 mm). Chloroform was used as the eluent and the
calibration curve was established by using mono-dispersed polystyrene standards.
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Differential scanning calorimetry (DSC) measurements were performed in a Mettler
TA 4000 system consisting of the DSC-30 module and TA72 GraphWare software. Samples
of 10–15 mg were weighed in a 40 µL aluminum pan and an empty pan was used as
reference. DSC temperature and energy calibrations were carried out by using indium, lead,
and zinc standards and indium standard, respectively. Measurements were performed
under a nitrogen flow rate of 80 mL/min according to the following protocol:

1. First heating scan from 25 ◦C to 150 ◦C at 10 ◦C/min;
2. First cooling scan from 150 ◦C to –100 ◦C at 10 ◦C/min and 4 min of isotherm at –100 ◦C;
3. Second heating scan from –100 ◦C to 100 ◦C at 10 ◦C/min.

Wide-angle X-ray diffraction patterns were performed at room temperature with a
Kristalloflex 810 diffractometer (Siemens) using a Cu Kα (λ = 1.5406 Å) as the X-ray source.
Scans were run in the high angle region 5◦ < 2θ < 40◦ at a scan rate of 0.016◦/min and a
dwell time of 1 s.

Polarized light optical microscopy (PLOM) observations were made by means of a
Reichert-Jung Polyvar, equipped with a Mettler FP-52 hot-stage and Mettler FP-5 tempera-
ture controller. Samples were heated up to 90 ◦C and cooled quickly to the crystallization
temperature at 35 ◦C and left for 30 min under nitrogen flow when pictures were taken.

3.4. Biological Tests

Experiments were performed following the standards indicated by ISO-10993-5 [26].
Cytotoxicity analyses were carried out on fluid extracts of the materials prepared by
incubating 20 mg/mL of the polymeric sample and reference materials in complete cell
culture medium (DMEM) for 48 h at 37 ◦C. Extracts were investigated either undiluted or
at 1:2 and 1:4 dilution ratios with complete DMEM.

Quantitative Evaluation of Cytotoxicity

A subconfluent monolayer of 3T3/A31 fibroblasts was trypsinized in a 0.25%
trypsin/1 mM EDTA solution. Cells were centrifuged at 1000 rpm for 5 min, redispersed
in complete DMEM medium and counted. Appropriate dilutions were made in order to
obtain 3 × 103 cells per 100 µL of medium, the final volume present in each well of flat–
bottom 96-microwell plates. Plates were incubated at 37 ◦C in an atmosphere containing 5%
CO2 for 24 h until 60–70% cell confluence was reached. The medium from each well was
then removed and replaced with a fresh medium containing a different concentration of
the material under investigation. Control cells were incubated with fresh growth medium,
whereas wells containing only growth medium were used as a blank.

After 24 h of incubation with polymer extracts, cells were incubated with WST-1 cell
proliferation reagent diluted at 1:10 (as indicated by the manufacturer) for 4 h at 37 ◦C in
an atmosphere containing 5% CO2. Plates were then analyzed and the number of viable
cells was evaluated using a Benchmark Bio-Rad Microplate Reader. Microplate absorbance
measurements were performed at 450 nm, diminished by the blank absorbance at the same
wavelength and by using 620 nm as a reference wavelength. All data were processed by
using Microplate Manager III (Bio-Rad) and Igor Pro (Wave-metrics).

4. Conclusions

Amphiphilic pentablock copolymers with structure PCL–EPE–PCL were prepared
by ring-opening polymerization of ε-caprolactone initiated by EPE dihydroxyl terminal
groups and catalyzed by enzyme CALB. The polymers were obtained with yields between
70 and 85% and characterized by FT-IR, 1H-NMR, SEC, WAXD, DSC, PLOM, and by
cytotoxicity tests. The enzymatic ROP showed dependence on reaction time and controlled
polymerization features.

CUC copolymer crystal organizations were stable for the thermal history performed in
this study and presented up to three endothermic transitions in DSC analysis. The melting
transition at a higher temperature, attributed to CL block, showed a linear relationship with
its weight fraction in the copolymer. This result was also confirmed by WAXD analysis.
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Besides, CL block has a different crystallographic pattern in the copolymers, as indicated by
the peak corresponding to the (111) plane. PLOM observations suggested competitive fac-
tors in the crystal formation at 35 ◦C, which very likely can be associated with the PO central
block length and CUC molecular weight. Two interesting spherulite features were observed
in the polymer crystals: interference colors and banding. Cytotoxicity tests indicated that
CUC copolymers are nontoxic, confirming the suitability of the applied enzymatic catalysis
for the preparation of polyester/polyether copolymers for biomedical applications that, at
good right, may be respondent to their use in biomedical/pharmaceutical applications and,
therefore, further studies are being carried out in this direction.
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