In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC
Abstract
:1. Introduction
2. Results
2.1. Landscape of Mutations in Seven Biomarker Genes Based on TCGA, cBioPortal and UK Biobank
2.2. Prediction of the Effects of R804C/R831C on SLC4A11 Protein Stability, Function and Physiochemical Properties
3. Discussion
4. Materials and Methods
4.1. Data Availability
4.2. Protein Structure Prediction Tools
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Understanding Cancer Statistics—Incidence, Survival, Mortality|Cancer Research UK. Available online: https://www.cancerresearchuk.org/about-cancer/what-is-cancer/understanding-cancer-statistics-incidence-survival-mortality (accessed on 27 November 2021).
- Harter, P.; Sehouli, J.; Reuss, A.; Hasenburg, A.; Scambia, G.; Cibula, D.; Mahner, S.; Vergote, I.; Reinthaller, A.; Burges, A.; et al. Prospective Validation Study of a Predictive Score for Operability of Recurrent Ovarian Cancer: The Multicenter Intergroup Study DESKTOP II. A Project of the AGO Kommission OVAR, AGO Study Group, NOGGO, AGO-Austria, and MITO. Int. J. Gynecol. Cancer 2011, 21, 289–295. [Google Scholar] [CrossRef]
- Caiola, E.; Broggini, M.; Marabese, M. Genetic markers for prediction of treatment outcomes in ovarian cancer. Pharm. J. 2014, 14, 401–410. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, H.; Chen, Q.; Shao, Y.; Luo, S. Relationships between SNPs and prognosis of breast cancer and pathogenic mechanism. Mol. Genet. Genom. Med. 2019, 7, e871. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, C.; Rost, B. Predict impact of single amino acid change upon protein structure. BMC Genom. 2012, 13, S4. [Google Scholar] [CrossRef] [Green Version]
- Tennessen, J.A.; Bigham, A.W.; O’Connor, T.D.; Fu, W.; Kenny, E.E.; Gravel, S.; McGee, S.; Do, R.; Liu, X.; Jun, G.; et al. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science 2012, 337, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635–110649. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Lu, W.; Chen, H.; Ye, F.; Xie, X. The Nonsynonymous Single-Nucleotide Polymorphisms in Codon 31 of p21 Gene and the Susceptibility to Cervical Cancer in Chinese Women. Int. J. Gynecol. Cancer 2009, 19, 1011–1014. [Google Scholar] [CrossRef]
- Khan, N.G.; Correia, J.; Adiga, D.; Rai, P.S.; Dsouza, H.S.; Chakrabarty, S.; Kabekkodu, S.P. A comprehensive review on the carcinogenic potential of bisphenol A: Clues and evidence. Environ. Sci. Pollut. Res. 2021, 28, 19643–19663. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yang, B.-J.; Li, N.; Feng, L.-M.; Shi, X.-Y.; Zhao, W.-H.; Liu, S.-J. Bisphenol A and Hormone-Associated Cancers: Current progress and perspectives. Medicine 2015, 94, e211. [Google Scholar] [CrossRef] [PubMed]
- Seachrist, D.D.; Bonk, K.W.; Ho, S.-M.; Prins, G.S.; Soto, A.M.; Keri, R.A. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol. 2015, 59, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhao, Z.; Ji, W. Bisphenol A induces apoptosis, oxidative stress and inflammatory response in colon and liver of mice in a mitochondria-dependent manner. Biomed. Pharmacother. 2019, 117, 109182. [Google Scholar] [CrossRef]
- Huang, D.-Y.; Zheng, C.-C.; Pan, Q.; Wu, S.-S.; Su, X.; Li, L.; Wu, J.-H.; Sun, Z.-Y. Oral exposure of low-dose bisphenol A promotes proliferation of dorsolateral prostate and induces epithelial–mesenchymal transition in aged rats. Sci. Rep. 2018, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Lin, H.; Lu, G.; Chen, Z.; Sun, W.; Shi, Y.; Fu, Z.; Huang, B.; Zhu, X.; Lu, W.; et al. Low Dose of Bisphenol A Modulates Ovarian Cancer Gene Expression Profile and Promotes Epithelial to Mesenchymal Transition Via Canonical Wnt Pathway. Toxicol. Sci. 2018, 164, 527–538. [Google Scholar] [CrossRef]
- Qu, W.; Zhao, Z.; Chen, S.; Zhang, L.; Wu, D.; Chen, Z. Bisphenol A suppresses proliferation and induces apoptosis in colonic epithelial cells through mitochondrial and MAPK/AKT pathways. Life Sci. 2018, 208, 167–174. [Google Scholar] [CrossRef]
- Hanafi, N.I.; Kadir, S.H.S.A.; Musa, M.; Othman, M.H.D.; Kamaludin, R.; Zulkifli, N.A.; Latip, N.A.; A Karim, Z.R. LOW CONCENTRATION OF BISPHENOL A INDUCES PROLIFERATION OF GASTRIC CANCER CELLS, HGC-27. J. Teknol. 2019, 81, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Zahra, A.; Dong, Q.; Hall, M.; Jeyaneethi, J.; Silva, E.; Karteris, E.; Sisu, C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J. Clin. Med. 2021, 10, 1979. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, D.; Loganathan, S.K.; Chiu, A.M.; Lukowski, C.M.; Casey, J.R. Human Corneal Expression of SLC4A11, a Gene Mutated in Endothelial Corneal Dystrophies. Sci. Rep. 2019, 9, 9681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, L.; Azimov, R.; Abuladze, N.; Newman, D.; Kurtz, I. Human SLC4A11-C functions as a DIDS-stimulatable H⁺(OH⁻) permeation pathway: Partial correction of R109H mutant transport. Am. J. Physiol. Physiol. 2015, 308, C176–C188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, C.T.; Mason, P.; Anderson, R.; Dempsey, C.E. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci. Rep. 2016, 6, 21759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct. Funct. Bioinform. 2005, 62, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Prediction of Protein Stability Changes upon Mutations. Available online: http://mupro.proteomics.ics.uci.edu/ (accessed on 27 November 2021).
- The Prediction Servers @ Bologna Biocomputing Unit. Available online: http://gpcr.biocomp.unibo.it/ (accessed on 27 November 2021).
- Cao, H.; Wang, J.; He, L.; Qi, Y.; Zhang, J.Z. DeepDDG: Predicting the Stability Change of Protein Point Mutations Using Neural Networks. J. Chem. Inf. Model. 2019, 59, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.J.; Meldrum, C.J. Missense Mutations in Cancer Predisposing Genes: Can We Make Sense of Them? Hered. Cancer Clin. Pr. 2005, 3, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhong, Y.; Cao, T.; Sheng, X.; Huang, H. A frequent somatic mutation in the 3’UTR of GAPDH facilitates the development of ovarian cancer by creating a miR-125b binding site. Oncol. Rep. 2020, 44, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Nicoloso, M.; Sun, H.; Spizzo, R.; Kim, H.; Wickramasinghe, P.; Shimizu, M.; Wojcik, S.E.; Ferdin, J.; Kunej, T.; Xiao, L.; et al. Single-Nucleotide Polymorphisms Inside MicroRNA Target Sites Influence Tumor Susceptibility. Cancer Res. 2010, 70, 2789–2798. [Google Scholar] [CrossRef] [Green Version]
- Katopodis, P.; Dong, Q.; Halai, H.; Fratila, C.I.; Polychronis, A.; Anikin, V.; Sisu, C.; Karteris, E. In Silico and In Vitro Analysis of lncRNA XIST Reveals a Panel of Possible Lung Cancer Regulators and a Five-Gene Diagnostic Signature. Cancers 2020, 12, 3499. [Google Scholar] [CrossRef]
- Jung, H.; Lee, K.S.; Choi, J.K. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene 2021, 40, 1347–1361. [Google Scholar] [CrossRef]
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 27 November 2021).
- Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; et al. Mutational landscape and significance across 12 major cancer types. Nature 2013, 502, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Çayan, F.; Tok, E.; Aras-Ateş, N.; Ayaz, L.; Akbay, E.; Gen, R.; Karakaş, S.; Dilek, S. Insulin receptor substrate-2 gene polymorphism: Is it associated with endometrial cancer? Gynecol. Endocrinol. 2010, 26, 378–382. [Google Scholar] [CrossRef]
- Jiao, X.; Sultana, A.; Garg, P.; Ramamurthy, B.; Vemuganti, G.K.; Gangopadhyay, N.; Hejtmancik, J.F.; Kannabiran, C. Autosomal recessive corneal endothelial dystrophy (CHED2) is associated with mutations in SLC4A11. J. Med. Genet. 2006, 44, 64–68. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2021, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Li, T.; Liu, Y. High SLC4A11 expression is an independent predictor for poor overall survival in grade 3/4 serous ovarian cancer. PLoS ONE 2017, 12, e0187385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Samples | TCGA | UK BioBank | cBioPortal |
---|---|---|---|---|
Total Samples | 713 | 950 | 647 | |
All cancers | 713 (100%) | 48 (100%) | 647 (100%) | |
Female cancers * | 145 (20.33%) | 7 (14.58%) | 208 (32.14%) | |
GBP5 | All cancers Female cancers | 145 (20.33%) 27 (3.78%) | 3 (6.25%) 1 (2.08%) | 150 (23.18%) 54 (8.34%) |
IRS2 | All cancers Female cancers | 114 (15.98%) 30 (4.20%) | 8 (16.66%) - | 82 (12.67%) 18 (2.78%) |
KRT4 | All cancers Female cancers | 154 (21.59%) 22 (3.08%) | 7 (14.58%) 2 (4.16%) | 158 (24.42%) 50 (7.72%) |
LINC00707 | All cancers Female cancers | - - | 24 (50%) 2 (4.16%) | - - |
MRPL55 | All cancers Female cancers | 35 (4.90%) 10 (1.40%) | 1 (2.08%) 1 (2.08%) | 24 (3.70%) 9 (1.39%) |
RRS1 | All cancers Female cancers | 57 (7.99%) 16 (2.24%) | 1 (2.08%)- | 38 (5.87%) 11 (1.70%) |
SLC4A11 | All cancers Female cancers | 208 (29.17%) 40 (5.61%) | 4 (8.33%) 1 (2.08%) | 195 (30.13%) 67 (10.35%) |
Feature | Count |
---|---|
Exon Mutation | 807 (100%) |
Non silent mutation | 560 (69.39%) |
Silent mutation | 173 (21.43%) |
Stop codon mutation | 74 (9.16%) |
Amino Acid Polarity | 560 (100%) |
Polar to Non-polar | 104 (18.57%) |
Non-polar to Polar | 123 (21.96%) |
No charge | 333 (59.46%) |
Amino Acid Charge | 560 (100%) |
Positive to Negative | 1 (0.17%) |
Positive to No charge | 93 (16.60%) |
No charge to Positive | 37 (6.60%) |
Negative to Positive | 16 (2.85%) |
Negative to No charge | 31 (5.53%) |
No charge to Negative | 27 (4.82%) |
No charge | 355 (63.39%) |
Amino Acid Water Affinity | 560 (100%) |
Hydrophobic to Hydrophilic | 8 (1.42%) |
Hydrophobic to Neutral | 65 (11.60%) |
Neutral to Hydrophobic | 84 (15%) |
Hydrophilic to Hydrophobic | 47 (8.39%) |
Hydrophilic to Neutral | 76 (13.57%) |
Neutral to Hydrophilic | 46 (8.21%) |
No charge | 234 (41.78%) |
Database | Gene | Cancer Type | Amino Acid Change | Mutation |
---|---|---|---|---|
1/2 | GBP5 | Cervical and Endocervical Cancer | R520I | Missense |
1/2 | GBP5 | Uterine Corpus Endometrioid Carcinoma | R450W | Missense |
1/2 | GBP5 | Uterine Corpus Endometrioid Carcinoma | R290C | Missense |
1/2 | GBP5 | Uterine Corpus Endometrioid Carcinoma | P415H | Missense |
2 | GBP5 | Uterine Endometrioid Carcinoma | R396W | Missense |
2 | GBP5 | Uterine Endometrioid Carcinoma | F267C | Missense |
2 | IRS2 | Uterine Endometrioid Carcinoma | E1150K | Missense |
1/2 | KRT4 | Ovarian Serous Cystadenocarcinoma | R49P | 5′UTR |
1/2 | KRT4 | Cervical and Endocervical Cancer | E238K/E312K | Missense |
1/2 | KRT4 | Uterine Corpus Endometrioid Carcinoma | R196M/R270M | Missense |
1/2 | KRT4 | Cervical and Endocervical Cancer | R9P/R83P | Missense |
1/2 | KRT4 | Uterine Corpus Endometrioid Carcinoma | R27I/R101I | Missense |
2 | KRT4 | Uterine Endometrioid Carcinoma | E509K | Missense |
2 | KRT4 | Uterine Endometrioid Carcinoma | G84D | Missense |
2 | KRT4 | Uterine Endometrioid Carcinoma | D507V | Missense |
2 | KRT4 | Uterine Endometrioid Carcinoma | R270M | Missense |
2 | KRT4 | Uterine Endometrioid Carcinoma | G578D | Missense |
2 | MRPL55 | Uterine Endometrioid Carcinoma | G20R | Missense |
2 | MRPL55 | Uterine Endometrioid Carcinoma | R96C | Missense |
2 | MRPL55 | Uterine Endometrioid Carcinoma | P86H | Missense |
1/2 | RRS1 | Uterine Corpus Endometrioid Carcinoma | R83C | Missense |
1/2 | RRS1 | Uterine Corpus Endometrioid Carcinoma | L157R | Missense |
1/2 | SLC4A11 | Uterine Corpus Endometrioid Carcinoma | R831C/R804C | Missense |
1/2 | SLC4A11 | Cervical and Endocervical Cancer | R309C/R282C | Missense |
1 | SLC4A11 | Uterine Corpus Endometrioid Carcinoma | R50M | Missense |
2 | SLC4A11 | Serous Ovarian Cancer | R488M | Missense |
2 | SLC4A11 | Uterine Endometrioid Carcinoma | R629W | Missense |
2 | SLC4A11 | Uterine Endometrioid Carcinoma | D149V | Missense |
2 | SLC4A11 | Uterine Endometrioid Carcinoma | E562K | Missense |
2 | SLC4A11 | Uterine Endometrioid Carcinoma | R157C | Missense |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahra, A.; Hall, M.; Chatterjee, J.; Sisu, C.; Karteris, E. In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. Int. J. Mol. Sci. 2022, 23, 1725. https://doi.org/10.3390/ijms23031725
Zahra A, Hall M, Chatterjee J, Sisu C, Karteris E. In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. International Journal of Molecular Sciences. 2022; 23(3):1725. https://doi.org/10.3390/ijms23031725
Chicago/Turabian StyleZahra, Aeman, Marcia Hall, Jayanta Chatterjee, Cristina Sisu, and Emmanouil Karteris. 2022. "In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC" International Journal of Molecular Sciences 23, no. 3: 1725. https://doi.org/10.3390/ijms23031725
APA StyleZahra, A., Hall, M., Chatterjee, J., Sisu, C., & Karteris, E. (2022). In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. International Journal of Molecular Sciences, 23(3), 1725. https://doi.org/10.3390/ijms23031725