Characterization and Interaction Analysis of the Secondary Cell Wall Synthesis-Related Transcription Factor PmMYB7 in Pinus massoniana Lamb.
Abstract
:1. Introduction
2. Results
2.1. Full-Length Cloning and Bioinformatics Analysis of the PmMYB7 Gene Coding Sequence
2.2. Expression Profiling of the PmMYB7 Gene
2.3. Subcellular Localization of the PmMYB7 Protein
2.4. Construction of a P. massoniana Yeast cDNA Library
2.5. Autoactivation and Toxicity Analysis of Bait Vectors and Library Screening
2.6. Protein–Protein Interaction Networks of A. thaliana MYBR1 (MYB44) Transcription Factor
2.7. Validation of Interacting Proteins
3. Discussion
3.1. R2R3-MYB and Characterization of PmMYB7 in P. massoniana
3.2. Analysis of PmMYB7 Expression Pattern
3.3. Protein–Protein Interaction Analysis
4. Materials and Methods
4.1. Plant Materials
4.2. Full-Length Cloning of the cDNA Encoded by the PmMYB7 Gene
4.3. Bioinformatics Analysis of the PmMYB7 Gene Coding Sequence
4.4. Quantitative Real-Time PCR (RT–qPCR) Analysis of PmMYB7 Gene Expression
4.5. Subcellular Localization of the PmMYB7 Protein
4.6. Construction of the P. massoniana cDNA Yeast Library
4.6.1. Extraction of Total RNA and Isolation of mRNA
4.6.2. Synthesis of Double-Strand cDNAs and Addition of a 5′ Adapter
4.6.3. Ligation of the Double-Stranded cDNAs with Library Vectors
4.6.4. Electroporation of the Recombinant Library into Escherichia coli TOP10 and Saccharomyces cerevisiae AH109
4.6.5. Identification of Library Capacity and the Average Length of the Inserted Fragments
4.7. Analysis of the Autoactivation and Toxicity of Bait Vectors
4.8. Screening and Identification of Positive Interactors and Retrieval of Interacting Proteins
4.9. Point-to-Point Verification
4.10. Verify Protein Interactions Using Co-IP Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Nieminen, K.; Serra, J.A.; Helariutta, Y. The formation of wood and its control. Curr. Opin. Plant Biol. 2014, 17, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Sundell, D.; Street, N.R.; Kumar, M.; Mellerowicz, E.J.; Kucukoglu, M.; Johnsson, C.; Kumar, V.; Mannapperuma, C.; Delhomme, N.; Nilsson, O.; et al. Aspwood: High-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 2017, 29, 1585–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houston, K.; Tucker, M.R.; Chowdhury, J.; Shirley, N.; Little, A. The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant Sci. 2016, 7, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xie, M.; Tuskan, G.A.; Muchero, W.; Chen, J.G. Recent advances in the transcriptional regulation of secondary cell wall biosynthesis in the woody plants. Front. Plant Sci. 2018, 9, 1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.J.; Miao, Y.C.; Zhang, K.W. Sequestration and transport of lignin monomeric precursors. Molecules 2011, 16, 710–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Dai, X.; Pang, H.; Cheng, Y.; Huang, X.; Li, H.; Yan, X.; Lu, F.; Wei, H.; Sederoff, R.R.; et al. BEL1-like homeodomain protein BLH6a is a negative regulator of CAld5H2 in sinapyl alcohol monolignol biosynthesis in poplar. Front. Plant Sci. 2021, 12, 761291. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Goicoechea, M.; Lacombe, E.; Legay, S.; Mihaljevic, S.; Rech, P.; Jauneau, A.; Lapierre, C.; Pollet, B.; Verhaegen, D.; Chaubet-Gigot, N.; et al. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J. 2005, 43, 553–567. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Chen, F.; Wu, S.; Li, J.; Xu, W. Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci. China Life Sci. 2016, 59, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.C.; Ko, J.H.; Kim, J.Y.; Kim, J.; Bae, H.J.; Han, K.H. MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. Plant J. 2013, 73, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, X.; Lu, W.; Liu, R.; Tian, Q.; Sun, Y.; Luo, K. A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation. Plant Cell Tissue Organ Cult. 2014, 119, 553–563. [Google Scholar] [CrossRef]
- Zhao, Q.; Richard, A.D. Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends Plant Sci. 2011, 4, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.C.; Kim, J.Y.; Ko, J.H.; Kang, H.; Han, K.H. Identification of direct targets of transcription factor MYB46 provides insights into the transcriptional regulation of secondary wall biosynthesis. Plant Mol. Biol. 2014, 85, 589–599. [Google Scholar] [CrossRef]
- Karpinska, B.; Karlsson, M.; Srivastava, M.; Stenberg, A.; Schrader, J.; Sterky, F.; Bhalerao, R.; Wingsle, G. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Mol. Biol. 2004, 56, 255–270. [Google Scholar] [CrossRef]
- Kim, W.C. AtMYB7 acts as a repressor of lignin biosynthesis in Arabidopsis. J. Appl. Biol. Chem. 2016, 59, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Legay, S.; Sivadon, P.; Blervacq, A.S.; Pavy, N.; Baghdady, A.; Tremblay, L.; Levasseur, C.; Ladouce, N.; Lapierre, C.; Séguin, A.; et al. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol. 2010, 188, 774–786. [Google Scholar] [CrossRef]
- Patzlaff, A.; Newman, L.J.; Dubos, C.; Whetten, R.W.; Smith, C.; McInnis, S.; Bevan, M.W.; Sederoff, R.R.; Campbell, M.M. Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Mol. Biol. 2003, 53, 597–608. [Google Scholar] [CrossRef]
- Bedon, F.; Grima-Pettenati, J.; Mackay, J. Conifer R2R3-MYB transcription factors: Sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biol. 2007, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Bomal, C.; Bedon, F.; Caron, S.; Mansfield, S.D.; Levasseur, C.; Cooke, J.E.K.; Blais, S.; Tremblay, L.; Morency, M.-J.; Pavy, N.; et al. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: A comparative in planta analysis. J. Exp. Bot. 2008, 59, 3925–3939. [Google Scholar] [CrossRef] [Green Version]
- Patzlaff, A.; McInnis, S.; Courtenay, A.; Surman, C.; Newman, L.J.; Smith, C.; Bevan, M.W.; Mansfield, S.; Whetten, R.W.; Sederoff, R.R.; et al. Characterisation of a pine MYB that regulates lignification. Plant J. 2003, 36, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M.B.; Llebrés, M.T.; Craven-Bartle, B.; Cañas, R.A.; Cánovas, F.M.; Ávila, C. PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine. Plant Biotechnol. J. 2018, 16, 1094–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Chen, P.; Zhu, L.; Wu, F.; Chen, Y.; Zhu, P.; Ji, K. Characterization and function of the 1-deoxy-D-xylose-5-phosphate synthase (DXS) gene related to terpenoid synthesis in Pinus massoniana. Int. J. Mol. Sci. 2021, 22, 848. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Chen, P.; Yu, Y.; Zhang, M.; Wang, D.; Liu, J.; Hao, Q.; Ji, K. PmMYB4, a Transcriptional activator from Pinus massoniana, regulates secondary cell wall formation and lignin biosynthesis. Forests 2021, 12, 1618. [Google Scholar] [CrossRef]
- Studer, M.H.; Demartini, J.D.; Davis, M.F.; Sykes, R.W.; Davison, B.; Keller, M.; Tuskan, G.; Wyman, C.E. Lignin content in natural Populus variants affects sugar release. Proc. Natl. Acad. Sci. USA 2011, 108, 6300–6305. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Song, J.; Peng, S.; Wang, J.P.; Qu, G.Z.; Sederoff, R.R.; Chiang, V.L. Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol. J. 2014, 12, 1174–1192. [Google Scholar] [CrossRef]
- Chen, P.; Wu, X.; Wei, Q.; Wu, X.; Ji, K. Research progress of lignin synthesis gene in Pinaceae. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2017, 41, 169–176. [Google Scholar] [CrossRef]
- Wu, F.; Sun, X.; Zou, B.; Zhu, P.; Lin, N.; Lin, J.; Ji, K. Transcriptional analysis of Masson Pine (Pinus massoniana) under high CO2 stress. Genes 2019, 10, 804. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.; Wang, Q.; Wen, X.; Ding, G. Transcriptome-wide identification and expression profiling of Pinus massoniana MYB transcription factors responding to phosphorus deficiency. J. For. Res. 2020, 31, 909–919. [Google Scholar] [CrossRef]
- Matus, J.T.; Aquea, F.; Arce-Johnson, P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol. 2008, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, O.; Nahal, H.; Foong, J.; Provart, N.J.; Campbell, M.M. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 2009, 149, 981–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler, M.; Camargo, E.L.O.; Carocha, V.; Cassan-Wang, H.; San Clemente, H.; Savelli, B.; Hefer, C.; Paiva, J.; Myburg, A.A.; Grima-Pettenati, J. The Eucalyptus grandis R2R3-MYB transcription factor family: Evidence for woody growth-related evolution and function. New Phytol. 2015, 206, 1364–1377. [Google Scholar] [CrossRef] [PubMed]
- Lea, U.S.; Slimestad, R.; Smedvig, P.; Lillo, C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta 2007, 225, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Kranz, H.D.; Denekamp, M.; Greco, R.; Jin, H.; Leyva, A.; Meissner, R.C.; Petroni, K.; Urzainqui, A.; Bevan, M.; Martin, C.; et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J. 1998, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Osbourn, A.; Ma, P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef] [Green Version]
- Frampton, J. Myb Transcription Factors: Their Role in Growth, Differentiation and Disease; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 2, pp. 1–24. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, L.; Wilson, I.; Shao, F.; Qiu, D. The R2R3-MYB transcription factor family in Taxus chinensis: Identification, characterization, expression profiling and posttranscriptional regulation analysis. PeerJ 2020, 8, e8473. [Google Scholar] [CrossRef] [Green Version]
- Dong, X. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1998, 1, 316–323. [Google Scholar] [CrossRef]
- Zhu, X.; Cui, C.; Zhou, H.; Wu, Y.; Wang, Z. Cloning and expression analysis of the transcription factor SmMYB7 from Salvia miltiorrhiza Bunge. Genom. Appl. Biol. 2015, 34, 365–372. [Google Scholar] [CrossRef]
- Gharari, Z.; Bagheri, K.; Danafar, H.; Sharafi, A. Enhanced flavonoid production in hairy root cultures of Scutellaria bornmuelleri by elicitor induced over-expression of MYB7 and FNSП2 genes. Plant Physiol. Biochem. 2020, 148, 35–44. [Google Scholar] [CrossRef]
- Uetz, P.; Giot, L.; Cagney, G.; Mansfield, T.A.; Judson, R.S.; Knight, J.R.; Lockshon, D.; Narayan, V.; Srinivasan, M.; Pochart, P. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403, 623–627. [Google Scholar] [CrossRef]
- Takahashi, Y. Co-immunoprecipitation from transfected cells. In Protein-Protein Interactions; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1278, pp. 381–389. [Google Scholar] [CrossRef] [Green Version]
- Li, L.G.; Osakabe, Y.K. Secondary xylem-specific expressin of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthetic in loblloly pine. Plant Mol. Biol. 1999, 40, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhu, Y.; Yang, W.; Xu, W.; Li, Q.; Chen, M.; Yang, L. Isolation and functional identification of a Botrytis cinerea-responsive caffeoyl-CoA O-methyltransferase gene from Lilium regale wilson. Plant Physiol. Biochem. 2020, 157, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Pesch, M.; Schultheiß, I.; Digiuni, S.; Uhrig, J.F.; Hülskamp, M. Mutual control of intracellular localisation of the patterning proteins AtMYC1, GL1 and TRY/CPC in Arabidopsis. Development 2013, 140, 3456–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.; Cai, W.; Wang, S.; Shan, C.; Wang, L.; Chen, X. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 2010, 22, 2322–2335. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Xie, Z.; Qi, K.; Zhao, L.; Yuan, Y.; Xu, J.; Rui, W.; Shiratake, K.; Bao, J.; Khanizadeh, S.; et al. PbMC1a/1b regulates lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Hort. Res. 2020, 7, 59. [Google Scholar] [CrossRef]
- Pogorelko, G.V.; Juvale, P.S.; Rutter, W.B.; Hütten, M.; Maier, T.R.; Hewezi, T.; Paulus, J.; van der Hoorn, R.A.; Grundler, F.M.; Siddique, S.; et al. Re-targeting of a plant defense protease by a cyst nematode effector. Plant J. 2019, 98, 1000–1014. [Google Scholar] [CrossRef] [Green Version]
- Chopra, K.; Burdak, B.; Sharma, K.; Kembhavi, A.; Mande, S.C.; Chauhan, R. CoRNeA: A pipeline to decrypt the inter-protein interfaces from amino acid sequence information. Biomolecules 2020, 10, 938. [Google Scholar] [CrossRef]
- Wagner, A.; Tobimatsu, Y.; Phillips, L.; Flint, H.; Torr, K.; Donaldson, L.; Pears, L.; Ralph, J. CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J. 2011, 67, 119–129. [Google Scholar] [CrossRef]
- Romano, J.M.; Dubos, C.; Prouse, M.B.; Wilkins, O.; Hong, H.; Poole, M.; Kang, K.; Li, E.; Douglas, C.J.; Western, T.L.; et al. AtMYB61, an R2R3-MYB transcription factor, functions as a pleiotropic regulator via a small gene network. New Phytol. 2012, 195, 774–786. [Google Scholar] [CrossRef]
- Cavalier, D.M.; Lerouxel, O.; Neumetzler, L.; Yamauchi, K.; Reinecke, A.; Freshour, G.; Zabotina, O.A.; Hahn, M.G.; Burgert, I.; Pauly, M.; et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 2008, 20, 1519–1537. [Google Scholar] [CrossRef] [Green Version]
- Zabotina, O.A.; Van De Wen, W.T.; Freshour, G.; Drakakaki, G.; Cavalier, D.; Mouille, G.; Hahn, M.G.; Keegstra, K.; Raikhel, N.V. Arabidopsis XXT5 gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis. Plant J. 2008, 56, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 2015, 43, W389–W394. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Min, D.; Wang, J.P.Y.; Peszlen, I.; Horvath, L.; Nishimura, Y.; Jameel, H.; Chang, H.-M.; Chiang, V.L. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol. 2011, 31, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, P.; Ma, Y.; Zhu, L.; Chen, Y.; Li, R.; Kongshu, J.; Ji, K. Selection of suitable reference genes in Pinus massoniana lamb. under different abiotic stresses for qPCR normalization. Forests 2019, 10, 632. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCt method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chou, K.; Shen, H. Cell-PLoc: An improved package of Web-servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 2010, 2, 1090–1103. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.D.; Cho, Y.H.; Sheen, J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2007, 2, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
Protein ID | Species | Protein Name | Predicted Function |
---|---|---|---|
Resistance related | |||
XP_034896381.1 | P. alba | Hyoscyamine 6-dioxygenase-like | Converts salicylic acid (SA) to 2,3-dihydroxybenzoic acid (2,3-DHBA); regulates negative defense-associated gene expressions. |
XP_034894966.1 | P. alba | Glucan endo-1,3-beta-glucosidase, basic isoform-like | May play a role in plant defense against pathogens. |
XP_034927539.1 | P. alba | Germin-like protein subfamily 1 member 13 | May play a role in plant defense. |
Abiotic stress related | |||
XP_034894692.1 | P. alba | Osmotin-like protein OSM34 | Involved in the ABA signaling pathway. |
AAT12488.1 | P. alba x P. glandulosa | Copper chaperone | Plays an important role in copper homeostasisby conferring tolerance to excessive copper levels and subclinical copper deficiency during vegetative stage. |
XP_034890852.1 | P. alba | Enhanced ethylene response protein 5 isoform X2 | Ectopic expression of seed storage proteins 1; involved in the regulation of ethylene response. |
XP_034906946.1 | P. alba | Dehydration-responsive element-binding protein 2D-like | Encodes a member of the DREB subfamily A-2 of ERF/AP2 transcription factor family; involved in response to drought. |
XP_034907399.1 | P. alba | Chaperone protein dnaJ A6, chloroplastic-like | Cooperates with the chaperone HSC70 to assist protein folding and prevent protein aggregation in the chloroplast during heat stress. |
XP_034931160.1 | P. alba | 40S ribosomal protein S12-like | Structural constituent of ribosome; involved in response to cadmium ions, response to salt stress and translation. |
XP_006371633.2 | P. trichocarpa | Uncharacterized protein | Wound-response family protein, including the DUF3774 domain. |
XP_034917128.1 | P. alba | BURP domain protein RD22-like | RD22 can alleviate salinity and osmotic stress. |
ABK96099.1 | P. trichocarpa | Clone WS0127_L05 unknown mRNA | Encodes a ferritin protein that is targeted to the chloroplast; gene expression is induced in response to iron overload and by nitric oxide. |
Cell wall-related | |||
XP_034890693.1 | P. alba | 3-ketoacyl-CoA synthase 10 | Contributes to cuticular wax and suberin biosynthesis. |
APX43199.1 | P. tomentosa | Caffeoyl CoA 3-O-methyltransferase 2 | Methylates caffeoyl-CoA to feruloyl-CoA and 5-hydroxyferuloyl-CoA to sinapoyl-CoA; plays a role in the synthesis of feruloylated polysaccharides; involved in the reinforcement of the plant cell wall. |
XP_034920216.1 | P. alba | Beta-1,2-xylosyltransferase XYXT1 | Glycosyltransferase family 61 protein; transferase activity; and transfers glycosyl groups. |
XP_034927053.1 | P. alba | Proline-rich protein-like | May have a specific role in modifying the cell-wall structure, specifically during seed germination, thus facilitating radicle protrusion. |
Cell development and cellular component-related | |||
XP_034912044.1 | P. alba | N-terminal acetyltransferase A complex catalytic subunit NAA10-like | Required for male gametocyte development, embryogenesis, suspensor development and the formation of the quiescent center (QC) in the root meristem. |
XP_034916055.1 | P. alba | 40S ribosomal protein S5 | Delay/disrupt cell-division processes and development at an early embryonic stage in the homozygous mutant. |
XP_002313280.1 | P. trichocarpa | 60S ribosomal protein L6 | Structural constituent of ribosome; involved in translation. |
XP_034915118.1 | P. alba | 40S ribosomal protein S15-like | Structural constituent of ribosome; involved in translation. |
XP_024440441.1 | Populus trichocarpa | 40S ribosomal protein S30 | Structural constituent of ribosome; involved in translation. |
XP_034922981.1 | P. alba | 60S ribosomal protein L13a-4 | Structural constituent of ribosome; involved in translation. |
XP_034918559.1 | P. alba | 60S ribosomal protein L36-2-like | Structural constituent of ribosome; involved in translation. |
Catalytic activity and protein synthesis-related | |||
XP_024456673.1 | P. trichocarpa | Probable protein Phosphatase 2C 9 | Serine/threonine phosphatase activity, catalytic activity. |
XP_034909248.1 | P. alba | Adenylate kinase isoenzyme 6 homolog isoform X1 | Catalyze the reversible transfer of the terminal phosphate group between nucleoside triphosphates and monophosphates. |
XP_034914042.1 | P. alba | Ubiquitin-conjugating enzyme E2 28 | Accept the ubiquitin from the E1 complex and catalyze its covalentattachment to other proteins. |
XP_034932113.1 | P. alba | ATP-citrate synthase beta chain protein 1 | ATP citrate-lyase that is used for the elongation of fatty acids and biosynthesis of isoprenoids, flavonoids and malonated derivatives. |
XP_034903658.1 | P. alba | Nuclear pore complex protein NUP98A isoform X2 | NUP96 and NUP98 are not translated as polyproteins. |
XP_034914799.1 | P. alba | Fructose-bisphosphate aldolase 6, cytosolic-like | Fructose-bisphosphate aldolase that plays a key role in glycolysis and gluconeogenesis. |
AXY97901.1 | P. tomentosa | Enolase 2 | In particular, enolase 2 (ENO2) is a glycolytic enzyme that is present almost exclusively in neurons and neuroendocrine cells. |
XP_034932781.1 | P. alba | Polyubiquitin-like | Polyubiquitin and ubiquitin-like signals share common recognition sites on proteasomal subunit Rpn1 |
XP_034899578.1 | P. alba | Probable carboxylesterase 2 | Carboxylesterase acting on esters with varying acyl chain length. |
XP_034889715.1 | P. alba | Rhodanese-like domain-containing protein 17 isoform X2 | Cysteine persulfide intermediate. |
XP_034889386.1 | P. alba | Wound-responsive protein GWIN3-like | Kunitz trypsin inhibitor TI3; most inhibit serine proteases (families S1 and S8). |
XP_034916340.1 | P. alba | Transmembrane 9 superfamily member 8-like | Endomembrane protein 70 protein family; located integral to membrane, Golgi apparatus, plasma membrane, plant-type cell wall. |
XP_034899278.1 | P. alba | Nuclear/nucleolar GTPase 2 | GTPase involved in pre-60S ribosomal subunit maturation. |
XP_034896238.1 | P. alba | Vacuolar protein sorting-associated protein 2 homolog 1-like | Component of the ESCRT-III complex, which is required for multivesicular bodies (MVBs) formation. |
XP_034892684.1 | P. alba | Uncharacterized protein isoform X1 | DNA-directed RNA polymerase subunit beta–beta protein. |
XP_006343015.2 | Solanum tuberosum | RWD domain-containing protein 1isoform X1 | RWD domain-containing protein1 is also known as RWDD or RWDD1 and is sometimes seen expressed as DFRP2. |
ABK92558.1 | P. trichocarpa | Clone PX0015_H16 unknown mRNA | Glycine hydroxymethyltransferase; encodes a serine hydroxymethyltransferase maximally expressed in root. |
Unknown protein | |||
XP_034922861.1 | P. alba | Vegetative cell wall protein gp1-like isoform X2 | Located in endomembrane system. |
XP_002301538.3 | P. trichocarpa | Protein rolling stone isoform X2 | Located in endomembrane system. |
XP_034894915.1 | P. alba | Uncharacterized protein | Unknown protein. |
XP_034891584.1 | P. alba | Uncharacterized protein | Unknown protein. |
XP_034913569.1 | P. alba | Uncharacterized protein isoform X1 | Uncharacterized protein. |
ABK92753.1 | P. trichocarpa | Clone PX0019_O01 unknown | Uncharacterized protein. |
ABK96721.1 | P. trichocarpa x P. deltoides | Clone WS0137_I01 unknown | Uncharacterized protein. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Li, R.; Zhu, L.; Hao, Q.; Yao, S.; Liu, J.; Ji, K. Characterization and Interaction Analysis of the Secondary Cell Wall Synthesis-Related Transcription Factor PmMYB7 in Pinus massoniana Lamb. Int. J. Mol. Sci. 2022, 23, 2079. https://doi.org/10.3390/ijms23042079
Chen P, Li R, Zhu L, Hao Q, Yao S, Liu J, Ji K. Characterization and Interaction Analysis of the Secondary Cell Wall Synthesis-Related Transcription Factor PmMYB7 in Pinus massoniana Lamb. International Journal of Molecular Sciences. 2022; 23(4):2079. https://doi.org/10.3390/ijms23042079
Chicago/Turabian StyleChen, Peizhen, Rong Li, Lingzhi Zhu, Qingqing Hao, Sheng Yao, Jiahe Liu, and Kongshu Ji. 2022. "Characterization and Interaction Analysis of the Secondary Cell Wall Synthesis-Related Transcription Factor PmMYB7 in Pinus massoniana Lamb." International Journal of Molecular Sciences 23, no. 4: 2079. https://doi.org/10.3390/ijms23042079
APA StyleChen, P., Li, R., Zhu, L., Hao, Q., Yao, S., Liu, J., & Ji, K. (2022). Characterization and Interaction Analysis of the Secondary Cell Wall Synthesis-Related Transcription Factor PmMYB7 in Pinus massoniana Lamb. International Journal of Molecular Sciences, 23(4), 2079. https://doi.org/10.3390/ijms23042079