An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants
Abstract
:1. Introduction
2. Results
2.1. Establishment of the Rapid and Efficient Callus Induction and Shoot Induction Protocol
2.2. Determination of the Optimal Hygromycin B Concentration for Transformant Selection
2.3. Optimization of the Transformation Procedure
2.4. Confirmation of the Transgenic Plants
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Optimization of Callus Induction Medium
4.3. Optimization of Shoot Induction Medium
4.4. Optimizing the Hygromycin B Concentration for the Selection of Transformants
4.5. Transformation of Callus via Agrobacterium Cells
4.6. Evaluation of the Factors Affecting the Transformation Frequency
4.7. PCR and RT-PCR Analyses
4.8. GUS Staining Assay
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, C.; Liu, H.; Tang, R.; Zhang, H. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant. Cell Rep. 2011, 30, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lu, S.; Chen, Z.Z.; Lourenco, R.; Chiang, V.L. Genetic transformation of Populus trichocarpa genotype Nisqually-1: A functional genomic tool for woody plants. Plant Cell Physiol. 2006, 47, 1582–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, H.D.; Ceulemans, R.; Davis, J.; Stettler, R. Emerging Model Systems in Plant Biology: Poplar (Populus) as A Model Forest Tree. J. Plant. Growth Regul. 2000, 19, 306–313. [Google Scholar] [CrossRef]
- Neng, Z.; Jun, L.; Gu-Tang, G. On the Classification and Distribution of the Subfamily Populoideae(Salicaceae). Plant Sci. J. 2009, 27, 23–40. [Google Scholar]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar]
- Maheshwari, P.; Kovalchuk, I. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera. Front. Plant Sci. 2016, 7, 296. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Ma, S.; Kong, X.; Takano, T.; Liu, S. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode x Populus bollena Lauche. Int. J. Mol. Sci. 2013, 14, 2515–2528. [Google Scholar] [CrossRef] [Green Version]
- John, E.; Maqbool, A.; Malik, K. Optimization of Agrobacterium tumefaciens mediated transformation in Populus deltoides. Pak. J. Bot. 2014, 46, 1079–1086. [Google Scholar]
- Ling, H.Q.; Kriseleit, D.; Ganal, M.W. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep. 1998, 17, 843–847. [Google Scholar] [CrossRef]
- Yevtushenko, D.P.; Misra, S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep. 2010, 29, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Confalonieri, M.; Balestrazzi, A.; Bisoffi, S.; Carbonera, D. In vitro culture and genetic engineering of Populus spp.: Synergy for forest tree improvement. Plant Cell Tissue Organ Cult. 2003, 72, 109–138. [Google Scholar] [CrossRef]
- Confalonieri, M.; Balestrazzi, A.; Bisoffi, S.; Cella, R. Factors affecting Agrobacterium tumefaciens-mediated transformation in several black poplar clones. Plant Cell Tissue Organ Cult. 1995, 43, 215–222. [Google Scholar]
- Li, J.; Brunner, A.M.; Meilan, R.; Strauss, S.H. Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus. Plant Biotechnol. J. 2008, 6, 887–896. [Google Scholar] [CrossRef]
- Ma, C.; Strauss, S.H.; Meilan, R. Agrobacterium-mediated transformation of the genome-sequenced poplar clone, nisqually-1 (Populus trichocarpa). Plant Mol. Biol. Rep. 2004, 22, 311–312. [Google Scholar] [CrossRef]
- Movahedi, A.; Zhang, J.; Amirian, R.; Zhuge, Q. An efficient Agrobacterium-mediated transformation system for poplar. Int. J. Mol. Sci. 2014, 15, 10780–10793. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhen, C.; Xu, W.; Wang, C.; Cheng, Y. Simple, rapid and efficient transformation of genotype Nisqually-1: A basic tool for the first sequenced model tree. Sci. Rep. 2017, 7, 2638. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, M.; Yoshida, K.; Mohri, T.; Igasaki, T.; Shinohara, K. An improved transformation system for Lombardy poplar (Populus nigra var. italica). J. Forest Res. 2006, 11, 175–180. [Google Scholar] [CrossRef]
- Cseke, L.J.; Cseke, S.B.; Podila, G.K. High efficiency poplar transformation. Plant Cell Rep 2007, 26, 1529–1538. [Google Scholar] [CrossRef]
- Herbert, L.; Meunier, A.C.; Bes, M.; Vernet, A.; Portefaix, M.; Durandet, F.; Michel, R.; Chaine, C.; This, P.; Guiderdoni, E.; et al. Beyond Seek and Destroy: How to Generate Allelic Series Using Genome Editing Tools. Rice 2020, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Manghwar, H.; Sun, L.; Wang, P.; Wang, G.; Sheng, H.; Zhang, J.; Liu, H.; Qin, L.; Rui, H.; et al. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol. J. 2019, 17, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Choi, Y.E.; Kusano, T.; Sano, H. Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep. 1999, 19, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhang, X.; Liang, S.; Nie, Y.; Guo, X.; Huang, C. Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 2005, 81, 229–237. [Google Scholar] [CrossRef]
- Lim, W.L.; Collins, H.M.; Singh, R.R.; Kibble, N.A.J.; Yap, K.; Taylor, J.; Fincher, G.B.; Burton, R.A. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan. J. Integr. Plant Biol. 2018, 60, 382–396. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, A.; Aichi, I.; Matsuoka, M. A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 2006, 1, 2796–2802. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Pandian, S.K.; Ramesh, M. Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. sub sp. indica cv. ADT 43). Plant Sci. 2011, 181, 258–268. [Google Scholar] [CrossRef]
- Kumria, R.; Waie, B.; Rajam, M.V. Plant regeneration from transformed embryogenic callus of an elite indica rice via Agrobacterium. Plant Cell Tissue Organ Cult. 2001, 67, 63–71. [Google Scholar] [CrossRef]
- Manimaran, P.; Kumar, G.R.; Reddy, M.R.; Jain, S.; Balachandran, S.M. Infection of Early and Young Callus Tissues of Indica Rice BPT 5204 Enhances Regeneration and Transformation Efficiency. Rice Sci. 2013, 20, 415–426. [Google Scholar] [CrossRef]
- Rachmawati, D.; Anzai, H. Studies on callus induction, plant regeneration and transformation of Javanica rice cultivars. Plant Biotechnol. 2006, 23, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Saika, H.; Nishizawa-Yokoi, A.; Toki, S. The non-homologous end-joining pathway is involved in stable transformation in rice. Front. Plant Sci. 2014, 5, 560. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.N.; Sanan-Mishra, N. Effect of antibiotics on callus regeneration during transformation of IR 64 rice. Biotechnol. Rep. 2015, 7, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nietsch, J.; Brügmann, T.; Becker, D.; Fladung, M. Old methods rediscovered: Application and improvement of two direct transformation methods to hybrid poplar (Populus tremula × P. alba). Plant Cell Tissue Organ Cult. 2017, 130, 183–196. [Google Scholar] [CrossRef]
- Wang, L.N.; Wang, Y.C.; Yang, C.P. The Comparative study of Callus and Direct Differation Regenaration System of 84K Poplar. Bull. Bot. Res. 2017, 37, 542–548. [Google Scholar]
- Hesami, M.; Alizadeh, M.; Naderi, R.; Tohidfar, M. Forecasting and optimizing Agrobacterium-mediated genetic transformation via ensemble model-fruit fly optimization algorithm: A data mining approach using chrysanthemum databases. PLoS ONE 2020, 15, e0239901. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.; Koukolíková-Nicola, Z.; Baisakh, N.; Oliva, N.; Datta, S.K. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 2000, 100, 832–839. [Google Scholar] [CrossRef]
- Toki, S.; Hara, N.; Ono, K.; Onodera, H.; Tagiri, A.; Oka, S.; Tanaka, H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J. 2006, 47, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, L.; Han, Y.; Li, J. Establishment of Leaf-explant Regeneration System of Poplar 84K. J. Northwest For. Coll. 2002, 17, 33–36. [Google Scholar]
- Niazian, M. Application of genetics and biotechnology for improving medicinal plants. Planta 2019, 249, 953–973. [Google Scholar] [CrossRef]
- Rovere, F.D.; Fattorini, L.; Ronzan, M.; Falasca, G.; Altamura, M.M. The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana. Plant Signal. Behav. 2016, 11, e1176660. [Google Scholar] [CrossRef] [Green Version]
- Iwase, A.; Mitsuda, N.; Koyama, T.; Hiratsu, K.; Kojima, M.; Arai, T.; Inoue, Y.; Seki, M.; Sakakibara, H.; Sugimoto, K.; et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr. Biol. 2011, 21, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Saika, H.; Toki, S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 2010, 29, 1351–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biot. 2020, 104, 9449–9485. [Google Scholar] [CrossRef]
- Gu, X.F.; Zhang, J.R. An efficient adventitious shoot regeneration system for Zhanhua winter jujube (Zizyphus jujuba Mill.) using leaf explants. Plant Cell Rep. 2005, 23, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Matt, A.; Jehle, J.A. In vitro plant regeneration from leaves and internode sections of sweet cherry cultivars (Prunus avium L.). Plant Cell Rep. 2005, 24, 468–476. [Google Scholar] [CrossRef]
- Tetsumura, T.; Matsumoto, Y.; Sato, M.; Honsho, C.; Yamashita, K.; Komatsu, H.; Sugimoto, Y.; Kunitake, H. Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Sci. Hortic. 2008, 119, 72–74. [Google Scholar] [CrossRef]
- Jain, A.; Poling, M.D.; Smith, A.P.; Nagarajan, V.K.; Lahner, B.; Meagher, R.B.; Raghothama, K.G. Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiol. 2009, 150, 1033–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, G.M.; Amer, A.M.; Osman, N.H.; Sedikc, M.Z.; Hussein, M.H. Effects of different gelling agents on the different stages of rice regeneration in two rice cultivars. Saudi J. Biol. Sci. 2021, 28, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
- Niedbała, G.; Niazian, M.; Sabbatini, P. Modeling Agrobacterium-Mediated Gene Transformation of Tobacco (Nicotiana tabacum)—A Model Plant for Gene Transformation Studies. Front. Plant Sci. 2021, 12, 695110. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, G.; Chaudhary, D.; Sainger, M.; Jaiwal, P.K. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol. Mol. Biol. Plants 2011, 17, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.C.; Yi, Z.L.; Jiang, J.X.; Qin, J.P.; Xiao, L. Improvements on methods of Agrobacterium-mediated genetic transformation of Indica rice. J. Chang. Univ. Sci. Technol. 2008, 5, 98–103. [Google Scholar]
- Xing, Y.; Yang, Q.; Ji, Q.; Luo, Y.; Zhang, Y.; Gu, K.; Wang, D. Optimization of Agrobacterium-mediated transformation parameters for sweet potato embryogenic callus using β-glucuronidase (GUS) as a reporter. Afr. J. Biotechnol. 2007, 6, 2578–2584. [Google Scholar]
- Song, C.; Lu, L.; Guo, Y.; Xu, H.; Li, R. Efficient Agrobacterium-Mediated Transformation of the Commercial Hybrid Poplar Populus Alba × Populus glandulosa Uyeki. Int. J. Mol. Sci. 2019, 20, 2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horsch, R. A simple and general method for transferring genes into plants. Science 1985, 227, 1229–1231. [Google Scholar] [CrossRef] [PubMed]
- Hai, G.; Jia, Z.; Xu, W.; Wang, C.; Cao, S.; Liu, J.; Cheng, Y. Characterization of the Populus PtrCesA4 promoter in transgenic Populus alba × P. glandulosa. Plant Cell Tissue Organ Cult. 2016, 124, 495–505. [Google Scholar] [CrossRef]
- Wang, L.Q.; Li, Z.; Wen, S.S.; Wang, J.N.; Zhao, S.T.; Lu, M.Z. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar. J. Exp. Bot. 2020, 71, 1503–1513. [Google Scholar] [CrossRef]
- Liu, B.; Wang, L.; Zhang, J.; Li, J.; Zheng, H.; Chen, J.; Lu, M. WUSCHEL-related Homeobox genes in Populus tomentosa: Diversified expression patterns and a functional similarity in adventitious root formation. BMC Genom. 2014, 15, 296. [Google Scholar] [CrossRef] [Green Version]
Culture Medium | Basal Medium | 2,4-D (mg/L) | Kinetin (mg/L) | NAA (mg/L) | 6-BA (mg/L) | Gelling Agent | Number of Leaf Explants | Mean Number of Calli per Medium | Induction Frequency (%) |
---|---|---|---|---|---|---|---|---|---|
CIM1 | WPM | 1.0 | 0.1 | 0 | 0 | Phytagel | 30 | 29.33 ± 0.33 a | 97.78 ± 1.11 a |
CIM2 | MS | 1.0 | 0.1 | 0 | 0 | Phytagel | 30 | 28.33 ± 0.88 a | 94.44 ± 2.94 a |
CIM3 | MS | 0.2 | 0 | 0.4 | 0.4 | Phytagel | 30 | 24.67 ± 0.88 b | 82.22 ± 2.94 b |
CIM4 | MS | 0.2 | 0 | 0.4 | 0.4 | Agar | 30 | 22.00 ± 1.00 b | 73.33 ± 3.33 b |
Culture Medium | Basal Medium | NAA (mg/L) | 6-BA (mg/L) | Gelling Agent | Number of Callus Explants | Mean Number of Shoots per Medium | Regeneration Frequency (%) |
---|---|---|---|---|---|---|---|
SIM1 | WPM | 0.05 | 0.5 | Phytagel | 30 | 29.67 ± 0.33 a | 98.89 ± 1.11 a |
SIM2 | WPM | 0.05 | 0.5 | Agar | 30 | 5.00 ± 0.58 b | 16.67 ± 1.92 b |
SIM3 | MS | 0.05 | 0.5 | Agar | 30 | 1.67 ± 0.33 c | 5.56 ± 1.11 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, S.-S.; Ge, X.-L.; Wang, R.; Yang, H.-F.; Bai, Y.-E.; Guo, Y.-H.; Zhang, J.; Lu, M.-Z.; Zhao, S.-T.; Wang, L.-Q. An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants. Int. J. Mol. Sci. 2022, 23, 2216. https://doi.org/10.3390/ijms23042216
Wen S-S, Ge X-L, Wang R, Yang H-F, Bai Y-E, Guo Y-H, Zhang J, Lu M-Z, Zhao S-T, Wang L-Q. An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants. International Journal of Molecular Sciences. 2022; 23(4):2216. https://doi.org/10.3390/ijms23042216
Chicago/Turabian StyleWen, Shuang-Shuang, Xiao-Lan Ge, Rui Wang, Hai-Feng Yang, Yu-E. Bai, Ying-Hua Guo, Jin Zhang, Meng-Zhu Lu, Shu-Tang Zhao, and Liu-Qiang Wang. 2022. "An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants" International Journal of Molecular Sciences 23, no. 4: 2216. https://doi.org/10.3390/ijms23042216
APA StyleWen, S. -S., Ge, X. -L., Wang, R., Yang, H. -F., Bai, Y. -E., Guo, Y. -H., Zhang, J., Lu, M. -Z., Zhao, S. -T., & Wang, L. -Q. (2022). An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants. International Journal of Molecular Sciences, 23(4), 2216. https://doi.org/10.3390/ijms23042216