Increased L-Selectin on Monocytes Is Linked to the Autoantibody Profile in Systemic Sclerosis
Abstract
:1. Introduction
2. Results
2.1. Characteristics of SSc Patients
2.2. Adhesion/Chemotactic Profile Is Altered on SSc Monocytes
2.3. The Surface Expression of CD62L on Monocytes Is Associated with the Autoantibody Profile of SSc Patients
2.4. Soluble CD62L Is Increased in SSc Serum
2.5. STreatment with SSc Serum Positive for Anti-Topoisomerase I Antibodies Increases CD62L on Monocytes
2.6. The Expression of CCR5 on the Surface of Monocytes Is Associated with Interstitial Lung Disease
2.7. The Surface Expression of CCR2 and CCR5 on SSc Monocytes Is Associated with Therapy
3. Discussion
4. Materials and Methods
4.1. Patients and Controls
4.2. Flow Cytometry
4.3. ELISA
4.4. Cell Experiment
4.5. Statistical Analysis and Clinical Significance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Herrick, A.L. Systemic sclerosis. Br. J. Hosp. Med. 2019, 80, 530–536. [Google Scholar] [CrossRef]
- Kania, G.; Rudnik, M.; Distler, O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat. Rev. Rheumatol. 2019, 15, 288–302. [Google Scholar] [CrossRef]
- Sampath, P.; Moideen, K.; Ranganathan, U.D.; Bethunaickan, R. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Front. Immunol. 2018, 9, 1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescoat, A.; Lecureur, V.; Roussel, M.; Sunnaram, B.L.; Ballerie, A.; Coiffier, G.; Jouneau, S.; Fardel, O.; Fest, T.; Jégo, P. CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis. Clin. Rheumatol. 2017, 36, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.K.D.; Quinn, K.; Li, Q.; Carroll, R.; Warsinske, H.; Vallania, F.; Chen, S.; Carns, M.A.; Aren, K.; Sun, J.; et al. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: A retrospective, multicentre cohort study. Lancet Respir. Med. 2019, 7, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Carvalheiro, T.; Horta, S.; Van Roon, J.A.G.; Santiago, M.; Salvador, M.J.; Trindade, H.; Radstake, T.R.D.J.; Da Silva, J.A.P.; Paiva, A. Increased frequencies of circulating CXCL10-, CXCL8- and CCL4-producing monocytes and Siglec-3-expressing myeloid dendritic cells in systemic sclerosis patients. Inflamm. Res. 2018, 67, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, H.H.B.; De Souza, R.B.C.; Carrasco, S.; Goldenstein-Schainberg, C. Altered adhesion molecules expression on peripheral blood mononuclear cells from patients with systemic sclerosis and clinical correlations. Clin. Rheumatol. 2009, 28, 847–851. [Google Scholar] [CrossRef]
- Tourkina, E.; Bonner, M.; Oates, J.; Hofbauer, A.; Richard, M.; Znoyko, S.; Visconti, R.P.; Zhang, J.; Hatfield, C.M.; Silver, R.M.; et al. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: Reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair 2011, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Misharin, A.V.; Morales-Nebreda, L.; Reyfman, P.A.; Cuda, C.M.; Walter, J.M.; McQuattie-Pimentel, A.C.; Chen, C.-I.; Anekalla, K.R.; Joshi, N.; Williams, K.J.N.; et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 2017, 214, 2387–2404. [Google Scholar] [CrossRef] [Green Version]
- Christmann, R.B.; Sampaio-Barros, P.; Stifano, G.; Borges, C.L.; De Carvalho, C.R.; Kairalla, R.; Parra, E.R.; Spira, A.; Simms, R.; Capellozzi, V.L.; et al. Association of Interferon- and Transforming Growth Factor β-Regulated Genes and Macrophage Activation with Systemic Sclerosis-Related Progressive Lung Fibrosis. Arthritis Rheumatol. 2014, 66, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Spanò, F.; Cagnati, P.; Puppo, F. Free radicals and endothelial dysfunction: Potential positive effects of TNF-α inhibitors. Redox Report 2013, 18, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivetic, A.; Hoskins Green, H.L.; Hart, S.J. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front. Immunol. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.Q.; Khan, I.; Gupta, V. CD11b Activity Modulates Pathogenesis of Lupus Nephritis. Front. Med. 2018, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Rudnik, M.; Rolski, F.; Jordan, S.; Mertelj, T.; Stellato, M.; Distler, O.; Blyszczuk, P.; Kania, G. Regulation of Monocyte Adhesion and Type I Interferon Signaling by CD52 in Patients with Systemic Sclerosis. Arthritis Rheumatol. 2021, 73, 1720–1730. [Google Scholar] [CrossRef]
- Bianconi, V.; Sahebkar, A.; Atkin, S.L.; Pirro, M. The regulation and importance of monocyte chemoattractant protein-1. Curr. Opin. Hematol. 2018, 25, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, L.; Tagliamonte, M.; Gauzzi, M.C.; Lopalco, L. Dual CCR5/CCR2 targeting: Opportunities for the cure of complex disorders. Cell. Mol. Life Sci. 2019, 76, 4869–4886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Bandinelli, F.; Del Rosso, A.; Gabrielli, A.; Giacomelli, R.; Bartoli, F.; Guiducci, S.; Matucci Cerinic, M. CCL2, CCL3 and CCL5 chemokines in systemic sclerosis: The correlation with SSc clinical features and the effect of prostaglandin E1 treatment. Clin Exp Rheumatol 2012, 30, S44–S49. [Google Scholar] [PubMed]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef] [PubMed]
- Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000188404-SELL/immune+cell (accessed on 4 January 2022).
- Masuda, A.; Yasuoka, H.; Satoh, T.; Okazaki, Y.; Yamaguchi, Y.; Kuwana, M. Versican is upregulated in circulating monocytes in patients with systemic sclerosis and amplifies a CCL2-mediated pathogenic loop. Arthritis Res. Ther. 2013, 15, R74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Tang, S.; Zhu, D.; Ding, Y.; Qiao, J. Classical Disease-Specific Autoantibodies in Systemic Sclerosis: Clinical Features, Gene Susceptibility, and Disease Stratification. Front. Med. 2020, 7, 758. [Google Scholar] [CrossRef]
- Shimizu, T.; Saito, C.; Watanabe, M.; Ishii, R.; Kawamura, T.; Nagai, K.; Fujita, A.; Kaneko, S.; Kai, H.; Morito, N.; et al. Anti-PM/Scl Antibody-positive Systemic Sclerosis Complicated by Multiple Organ Involvement. Intern. Med. 2021, 60, 1101–1107. [Google Scholar] [CrossRef]
- Sato, S.; Hasegawa, M.; Takehara, K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J. Dermatol. Sci. 2001, 27, 140–146. [Google Scholar] [CrossRef]
- Inaoki, M.; Sato, S.; Shimada, Y.; Takehara, K. Elevated serum levels of soluble L-selectin in patients with systemic sclerosis declined after intravenous injection of lipo-prostaglandin E1. J. Dermatol. Sci. 2001, 25, 78–82. [Google Scholar] [CrossRef]
- Shimada, Y.; Hasegawa, M.; Takehara, K.; Sato, S. Elevated serum L-selectin levels and decreased L-selectin expression on CD8+lymphocytes in systemic sclerosis. Clin. Exp. Immunol. 2001, 124, 474–479. [Google Scholar] [CrossRef]
- Hasegawa, M.; Asano, Y.; Endo, H.; Fujimoto, M.; Goto, D.; Ihn, H.; Inoue, K.; Ishikawa, O.; Kawaguchi, Y.; Kuwana, M.; et al. Serum Adhesion Molecule Levels as Prognostic Markers in Patients with Early Systemic Sclerosis: A Multicentre, Prospective, Observational Study. PLoS ONE 2014, 9, e88150. [Google Scholar] [CrossRef]
- Blann, A.D.; Sanders, P.A.; Herrick, A.; Jayson, M.I. Soluble L-selectin in the connective tissue diseases. Br. J. Haematol. 1996, 95, 192–194. [Google Scholar] [CrossRef]
- Dunne, J.V.; Van Eeden, S.F.; Keen, K.J. L-selectin and Skin Damage in Systemic Sclerosis. PLoS ONE 2012, 7, e44814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfikakis, P.P.; Charalambopoulos, D.; Vaiopoulos, G.; Mavrikakis, M. Circulating P- and L-Selectin and T-Lymphocyte Activation in Patients with Autoimmune Rheumatic Diseases. Clin. Rheumatol. 1999, 18, 28–32. [Google Scholar] [CrossRef]
- Ates, A.; Kinikli, G.; Turgay, M.; Duman, M. Serum-Soluble Selectin Levels in Patients with Rheumatoid Arthritis and Systemic Sclerosis. Scand. J. Immunol. 2004, 59, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Bohgaki, T.; Amasaki, Y.; Nishimura, N.; Bohgaki, M.; Yamashita, Y.; Nishio, M.; Sawada, K.I.; Jodo, S.; Atsumi, T.; Koike, T. Up regulated expression of tumour necrosis factor {alpha} converting enzyme in peripheral monocytes of patients with early systemic sclerosis. Ann. Rheum. Dis. 2005, 64, 1165–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugor, E.; Simon, D.; Almanzar, G.; Pap, R.; Najbauer, J.; Németh, P.; Balogh, P.; Prelog, M.; Czirják, L.; Berki, T. Increased proportions of functionally impaired regulatory T cell subsets in systemic sclerosis. Clin. Immunol. 2017, 184, 54–62. [Google Scholar] [CrossRef]
- Radstake, T.R.D.J.; Van Bon, L.; Broen, J.; Wenink, M.; Santegoets, K.; Deng, Y.; Hussaini, A.; Simms, R.; Cruikshank, W.W.; Lafyatis, R. Increased Frequency and Compromised Function of T Regulatory Cells in Systemic Sclerosis (SSc) Is Related to a Diminished CD69 and TGFβ Expression. PLoS ONE 2009, 4, e5981. [Google Scholar] [CrossRef] [PubMed]
- Impellizzieri, D.; Egholm, C.; Valaperti, A.; Distler, O.; Boyman, O. Patients with systemic sclerosis show phenotypic and functional defects in neutrophils. Allergy 2021. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, M.; Hasegawa, M.; Komura, K.; Hayakawa, I.; Yanaba, K.; Matsushita, T.; Takehara, K.; Sato, S. Abnormal natural killer cell function in systemic sclerosis: Altered cytokine production and defective killing activity. J. Invest. Dermatol. 2005, 125, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Iannone, F.; Riccardi, M.T.; Guiducci, S.; Bizzoca, R.; Cinelli, M.; Matucci-Cerinic, M.; Lapadula, G. Bosentan regulates the expression of adhesion molecules on circulating T cells and serum soluble adhesion molecules in systemic sclerosis-associated pulmonary arterial hypertension. Ann. Rheum. Dis. 2008, 67, 1121–1126. [Google Scholar] [CrossRef]
- Kumari, S.; Arora, M.; Singh, J.; Chauhan, S.S.; Kumar, S.; Chopra, A. L-Selectin expression is associated with inflammatory microenvironment and favourable prognosis in breast cancer. 3 Biotech 2021, 11, 38. [Google Scholar] [CrossRef]
- Momose, T.; Okubo, Y.; Horie, S.; Takashi, S.; Tsukadaira, A.; Suzuki, J.; Isobe, M.; Sekiguchi, M. Interferon-gamma increases CD62L expression on human eosinophils. Int. Arch. Allergy Immunol. 1999, 120 (Suppl. 1), 30–33. [Google Scholar] [CrossRef]
- Senécal, J.L.; Hénault, J.; Raymond, Y. The pathogenic role of autoantibodies to nuclear autoantigens in systemic sclerosis (scleroderma). J. Rheumatol. 2005, 32, 1643–1649. [Google Scholar] [PubMed]
- Rzeniewicz, K.; Newe, A.; Rey Gallardo, A.; Davies, J.; Holt, M.R.; Patel, A.; Charras, G.T.; Stramer, B.; Molenaar, C.; Tedder, T.F.; et al. L-selectin shedding is activated specifically within transmigrating pseudopods of monocytes to regulate cell polarity in vitro. Proc. Natl. Acad. Sci. USA 2015, 112, E1461–E1470. [Google Scholar] [CrossRef] [Green Version]
- Rey-Gallardo, A.; Tomlins, H.; Joachim, J.; Rahman, I.; Kitscha, P.; Frudd, K.; Parsons, M.; Ivetic, A. Sequential binding of ezrin and moesin to L-selectin regulates monocyte protrusive behaviour during transendothelial migration. J. Cell Sci. 2018, 131, jcs215541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizaki, A.; Yanaba, K.; Iwata, Y.; Komura, K.; Ogawa, A.; Akiyama, Y.; Muroi, E.; Hara, T.; Ogawa, F.; Takenaka, M.; et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J. Immunol. 2010, 185, 2502–2515. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, Y.; Hasegawa, M.; Matsushita, T.; Fujimoto, M.; Horikawa, M.; Fujita, T.; Kawasuji, A.; Ogawa, F.; Steeber, D.A.; Tedder, T.F.; et al. Intercellular Adhesion Molecule-1 Deficiency Attenuates the Development of Skin Fibrosis in Tight-Skin Mice. J. Immunol. 2007, 179, 698–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capelli, A.; Di Stefano, A.; Gnemmi, I.; Donner, C.F. CCR5 expression and CC chemokine levels in idiopathic pulmonary fibrosis. Eur. Respir. J. 2005, 25, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Boin, F.; De Fanis, U.; Bartlett, S.J.; Wigley, F.M.; Rosen, A.; Casolaro, V. T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum. 2008, 58, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Capelli, A.; Di Stefano, A.; Lusuardi, M.; Gnemmi, I.; Donner, C.F. Increased macrophage inflammatory protein-1alpha and macrophage inflammatory protein-1beta levels in bronchoalveolar lavage fluid of patients affected by different stages of pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med. 2002, 165, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Ravi, A.K.; Plumb, J.; Gaskell, R.; Mason, S.; Broome, C.S.; Booth, G.; Catley, M.; Vestbo, J.; Singh, D. COPD monocytes demonstrate impaired migratory ability. Respir. Res. 2017, 18, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portalès, P.; Fabre, S.; Vincent, T.; Desmetz, C.; Réant, B.; Noël, D.; Clot, J.; Jorgensen, C.; Corbeau, P. Peripheral blood T4 cell surface CCR5 density as a marker of activity in rheumatoid arthritis treated with anti-CD20 monoclonal antibody. Immunology 2009, 128, e738–e745. [Google Scholar] [CrossRef]
- Aslani, M.; Ahmadzadeh, A.; Aghazadeh, Z.; Zaki-Dizaji, M.; Sharifi, L.; Hosseini, M.; Mirshafiey, A. Influence of β-D-mannuronic Acid, as a New Member of Non-steroidal Anti- Inflammatory Drugs Family, on the Expression Pattern of Chemokines and their Receptors in Rheumatoid Arthritis. Curr. Drug Discov. Technol. 2021, 18, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Aslani, M.; Ahmadzadeh, A.; Rezaieyazdi, Z.; Mortazavi-Jahromi, S.S.; Barati, A.; Hosseini, M.; Mirshafiey, A. The Situation of Chemokine Ligands and Receptors Gene Expression, Following the Oral Administration of Drug Mannuronic Acid in Rheumatoid Arthritis Patients. Recent Pat. Inflamm. Allergy Drug Discov. 2020, 14, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeRoy, E.C.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A., Jr.; Rowell, N.; Wollheim, F. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar]
- Bunn, C.; Kveder, T. Counterimmunoelectrophoresis and Immunodiffusion for the Detection of Antibodies to Soluble Cellular Antigens. In Manual of Biological Markers of Disease; Van Venrooij, W.J., Maini, R.N., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 33–44. [Google Scholar]
- Corkum, C.P.; Ings, D.P.; Burgess, C.; Karwowska, S.; Kroll, W.; Michalak, T.I. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC Immunol. 2015, 16, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorneles, G.P.; da Silva, I.M.; Santos, M.A.; Elsner, V.R.; Fonseca, S.G.; Peres, A.; Romão, P.R.T. Immunoregulation induced by autologous serum collected after acute exercise in obese men: A randomized cross-over trial. Sci. Rep. 2020, 10, 21735. [Google Scholar] [CrossRef] [PubMed]
Characteristics | SSc Patients | HC |
---|---|---|
Frequency n (%) | 38 (51) | 36 (49) |
Age (years) | ||
Median (IQR) | 57 (17) | 55 (14) |
Minimum | 28 | 27 |
Maximum | 88 | 84 |
Gender n (%) | ||
Male | 7 (18) | 5 (14) |
Female | 31 (82) | 31 (86) |
Variable | n (%) |
---|---|
Overlaps with other SARD | |
SSc only | 30 (79) |
Overlaps | 8 (21) |
Clinical subset | |
Diffuse cutaneous | 11 (29) |
Limited cutaneous | 25 (66) |
Sine scleroderma | 2 (5) |
Clinical manifestations | |
Raynaud’s | 35 (92) |
History of digital ulcers | 21 (55) |
Digital ulcers | 7 (18) |
Digital pitting scars | 9 (24) |
Telangiectasia | 24 (63) |
Calcinosis | 8 (21) |
GIT involvement | 21 (55) |
Lung involvement | 24 (63) |
Interstitial lung disease | 18 (47) |
PAH | 1 (3) |
Autoantibodies | |
ACA | 14 (37) |
ATA | 17 (45) |
PM/Scl | 3 (8) |
Negative | 4 (11) |
Capillaroscopy type | |
Early | 2 (5) |
Active | 21 (55) |
Late | 5 (13) |
No data | 10 (26) |
Comorbidities | |
Hypertension | 14 (37) |
Hyperlipidemia | 9 (24) |
Diabetes II | 1 (3) |
Asthma | 3 (8) |
COPD | 1 (3) |
Cancer | 3 (8) |
CAD | 3 (8) |
Atherosclerosis | 2 (5) |
Other | 19 (50) |
Treatment | |
Immunosuppressants | 18 (47) |
Glucocorticoids | 7 (18) |
Methotrexate | 4 (11) |
Azathioprine | 1 (3) |
Cyclophosphamide | 2 (5) |
Mycophenolate mofetil | 8 (21) |
Hydroxychloroquine | 1 (3) |
Rituximab | 4 (11) |
Analgesics and anti-inflammatory drugs | 13 (34) |
CCBs | 21 (55) |
Prostacyclins | 2 (5) |
PDE5 inhibitors | 8 (21) |
Molecule | MFI Median (IQR) | p-Value | |||
---|---|---|---|---|---|
Negative Control (FMO) | SSc Patients | HC | |||
Monocytes | CD62L | 1.6 | 27.6 (16.8) | 19.4 (13.3) | *0.019 |
CD11b | 0.7 | 26.1 (44.7) | 45.3 (36.2) | 0.065 | |
CCR2 | 0.2 | 17.1 (13.5) | 18.7 (9.5) | 0.211 | |
CCR5 | 0.4 | 3.1 (1.7) | 3.5 (2.1) | 0.302 | |
Classical subset | CD62L | 33.5 (24.1) | 22.6 (16.4) | *0.011 | |
CD11b | 31.9 (45.2) | 47.5 (36.4) | 0.067 | ||
CCR2 | 20.1 (10.7) | 20.9 (10.4) | 0.172 | ||
CCR5 | 3.6 (1.8) | 3.7 (2.2) | 0.443 | ||
Intermediate subset | CD62L | 5.8 (9.6) | 5.1 (3.1) | 0.266 | |
CD11b | 29.7 (40.8) | 43.3 (28.1) | 0.302 | ||
CCR2 | 3.0 (6.8) | 5.1 (6.5) | 0.077 | ||
CCR5 | 5.5 (2.6) | 6.2 (2.4) | *0.035 | ||
Non-classical subset | CD62L | 1.5 (1.3) | 1.8 (1.5) | - | |
CD11b | 5.4 (3.8) | 7.7 (9.7) | 0.053 | ||
CCR2 | 0.3 (0.1) | 0.3 (0.1) | - | ||
CCR5 | 0.6 (0.3) | 0.7 (0.2) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezovec, N.; Perdan-Pirkmajer, K.; Kuret, T.; Burja, B.; Sodin-Šemrl, S.; Čučnik, S.; Lakota, K. Increased L-Selectin on Monocytes Is Linked to the Autoantibody Profile in Systemic Sclerosis. Int. J. Mol. Sci. 2022, 23, 2233. https://doi.org/10.3390/ijms23042233
Brezovec N, Perdan-Pirkmajer K, Kuret T, Burja B, Sodin-Šemrl S, Čučnik S, Lakota K. Increased L-Selectin on Monocytes Is Linked to the Autoantibody Profile in Systemic Sclerosis. International Journal of Molecular Sciences. 2022; 23(4):2233. https://doi.org/10.3390/ijms23042233
Chicago/Turabian StyleBrezovec, Neža, Katja Perdan-Pirkmajer, Tadeja Kuret, Blaž Burja, Snežna Sodin-Šemrl, Saša Čučnik, and Katja Lakota. 2022. "Increased L-Selectin on Monocytes Is Linked to the Autoantibody Profile in Systemic Sclerosis" International Journal of Molecular Sciences 23, no. 4: 2233. https://doi.org/10.3390/ijms23042233
APA StyleBrezovec, N., Perdan-Pirkmajer, K., Kuret, T., Burja, B., Sodin-Šemrl, S., Čučnik, S., & Lakota, K. (2022). Increased L-Selectin on Monocytes Is Linked to the Autoantibody Profile in Systemic Sclerosis. International Journal of Molecular Sciences, 23(4), 2233. https://doi.org/10.3390/ijms23042233