Interplay between ceRNA and Epigenetic Control of microRNA: Modelling Approaches with Application to the Role of Estrogen in Ovarian Cancer
Abstract
:1. Introduction
2. Results
2.1. Transcriptional Inhibition by Protein Is Necessary for a Dramatic Change of ’s
2.2. Inhibition of miR-193a by E2F6-Mediated Epigenetic Silencing in Ovarian Cancer
2.3. Missing-Link in the Inconsistency of the Role of Estrogen
2.4. Contribution of E2F6 mRNA in Anti-Tumor Immune Response
3. Discussion
4. Materials and Methods
4.1. Outline of the Strategy
4.2. The Model
4.3. Main Model Assumption
4.4. Model Rate Functions
4.5. Steady State
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [Green Version]
- Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenome—Biological and translational implications. Nat. Rev. Cancer 2011, 11, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Paredes, M.; Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med. 2011, 17, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Piletič, K.; Kunej, T. MicroRNA epigenetic signatuRes. in human disease. Arch. Toxicol. 2016, 90, 2405–2419. [Google Scholar] [CrossRef]
- Jones, P.A.; Issa, J.P.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016, 17, 630–641. [Google Scholar] [CrossRef]
- Flaus, A.; Downs, J.A.; Owen-Hughes, T. Histone isoforms and the oncohistone code. Curr. Opin Genet. Dev. 2021, 67, 61–66. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.G. No Easy Way Out for EZH2: Its Pleiotropic, Noncanonical Effects on Gene Regulation and Cellular Function. Int. J. Mol. Sci. 2020, 21, 9051. [Google Scholar] [CrossRef] [PubMed]
- Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov. 2010, 9, 775–789. [Google Scholar] [CrossRef] [Green Version]
- Poliseno, L.; Salmena, L.; Zhang, J.; Carver, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010, 465, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Group on Epidemiological Studies of Ovarian Cancer. Menopausal hormone use and ovarian cancer risk: Individual participant meta-analysis of 52 epidemiological studies. Lancet 2015, 385, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Beral, V.; Million Women Study Collaborators. Ovarian cancer and hormone replacement therapy in the Million Women Study. Lancet 2007, 369, 1703–1710. [Google Scholar] [CrossRef]
- Hunn, J.; Rodriguez, G.C. Ovarian cancer: Etiology, risk factors, and epidemiology. Clin. Obstet. Gynecol. 2012, 55, 3–23. [Google Scholar] [CrossRef]
- Smyth, J.F.; Gourley, C.; Walker, G.; MacKean, M.J.; Stevenson, A.; Williams, A.R.; Nafussi, A.A.; Rye, T.; Rye, R.; Stewart, M.; et al. Antiestrogen therapy is active in selected ovarian cancer cases: The use of letrozole in estrogen receptor-positive patients. Clin. Cancer Res. 2007, 13, 3617–3622. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.H.C.; Aguda, B.D.; Tsai, J.-C.; Kochańczyk, M.; Lin, J.M.J.; Chen, G.C.W.; Lai, H.-C.; Nephew, K.P.; Hwang, T.-W.; Chan, M.W.Y. A mathematical model of bimodal epigenetic control of miR-193a in ovarian cancer stem cells. PLoS ONE 2014, 9, e116050. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.N.; Lin, J.; Li, Y.H.; Gao, L.; Wang, X.R.; Wang, W.; Kang, H.Y.; Yan, G.T.; Wang, L.L.; Yu, L. MicroRNA-193a represses c-kit expression and functions as a methylation-silenced tumor suppressor in acute myeloid leukemia. Oncogene 2011, 30, 3416–3428. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.H.C.; Lin, H.Y.; Hwang, T.W.; Chen, Y.C.; Huang, R.L.; Chang, C.B.; Yang, W.; Lin, R.I.; Lin, C.W.; Chen, G.C.W.; et al. E2F6 functions as a competing endogenous RNA, and transcriptional repressor, to promote ovarian cancer stemness. Cancer Sci. 2019, 110, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Chen, X.; Chen, Q.; Shi, L.; Liang, H.; Zhou, Z.; Liu, Q.; Pang, W.; Hou, D.; Wang, C.; et al. MicroRNA-193a-3p Reduces Intestinal Inflammation in Response to Microbiota via Down-regulation of Colonic PepT1. J. Biol. Chem. 2015, 290, 16099–16115. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Dai, C.Y.; Mei, Z.; Jiang, M.J.; Gu, D.N.; Huang, Q.; Tian, L. microRNA-193a stimulates pancreatic cancer cell repopulation and metastasis through modulating TGF-β2/TGF-βRIII signalings. J. Exp. Clin. Cancer Res. 2018, 37, 25. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Cabay, R.J.; Jin, Y.; Wang, A.; Lu, Y.; Shah-Khan, M.; Zhou, X. MicroRNA Deregulations in Head and Neck Squamous Cell Carcinomas. J. Oral Maxillofac. Res. 2013, 4, e2. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Ren, Y.; Hu, X.; Mu, J.; Samykutty, A.; Zhuang, X.; Deng, Z.; Kumar, A.; Zhang, L.; Merchant, M.L.; et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun. 2017, 8, 14448. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.S.; Meyer, C.A.; Song, J.; Li, W.; Geistlinger, T.R.; Eeckhoute, J.; Brodsky, A.S.; Keeton, E.K.; Fertuck, K.C.; Hall, G.F.; et al. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 2006, 38, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, J.M.; Fairchild, B.; Wen, J.; Lees, J.A. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl. Acad. Sci. USA 2001, 98, 1519–1524. [Google Scholar] [CrossRef]
- Dennis, K.L.; Blatner, N.R.; Gounari, F.; Khazaie, K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr. Opin. Oncol. 2013, 25, 637–645. [Google Scholar] [CrossRef]
- Chung, E.Y.; Liu, J.; Homma, Y.; Zhang, Y.; Brendolan, A.; Saggese, M.; Han, J.; Silverstein, R.; Selleri, L.; Ma, X. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 2007, 27, 952–964. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Zhang, J.; Cheng, X.; Li, B.; Tian, Y.; Zhang, X.; Zhao, F. miR-454 suppresses the proliferation and invasion of ovarian cancer by targeting E2F6. Cancer Cell Int. 2020, 20, 237. [Google Scholar] [CrossRef]
- Paleari, L.; DeCensi, A. Endocrine therapy in ovarian cancer: Where do we stand? Curr. Opin. Obstet. Gynecol. 2018, 30, 17–22. [Google Scholar] [CrossRef]
- Zong, X.; Wang, W.; Ozes, A.; Fang, F.; Sandusky, G.E.; Nephew, K.P. EZH2-Mediated Downregulation of the Tumor Suppressor DAB2IP Maintains Ovarian Cancer Stem Cells. Cancer Res. 2020, 80, 4371–4385. [Google Scholar] [CrossRef]
- Spiliopoulou, P.; Spear, S.; Mirza, H.; Garner, I.; McGarry, L.; Freile, F.G.; Cheng, Z.; Ennis, D.P.; Iyer, N.R.; McNamara, S.; et al. Dual G9A/EZH2 inhibition stimulates anti-tumour immune response in ovarian high grade serous carcinoma. Mol. Cancer Ther. 2022. Online ahead of print. [Google Scholar] [CrossRef]
Gene/Complex | Level of Genes | Transcription Rate Translation Rate Association Rate Dissociation Rate | Degradation Rate |
---|---|---|---|
miRNA mRNA Ri R1 – translated protein miRNA – mRNA Ri complex |
+ | + | ||||||||
+ | |||||||||
+ | + | ||||||||
+ | |||||||||
+ | + | ||||||||
+ | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-W.; Cheng, F.H.C.; Yan, C.-C.S.; Chuang, Y.-M.; Cho, C.-H.; Lai, H.-C.; Shieh, S.-F.; Chan, M.W.Y.; Tsai, J.-C. Interplay between ceRNA and Epigenetic Control of microRNA: Modelling Approaches with Application to the Role of Estrogen in Ovarian Cancer. Int. J. Mol. Sci. 2022, 23, 2277. https://doi.org/10.3390/ijms23042277
Huang T-W, Cheng FHC, Yan C-CS, Chuang Y-M, Cho C-H, Lai H-C, Shieh S-F, Chan MWY, Tsai J-C. Interplay between ceRNA and Epigenetic Control of microRNA: Modelling Approaches with Application to the Role of Estrogen in Ovarian Cancer. International Journal of Molecular Sciences. 2022; 23(4):2277. https://doi.org/10.3390/ijms23042277
Chicago/Turabian StyleHuang, Tzy-Wei, Frank H. C. Cheng, Ching-Cher Sanders Yan, Yu-Ming Chuang, Chien-Hong Cho, Hung-Cheng Lai, Shih-Feng Shieh, Michael W. Y. Chan, and Je-Chiang Tsai. 2022. "Interplay between ceRNA and Epigenetic Control of microRNA: Modelling Approaches with Application to the Role of Estrogen in Ovarian Cancer" International Journal of Molecular Sciences 23, no. 4: 2277. https://doi.org/10.3390/ijms23042277
APA StyleHuang, T. -W., Cheng, F. H. C., Yan, C. -C. S., Chuang, Y. -M., Cho, C. -H., Lai, H. -C., Shieh, S. -F., Chan, M. W. Y., & Tsai, J. -C. (2022). Interplay between ceRNA and Epigenetic Control of microRNA: Modelling Approaches with Application to the Role of Estrogen in Ovarian Cancer. International Journal of Molecular Sciences, 23(4), 2277. https://doi.org/10.3390/ijms23042277