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Abstract: MicroRNAs (miRNAs) play an important role in gene regulation by degradation or transla-
tional inhibition of the targeted mRNAs. It has been experimentally shown that the way miRNAs
interact with their targets can be used to explain the indirect interactions among their targets, i.e.,
competing endogenous RNA (ceRNA). However, whether the protein translated from the targeted
mRNAs can play any role in this ceRNA network has not been explored. Here we propose a deter-
ministic model to demonstrate that in a network of one miRNA interacting with multiple-targeted
mRNAs, the competition between miRNA-targeted mRNAs is not sufficient for the significant change
of those targeted mRNA levels, while dramatic changes of these miRNA-targeted mRNAs require
transcriptional inhibition of miRNA by its target proteins. When applied to estrogen receptor signal-
ing pathways, the miR-193a targets E2F6 (a target of estrogen receptor), c-KIT (a marker for cancer
stemness), and PBX1 (a transcriptional activator for immunosuppressive cytokine, IL-10) in ovarian
cancer, such that epigenetic silencing of miR-193a by E2F6 protein is required for the significant
change of c-KIT and PBX1 mRNA level for cancer stemness and immunoevasion, respectively, in
ovarian cancer carcinogenesis

Keywords: deterministic model; epigenetics; microRNA; target-translated protein; ceRNA; ovar-
ian cancer
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1. Introduction

Epigenetic alterations, including DNA methylation, histone modifications, and non-
coding RNA expression, play an important role in gene regulation, yet aberrant epigenetic
modifications are now considered as a hallmark of cancer [1–4]. Epigenetic silencing of a
tumor suppressor gene at the promoter region by DNA methylation and histone modifica-
tions has been widely described [5,6]. Among them, the enzymatic component of the PRC2
complex, EZH2, a histone methyltransferase for H3K27, can recruit DNA methyltransferase
(DNMT) to the DNA, thus linking DNA methylation and histone modification together in
mediating transcriptional repression [7]. On the other hand, microRNA (miR), which is
either generated from a miR gene or part of an intron, can bind to the targeted mRNAs to
inhibit translation or promote mRNA degradation, depending on the location of the miR
response element (MRE) [8]. Previous studies by Pandolfi et al. demonstrated that expres-
sion of the miR-targeted mRNAs (containing similar MRE) can compete for the binding of
the same miRs, thus affecting the expression of another miR-targeted mRNAs [9,10]. This
competing endogenous RNA (ceRNA) phenomenon has been shown to play an important
role in cancer development [9]. However, the interplay between DNA methylation, histone
modifications, and ceRNA are not fully explored.

In this study, we describe a mathematical model, using ovarian cancer as an example,
to demonstrate how DNA methylation and histone modification participate in ceRNA
phenomenon, and eventually affect ovarian cancer stemness and cancer immunoevasion.

2. Results

Let us consider a network consisting of a miRNA, say Rmi, and n targeted mRNAs,
say R1, R2, . . . , Rn. We note that Rmi regulates the expression of its target mRNAs through
Rmi binding to mRNA targets, which in turn forms the complex Ci. This complex will
then be degraded, resulting in the target mRNA degradation. We also hypothesize the
transcriptional inhibition of Rmi by targeted mRNA R1-mediated epigenetic silencing. We
assume that free Rmi and its target mRNA Ri form a complex Ci with association rate
function r+Ci

and dissociation rate function r−Ci
. Then, the mutual interaction between Rmi

and its target mRNA Ri’s is generated in the network system, as depicted in Figure 1.
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2.1. Transcriptional Inhibition by Protein P1 Is Necessary for a Dramatic Change of Ri’s

The ceRNA mechanism of Rmi indicates that an upregulation of its targeted mRNA R1
will sponge Rmi to the MRE of this mRNA. Such upregulation will in turn promote the level
of the other targeted mRNAs due to less Rmi binding to those mRNAs. On the other hand,
the ceRNA mechanism alone may not be able to allow target mRNAs to have a significant
change as the transcriptional rate of R1 is increased. Indeed, under the assumption on the
qualitative dependence of rate functions on Rmi, its targeted mRNAs, and their complex
(as indicated in Table 1 of the Materials and Methods section), we can mathematically
show that transcriptional inhibition of Rmi by protein P1 (red inhibitory line in Figure 1) is
necessary for the network system to possess a SN bifurcation (see Supplementary Text S1),
and thus necessary for carcinogenesis.

Table 1. Dependence of rate functions on miRNA, mRNAs, and their complex.

rRmi rP1 r+
C1

r+
Ci

(i≥2) r−C1
r−Ci

(i≥2) r*
C1

r*
Ci

(i≥2) r*
P1

Rmi + +
P1 − +
R1 + +

Ri(i ≥ 2) +
C1 + +

Ci(i ≥ 2) + +

2.2. Inhibition of miR-193a by E2F6-Mediated Epigenetic Silencing in Ovarian Cancer

Ovarian cancer is the most common gynecological cancer worldwide [11]. Although
several studies have demonstrated that estrogen has been involved in the development of
ovarian carcinogenesis [12–14], anti-estrogen therapy is only partially effective in the treat-
ment of ovarian cancer [13,15]. Understanding the “missing-link” behind this inconsistency
may help in better understanding the cause of ovarian cancer, and thus the development of
a better targeted therapy for this deadly disease [1–4]. In this regard, we have previously
demonstrated that estrogen may be linked to ovarian cancer through a microRNA, miR-
193a [16–18], which has been found to be a tumor suppressor microRNA in several human
cancers such as lung, pancreatic, oral, and colon cancer [19–22]. We therefore determined to
use miR-193a as an example. The network scheme of ovarian carcinogenesis corresponding
to that in Figure 1 is depicted in Figure 2.

Computational analysis using several miRNA databases found that one of the miR-
193a targets is E2F6, which is also an estrogen receptor (ER) target [23]. As different from
other E2F families, E2F6 is a transcriptional repressor by recruiting DNMT and EZH2 [24].
In this regard, the presence of E2F6 binding at the promoter region of miR-193a suggests
that miR-193a can be suppressed by E2F6-mediated epigenetic silencing. Furthermore,
biological experiments also found that miR-193a can target mRNAs, such as c-KIT [16,17]
and PBX1 (data not shown), as depicted in Figure 2.

Indeed, the aforementioned mathematical result is not confined to the network of miR-
193a and those three targeted mRNAs, but can be extended to the network of all competing
endogenous networks. Specifically, for the general case that there are multiple miR-193a
targeted mRNAs, mathematical analysis still indicates (see Supplementary Text S1) that the
transcriptional inhibition of miR-193a by E2F6 protein is necessary for the rapid increase in
c-KIT mRNA level.

2.3. Missing-Link in the Inconsistency of the Role of Estrogen

As mentioned previously, clinical evidence indicates that anti-estrogen therapy is only
partially effective in the treatment of ovarian cancer [13,15]. We will exploit system (1),
which is associated with the network scheme in Figure 1 and defined in the Matherials and
Methods section, to derive two possible scenarios to give a partial answer to this puzzle.
To observe this, we need to specify the rate functions on the right-hand side of system
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(1). To be precise, let the transcriptional rate function of E2F6 mRNA r1 = k1R1. Here, the
transcriptional rate parameter k1 depends on the level of hormonal stimulation, and thus
can be viewed as an experimentally controllable parameter associated with the addition of
hormones. Next, we choose the following kinetic form for miRNA Rmi transcription:

rRmi =
kRmi

1 + KP1
.

Here, kRmi is the transcriptional rate of miR-193a. The fact that EZH2 can be recruited
to the miR-193a promoter only when E2F6 protein is bound to the miR-193a promoter
enables one to view K as a measure of the combined strength of the miR-193a transcriptional
inhibition by E2F6 protein and the epigenetic silencing of miR-193a, via EZH2 and DNMT3b.
The other rate functions and their associated rate parameters are stated in Supplementary
Text S2 of the Supporting Materials.
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Figure 2. A qualitative network involving miR-193a and its target mRNAs. (Arrow) Activation or
upregulation. (Hammerheads) Inhibition or downregulation. Description of each reaction is given in
Table S1 (from the file: Supplementary Text S2).

Now, we specify the relation between the E2F6 mRNA and other miR-193a targeted
mRNAs levels of steady states of system (1). Indeed, as the E2F6 transcription rate k1 is
varied from the low value to the high value, the relationship between the E2F6 mRNA level
R1 and miR-193a targeted mRNA level R2 of steady states traces out an increasing curve,
say Γ, as depicted in Figure 3. The curve Γ consists of three parts: the leftmost branch, the
middle branch (associated with the red dashed lines in Figure 3), and the rightmost branch.
The leftmost and rightmost branches correspond to stable steady states, while the middle
branch corresponds to unstable steady states. Furthermore, note that the c-KIT level of a
steady state associated with the rightmost branch of Γ is 10 to 1000-fold greater compared
with that on the leftmost branch. This observation suggests that the states on the rightmost
branch of Γ are associated with the carcinogenesis overexpression of c-KIT mRNA, while
those on the leftmost branch are associated with the normal c-KIT mRNA level.
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steady states as the transcriptional rate parameter k1 of E2F6 is varied. The top panel is for the case of
the weak inhibition strength of E2F6 on miR-193a (small K ), while the bottom panel is for the strong
inhibition strength of E2F6 on miR-193a (large K ). The red dashed lines correspond to unstable
steady states, while the green dashed lines mark the relevant points. The parameter values are given
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To facilitate the discussion, denote by Rl
E2F6 (respectively, Rr

E2F6), the critical E2F6
mRNA level associated with the left (respectively, right) end point of the middle branch
of Γ. Here, the superscript of Rl

E2F6 (respectively, Rr
E2F6) means left (respectively, right).

As the transcription rate parameter k1 is increased from the low value to the high value,
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the steady state will first move along the leftmost branch and the corresponding c-KIT
level gradually increases, then, due to the instability of steady states on the middle branch,
the steady state will be switched to the rightmost branch at the critical value Rr

E2F6 and
move along the rightmost branch for R1 > Rr

E2F6, which thus turns on the carcinogenesis
overexpression of c-KIT mRNA. On the other hand, if the steady state is initially on the
rightmost branch with R1 > Rr

E2F6, then, due to the stable feature of steady states on the
upper branch, it follows that as the transcriptional rate parameter k1 is decreased from the
high value to the low value, the steady state will first move along the rightmost branch and
the corresponding c-KIT level gradually decreases, and then, due to the instability of steady
states on the middle branch, the steady state will be descended to the leftmost branch at the
critical value Rl

E2F6 provided that Rl
E2F6 is larger than the basal level Rb

E2F6 of E2F6 mRNA,
and then move along the leftmost branch for R1 < Rl

E2F6, which thus recovers the normal
level of c-KIT mRNA.

However, if Rl
E2F6 is less than the basal level Rb

E2F6, then the steady state will remain
on the rightmost branch, not descend to the lower branch, which thus cannot switch off the
carcinogenesis overexpression of c-KIT mRNA. The former case corresponds to the weak
inhibition strength of E2F6 on miR-193a (small K) as illustrated in the top panel of Figure 3,
while the latter case corresponds to the strong inhibition strength of E2F6 on miR-193a
(large K) as illustrated in the bottom panel of Figure 3.

To summarize, for the cells with lower E2F6 inhibition efficiency, an increase of E2F6
transcription rate from low value to high value can promote the expression of c-KIT
mRNA, and, conversely, a retraction of E2F6 transcription rate can recover the normal c-KIT
mRNA level. In contrast, for the cell with higher E2F6 inhibition efficiency, an increase
of E2F6 transcription rate up through the threshold transcriptional rate will trigger the
overexpression of c-KIT mRNA. However, a retraction of E2F6 transcription rate cannot
switch off the overexpression of c-KIT mRNA. Thus, the reversible/irreversible feature
of c-KIT mRNA regulation processes by different E2F6 inhibition strength can partially
explain the clinical observation that anti-estrogen therapy is only partially effective in the
treatment of ovarian cancer.

2.4. Contribution of E2F6 mRNA in Anti-Tumor Immune Response

On the other hand, suppression of anti-cancer immunity may be an important mecha-
nism for ovarian carcinogenesis. Such anti-tumor immunity may be attenuated by cancer
cells expressing immunosuppressive cytokines, such as IL-10 [25]. It is interesting to note
that miR-193a provides a possible link between cancer stemness and immunoevasion [26],
as PBX1 (which is another predicted target of miR-193a), as well as the transcriptional
activator for the immunosuppressive cytokine IL-10. In this regard, upregulation of PBX1
can result in the transcription of IL-10 and corresponding immunosuppression. The regula-
tion process of miR-193a targeted mRNA (c-KIT mRNA) by E2F6, as demonstrated in the
aforementioned result, can also be observed in PBX1.

Table 2. Notations for genes, complexes, and rate functions in system (1).

Gene/Complex Level of Genes

Transcription Rate
Translation Rate
Association Rate
Dissociation Rate

Degradation Rate

miRNA
mRNA Ri (2 ≤ i ≤ n)
R1 – translated
protein
miRNA – mRNA Ri
complex

Rmi
Ri
P1
Ci

rRmi

ri
rP1

r±Ci

r∗Rmi
r∗i
r∗P1
r∗Ci
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3. Discussion

In this paper, we proposed a deterministic model to demonstrate that in a network of
one miRNA interacting with multiple targeted mRNAs, the ceRNA mechanism alone is
not able to allow target mRNAs to have a significant change as the transcriptional rate of
one target mRNA is increased. In this regard, transcriptional inhibition of miRNA by its
target protein can induce dramatic changes of these miRNA-targeted mRNAs. Therefore,
miRNA-targeted mRNAs’ behavior is the competition between the ceRNA mechanism and
epigenetic silencing of miRNA by its target protein.

When applied to estrogen receptor signaling pathways, our mathematical result sug-
gests that the inhibition of miR-193a by E2F6 protein, which recruits EZH2 and DNMT3b,
is required for the overexpression of c-KIT and PBX1 mRNAs. The regulation of expression
of miR-193a targeted mRNAs is the result of the competition between ceRNA mechanism
among those miR-193a targets and promoter hypermethylation of miR-193a. To be specific,
for cells with low inhibition efficiency of E2F6, the inhibition of miR-193a expression by
E2F6 protein is not strong enough to induce promoter methylation of miR-193a. Hence, an
increase in E2F6 expression will result in a gradual change of all other target mRNAs of
miR-193a, through a ceRNA manner. Conversely, a reduction of E2F6 expression may re-
duce c-KIT and PBX1 expression. Thus, for low inhibition efficiency of E2F6, the regulation
process of c-KIT and PBX1 expression is reversible.

On the other hand, for cells with high inhibition efficiency of E2F6, our model predicts
a threshold expression level (Rl

E2F6) of E2F6 which determines the dominant role in the
regulation of c-KIT and PBX1 expression. Indeed, for the expression level of E2F6 below
Rl

E2F6, the inhibition of miR-193a expression by E2F6 protein is not strong enough. So,
the ceRNA mechanism dominates the regulation of c-KIT and PBX1 expression, and thus
they will change gradually as E2F6 expression is increased. However, as the expression
level of E2F6 exceeded Rl

E2F6, the strength of inhibition of miR-193a by E2F6 protein is
large enough to induce DNA methylation of miR-193a, and thus fewer free miR-193a
can bind to its target mRNAs, which in turn leads to the significant increase of c-KIT
and PBX1 expression. Further, due to the epigenetic silencing of miR-193a through DNA
methylation and high inhibition efficiency of E2F6 protein, a downregulation of E2F6
expression cross the threshold level Rl

E2F6 is not able to recover the normal level of c-KIT
and PBX1 expression.

Consistent with this mathematical model, a recent study also demonstrated that inhibi-
tion of E2F6 suppressed tumor growth and migration in ovarian cancer [27]. Furthermore,
our result also explained why anti-estrogen therapy is only partially effective in ovarian
cancer, despite the fact that estrogen receptors are overexpressed in several sub-types of
ovarian cancer [28]. Indeed, epigenetic therapy targeting EZH2 can not only suppress
cancer stemness [29] but also restore anti-tumor immune response in ovarian cancer [30].

This study has several limitations: although we have recently verified the role of
the E2F6 ceRNA network in the epigenetic control of miR-193a [18], the role of such
a network in the regulation of PBX1 and the subsequent anti-tumor immune response
requires experimental validation. Secondly, the total effect of the miR-193a transcriptional
inhibition by E2F6 protein and the epigenetic silencing of miR-193a, via EZH2 and DNMT3b,
is incorporated into the rate function rRmi for miRNA Rmi transcription. This description
seems to be oversimplified. A more detailed modelling analysis on this transcriptional
inhibition warrants further investigation.

4. Materials and Methods
4.1. Outline of the Strategy

It is known that the significant change in any particular mRNAs is predisposed to
human diseases/cancer. Mathematically, this can be modelled as the onset of a saddle-node
(SN) bifurcation in the associated reaction network, which means that a particular gene is
switched from one state (normal state) associated with low level to another state (cancer
state) associated with high level, as illustrated in Figure 4.
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cancer states.

4.2. The Model

The kinetic equations for the reaction scheme depicted in Figure 1 are given by the
following system of differential equations:

dRmi
dt = rRmi − r+C1

− r+C2
− · · · − r+CN

+ r−C1
+ r−C2

+ · · ·+ r−CN
r∗Rmi

,
dP1
dt = rP1 − r∗P1

,
dRi
dt = ri − r+Ci

+ r−Ci
− r∗i ,

dCi
dt = r+Ci

− r−Ci
− r∗Ci

, i = 1, 2, · · · , n,

(1)

where dRmi
dt represents the rate of change of Rmi with respect to time t (i.e., differentiation

with respect to time t), the other terms on the left-hand side of (1) are similarly defined, and
the other state variables and the rate functions on the right-hand side of (1) are defined in
the Table 2.

4.3. Main Model Assumption

Now we state the main assumption about the model. Indeed, we hypothesize that the
transcriptional inhibition of Rmi by its targeted protein P1-mediated epigenetic silencing
through DNA methylation and histone modification [1]. Therefore, the transcriptional
rate function rRmi of Rmi is decreased as the level of P1 is increased. As we will see, this
hypothesis is crucial for the significant change of mRNAs Ri’s as the transcriptional rate of
mRNA R1 is increased.

4.4. Model Rate Functions

In principle, one cannot determine the specific form of rate functions. However,
without any stimuli, it is commonly accepted that the transcription rates of mRNAs are
constants (i.e., the ri’sare constants), that the degradation rate function (e.g., r∗Rmi

) linearly
depends on the level of gene or complex (e.g., r∗Rmi

= kRmi with k being the rate parameter),
and that the translation rate functions of proteins depends on the level of its corresponding
mRNA linearly. The association rate function of the complex Rmi-Ri can be assumed to
be proportional to the product of the corresponding levels of Rmi and Ri according to
the mass-action law. We summarize the qualitative dependence of genes or complexes
in Table 1, where the sign + (respectively, -) means that the rate function r (showing as
a corresponding sign in the same column) increases (respectively, decreases) as the level
of gene or complex (showing as a corresponding sign in the same row) increases. For
instance, as Rmi is increased, the rate function r+Ci

is increased, while as P1 is increased, r∗P1
is increased but rRmi is decreased. Interestingly, the qualitative monotonic dependence of
rate functions in Table 1 is sufficient to deduce interesting epigenetic implications without
resorting to the search of specific forms of rate functions and specific rate parameter values
which would be difficult in realistic cases.
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4.5. Steady State

Now, we attribute a steady state to system (1). To begin with, let the state vector
S = (Rmi, P1, R1, . . . , Rn, C1, . . . , Cn) and f (S) be the vector function defined by the right-
hand side of system (1). Then we say that S0 =

(
R0

mi, P0
1 , R0

1, . . . , R0
n, C0

1 , . . . , C0
n
)

is a steady
state of system (1) if S0 satisfies f

(
S0) = 0. Thus, the steady state S0 is a solution of

system (1) which does not change in time. Roughly speaking, a steady state is a situation in
which the underlying system does not undergo any change as the time evolves. Now we
distinguish two types of steady states: stable and unstable. To be precise, a steady state S0

of system (1) is said to be stable (respectively, unstable) if any solution of system (1) with
small initial deviation from the steady state S0 always returns to S0 (respectively, moves
away from S0) as time evolves. Thus, a stable steady state of system (1) is a state which is
observable in realistic situations.

Finally, we will trace the change of the steady state associated with the network
system as the model parameter (such as the transcription rate parameter of mRNA R1) is
tuned. When the network system admits a SN bifurcation at some critical model parameter,
the corresponding level of the other targeted mRNA Ri’s will experience a significant
change as the model parameter is varied through such a critical value, thereby leading
to carcinogenesis.

5. Conclusions

In conclusion, our mathematical model predicts the behavior of c-KIT and PBX1
through combined ceRNA mechanism and epigenetic silencing of miR-193a by E2F6. This
result suggests that the inhibition of estrogen receptor signaling and E2F6 (by using DNMT
or EZH2 inhibitor) may be able to suppress cancer stemness and restore anti-tumor immune
response in ovarian cancer.
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