Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum
Abstract
:1. Introduction
2. Results
2.1. Mice Survival, Weight and Biological Results
2.2. Aorta Calcifications
- Micro-CT analyses and 3D reconstructions were performed to assess the topography and measure the global volume of aorta calcifications (Figure 1). Wild-type mice did not develop significant calcifications, even after exposure to calcium and vitamin D. Abcc6−/− mice spontaneously developed very mild calcifications at the time of the sacrifice (8 months-old animals) but only Abcc6−/− mice exposed to both calcium and vitamin D had a significant increase in aortic calcification volume, in comparison to unexposed Abcc6−/− mice (Figure 1, * p < 0.05 vs. all other groups, Mann-Whitney test).
- Histopathological analyses and Yasue staining evidenced that calcifications were initiated in the close vicinity of elastic fibers in the aortic media, as observed in PXE patients, and were not atherosclerotic lesions (Figure 2). To go further in the characterization of the crystalline phases, we gathered observations through scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS), evidencing that deposits on elastic fibers contained high amounts of calcium and phosphate (Figure 2). OPTIR experiments using the mIRage experimental setup identified that incipient calcifications were made of carbonated apatite (Figure 2). The analysis of the spectra revealed some features specific to the presence of different absorption bands of biological apatite which has the general chemical formula Ca10−x□x(PO4) 6−x(CO3)x(OH)2−x□x with 0 < x < 2), including the ν3 P-O stretching vibration mode measured at 1035–1045 cm−1 (Figure 2). Carbonate ions were detected together with apatite by their ν3 C-O stretching vibration mode around 1420 cm−1.
2.3. Kidney Arteries Calcifications
- Micro-CT analyses and 3D reconstructions were performed to assess the topography and measure the global volume of small-sized/medium-sized renal artery calcification (Figure 3). CT-scans of kidneys revealed 2 sites of calcifications: Randall’s plaque at the tip of the papilla, previously described, and spotty calcifications in the cortical area (Figure 3) [15].
- Histological examination and Yasue staining of kidneys revealed that cortical calcifications were actually arterial calcifications (Figure 4). The use of µFTIR techniques also evidenced that these calcifications were made of carbonated apatite, with typical absorption bands.
- Cortical calcifications were measured independently from papillary calcification (exclusion of the papillary area), to assess only vascular calcification volume. Wild-type mice did not develop significant kidney arterial calcifications, even after exposure to calcium and vitamin D (Figure 5). Abcc6−/− mice developed spontaneously very mild calcifications at the time of the sacrifice (8 month-old animals) but CT-scan quantification of these cortical calcifications showed that calcium and calcium + vitamin D enriched diets significantly increased kidney arterial calcifications in Abcc6−/− mice (* p < 0.05 vs. Abcc6−/− control mice, Mann-Whitney test). (Figure 5).
3. Discussion
4. Materials and Methods
4.1. Animal Studies
4.2. Biological Samples and Biochemistry
4.3. X-ray Microtomography and 3-Dimensional Modeling
4.4. Histology and Yasue Staining
4.5. mIRage™ Infrared Microscopy
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ho, C.Y.; Shanahan, C.M. Medial Arterial Calcification. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1475–1482. [Google Scholar] [CrossRef] [Green Version]
- Rutsch, F.; Buers, I.; Nitschke, Y. Hereditary Disorders of Cardiovascular Calcification. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 35–47. [Google Scholar] [CrossRef]
- Nitschke, Y.; Baujat, G.; Botschen, U.; Wittkampf, T.; du Moulin, M.; Stella, J.; Le Merrer, M.; Guest, G.; Lambot, K.; Tazarourte-Pinturier, M.-F.; et al. Generalized Arterial Calcification of Infancy and Pseudoxanthoma Elasticum Can Be Caused by Mutations in Either ENPP1 or ABCC6. Am. J. Hum. Genet. 2012, 90, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Bäck, M.; Aranyi, T.; Cancela, M.L.; Carracedo, M.; Conceição, N.; Leftheriotis, G.; Macrae, V.; Martin, L.; Nitschke, Y.; Pasch, A.; et al. Endogenous Calcification Inhibitors in the Prevention of Vascular Calcification: A Consensus Statement From the COST Action EuroSoftCalcNet. Front. Cardiovasc. Med. 2018, 5, 196. [Google Scholar] [CrossRef] [PubMed]
- Letavernier, E.; Bouderlique, E.; Zaworski, J.; Martin, L.; Daudon, M. Pseudoxanthoma Elasticum, Kidney Stones and Pyrophosphate: From a Rare Disease to Urolithiasis and Vascular Calcifications. Int. J. Mol. Sci. 2019, 20, 6353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favre, G.; Laurain, A.; Aranyi, T.; Szeri, F.; Fulop, K.; Le Saux, O.; Duranton, C.; Kauffenstein, G.; Martin, L.; Lefthériotis, G. The ABCC6 Transporter: A New Player in Biomineralization. Int. J. Mol. Sci. 2017, 18, 1941. [Google Scholar] [CrossRef] [PubMed]
- Letavernier, E.; Kauffenstein, G.; Huguet, L.; Navasiolava, N.; Bouderlique, E.; Tang, E.; Delaitre, L.; Bazin, D.; de Frutos, M.; Gay, C.; et al. ABCC6 Deficiency Promotes Development of Randall Plaque. J. Am. Soc. Nephrol. 2018, 29, 2337–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomashvili, K.A.; Narisawa, S.; Millán, J.L.; O’Neill, W.C. Vascular Calcification Is Dependent on Plasma Levels of Pyrophosphate. Kidney Int. 2014, 85, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Lomashvili, K.A.; Garg, P.; Narisawa, S.; Millan, J.L.; O’Neill, W.C. Upregulation of Alkaline Phosphatase and Pyrophosphate Hydrolysis: Potential Mechanism for Uremic Vascular Calcification. Kidney Int. 2008, 73, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, J.J.; Robertson, G.R.; Lee, V.W. Vitamin D in Vascular Calcification: A Double-Edged Sword? Nutrients 2018, 10, 652. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.H.; Jin, J.S.; Yi, D.W.; Son, S.M. Bone Morphogenetic Protein-7 Inhibits Vascular Calcification Induced by High Vitamin D in Mice. Tohoku J. Exp. Med. 2010, 221, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Bas, A.; Lopez, I.; Perez, J.; Rodriguez, M.; Aguilera-Tejero, E. Reversibility of Calcitriol-Induced Medial Artery Calcification in Rats with Intact Renal Function. J. Bone Miner. Res. 2006, 21, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Shobeiri, N.; Adams, M.A.; Holden, R.M. Vascular Calcification in Animal Models of CKD: A Review. Am. J. Nephrol. 2010, 31, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.S.F.; Sposito, A.C. Vitamin D for the Prevention of Cardiovascular Disease: Are We Ready for That? Atherosclerosis 2015, 241, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Bouderlique, E.; Tang, E.; Perez, J.; Coudert, A.; Bazin, D.; Verpont, M.-C.; Duranton, C.; Rubera, I.; Haymann, J.-P.; Leftheriotis, G.; et al. Vitamin D and Calcium Supplementation Accelerates Randall’s Plaque Formation in a Murine Model. Am. J. Pathol. 2019, 189, 2171–2180. [Google Scholar] [CrossRef]
- Shanahan, C.M.; Crouthamel, M.H.; Kapustin, A.; Giachelli, C.M. Arterial Calcification in Chronic Kidney Disease: Key Roles for Calcium and Phosphate. Circ. Res. 2011, 109, 697–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomashvili, K.A.; Cobbs, S.; Hennigar, R.A.; Hardcastle, K.I.; O’Neill, W.C. Phosphate-Induced Vascular Calcification: Role of Pyrophosphate and Osteopontin. J. Am. Soc. Nephrol. 2004, 15, 1392–1401. [Google Scholar] [CrossRef] [Green Version]
- Laurain, A.; Rubera, I.; Duranton, C.; Rutsch, F.; Nitschke, Y.; Ray, E.; Vido, S.; Sicard, A.; Lefthériotis, G.; Favre, G. Alkaline Phosphatases Account for Low Plasma Levels of Inorganic Pyrophosphate in Chronic Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 586831. [Google Scholar] [CrossRef] [PubMed]
- Byon, C.H.; Chen, Y. Molecular Mechanisms of Vascular Calcification in Chronic Kidney Disease: The Link between Bone and the Vasculature. Curr. Osteoporos. Rep. 2015, 13, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Goltzman, D.; Mannstadt, M.; Marcocci, C. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Front. Horm. Res. 2018, 50, 1–13. [Google Scholar] [CrossRef]
- Cardús, A.; Panizo, S.; Parisi, E.; Fernandez, E.; Valdivielso, J.M. Differential Effects of Vitamin D Analogs on Vascular Calcification. J. Bone Miner. Res. 2007, 22, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Koroshi, A.; Idrizi, A. Renoprotective Effects of Vitamin D and Renin-Angiotensin System. Hippokratia 2011, 15, 308–311. [Google Scholar] [PubMed]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D Status and Ill Health: A Systematic Review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef]
- Barbarawi, M.; Kheiri, B.; Zayed, Y.; Barbarawi, O.; Dhillon, H.; Swaid, B.; Yelangi, A.; Sundus, S.; Bachuwa, G.; Alkotob, M.L.; et al. Vitamin D Supplementation and Cardiovascular Disease Risks in More Than 83,000 Individuals in 21 Randomized Clinical Trials: A Meta-Analysis. JAMA Cardiol. 2019, 4, 765–776. [Google Scholar] [CrossRef]
- Sempos, C.T.; Durazo-Arvizu, R.A.; Dawson-Hughes, B.; Yetley, E.A.; Looker, A.C.; Schleicher, R.L.; Cao, G.; Burt, V.; Kramer, H.; Bailey, R.L.; et al. Is There a Reverse J-Shaped Association Between 25-Hydroxyvitamin D and All-Cause Mortality? Results from the U.S. Nationally Representative NHANES. J. Clin. Endocrinol. Metab. 2013, 98, 3001–3009. [Google Scholar] [CrossRef] [Green Version]
- Shroff, R.C.; Donald, A.E.; Hiorns, M.P.; Watson, A.; Feather, S.; Milford, D.; Ellins, E.A.; Storry, C.; Ridout, D.; Deanfield, J.; et al. Mineral Metabolism and Vascular Damage in Children on Dialysis. J. Am. Soc. Nephrol. 2007, 18, 2996–3003. [Google Scholar] [CrossRef]
- Bolland, M.J.; Avenell, A.; Baron, J.A.; Grey, A.; MacLennan, G.S.; Gamble, G.D.; Reid, I.R. Effect of Calcium Supplements on Risk of Myocardial Infarction and Cardiovascular Events: Meta-Analysis. BMJ 2010, 341, c3691. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, Y.; Nagai, K.; Yasui, H.; Muto, M. Hyperreactivity of Pseudoxanthoma Elasticum-Affected Dermis to Vitamin D3. J. Am. Acad. Dermatol. 2000, 42, 685–687. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouderlique, E.; Tang, E.; Zaworski, J.; Coudert, A.; Bazin, D.; Borondics, F.; Haymann, J.-P.; Leftheriotis, G.; Martin, L.; Daudon, M.; et al. Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum. Int. J. Mol. Sci. 2022, 23, 2302. https://doi.org/10.3390/ijms23042302
Bouderlique E, Tang E, Zaworski J, Coudert A, Bazin D, Borondics F, Haymann J-P, Leftheriotis G, Martin L, Daudon M, et al. Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum. International Journal of Molecular Sciences. 2022; 23(4):2302. https://doi.org/10.3390/ijms23042302
Chicago/Turabian StyleBouderlique, Elise, Ellie Tang, Jeremy Zaworski, Amélie Coudert, Dominique Bazin, Ferenc Borondics, Jean-Philippe Haymann, Georges Leftheriotis, Ludovic Martin, Michel Daudon, and et al. 2022. "Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum" International Journal of Molecular Sciences 23, no. 4: 2302. https://doi.org/10.3390/ijms23042302
APA StyleBouderlique, E., Tang, E., Zaworski, J., Coudert, A., Bazin, D., Borondics, F., Haymann, J. -P., Leftheriotis, G., Martin, L., Daudon, M., & Letavernier, E. (2022). Vitamin D and Calcium Supplementation Accelerate Vascular Calcification in a Model of Pseudoxanthoma Elasticum. International Journal of Molecular Sciences, 23(4), 2302. https://doi.org/10.3390/ijms23042302