Identification and Quantitation of Bioactive and Taste-Related Dipeptides in Low-Salt Dry-Cured Ham
Abstract
:1. Introduction
2. Results
2.1. Peptide Quantitation by Tandem Mass Spectrometry
2.2. ACE-I Inhibitory Activity of the Quantified Dipeptides
2.2.1. In Vitro Results
2.2.2. Molecular Docking of ACE-I Inhibitory Dipeptides
2.3. Anti-Inflammatory Activity of the Dipeptides
2.3.1. Neprilysin Inhibitory Activity
2.3.2. TACE Inhibitory Activity
2.3.3. Autotaxin Inhibitory Activity
3. Discussion
3.1. Peptide Quantitation by Tandem Mass Spectrometry
3.2. ACE-I Inhibitory Activity of the Quantified Dipeptides
3.2.1. In vitro Results
3.2.2. Molecular Docking of ACE-I Inhibitory Dipeptides
3.3. Anti-Inflammatory Activity of the Dipeptides
3.3.1. Neprilysin Inhibitory Activity
3.3.2. TACE Inhibitory Activity
3.3.3. ATX Inhibitory Activity
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Extraction of Peptides and Proteins Precipitation
4.3. Peptides Separation According to the Molecular Weight by Ultrafiltration
4.4. Identification and Quantitation Using Mass Spectrometry in Tandem
4.5. ACE-I Inhibitory Activity of the Identified/Quantified Dipeptides
4.5.1. In vitro Assay
4.5.2. Molecular Docking with ACE-I
4.6. Anti-Inflammatory Activity of the Dipeptides
4.6.1. Neprilysin Inhibitory Screening Assay
4.6.2. TACE Inhibitory Screening Assay
4.6.3. ATX Inhibitory Screening Assay
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toldrá, F.; Barat, J.M. Salt reduction in processed meats. In Advanced Technologies for Meat Processing; Toldrá, F., Nollet, L.M.L., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 443–460. [Google Scholar]
- Toldrá, F. Proteolysis and lipolysis in flavour development of dry-cured meat products. Meat Sci. 1998, 49, S101–S110. [Google Scholar] [CrossRef]
- Wake, A.D. The role of dietary salt and alcohol use reduction in the management of hypertension. Expert Rev. Cardiovasc. Ther. 2021, 19, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Ripollés, S.; Campagnol, P.C.B.; Armenteros, M.; Aristoy, M.-C.; Toldrá, F. Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham. Meat Sci. 2011, 89, 58–64. [Google Scholar] [CrossRef]
- Armenteros, M.; Aristoy, M.-C.; Toldrá, F. Effect of sodium, potassium, calcium and magnesium chloride salts on porcine muscle proteases. Eur. Food Res. Technol. 2009, 229, 93–98. [Google Scholar] [CrossRef]
- Toldrá, F.; Cerveró, M.C.; Part, C. Porcine Aminopeptidase Activity as Affected by Curing Agents. J. Food Sci. 1993, 58, 724–726. [Google Scholar] [CrossRef]
- Sentandreu, M.; Toldrá, F. Dipeptidyl peptidase activities along the processing of Serrano dry-cured ham. Eur. Food Res. Technol. 2001, 213, 83–87. [Google Scholar] [CrossRef]
- Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.-C.; Mora, L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem. 2020, 321, 126689. [Google Scholar] [CrossRef]
- Pentzien, A.-K.; Meisel, H. Transepithelial Transport and Stability in Blood Serum of Angiotensin-I-Converting Enzyme Inhibitory Dipeptides. Z. für Naturforsch. C 2008, 63, 451–459. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhang, W.; Xing, L.; Zheng, J.; Zhou, G. Stability of Angiotensin I-converting Enzyme Inhibitory Activity of Peptides Extracted from Dry-cured Jinhua Ham. J. Food Nutr. Res. 2017, 5, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Mora, L.; Gallego, M.; Reig, M.; Toldrá, F. Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends Food Sci. Technol. 2017, 69, 306–314. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Toldrá, F. Peptidomics as a tool for quality control in dry-cured ham processing. J. Proteom. 2016, 147, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rešetar Maslov, D.; Svirkova, A.; Allmaier, G.; Marchetti-Deschamann, M.; Kraljević Pavelić, S. Optimization of MALDI-ToF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem. 2019, 283, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Gianazza, E.; Tremoli, E.; Banfi, C. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: Clinical applications in the cardiovascular diseases. Expert Rev. Proteom. 2014, 11, 771–788. [Google Scholar] [CrossRef]
- Picotti, P.; Aebersold, R. Selected reaction monitoring–based proteomics: Workflows, potential, pitfalls and future directions. Nat. Methods 2012, 9, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, S.; Xu, D.; Xie, D.; Guo, H. Inhibitor and Substrate Binding by Angiotensin-Converting Enzyme: Quantum Mechanical/Molecular Mechanical Molecular Dynamics Studies. J. Chem. Inf. Model. 2011, 51, 1074–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Ma’mur, A.; Mulia, K.; Yanuar, A.; Mun’im, A. Angiotensin-converting enzyme inhibitory activity of polyphenolic compounds from Peperomia pellucida (L) Kunth: An in silico molecular docking study. J. Appl. Pharm. Sci. 2019, 9, 45–58. [Google Scholar]
- Wisnasari, S.; Rohman, M.S.; Lukitasari, M. In silico binding affinity study of lisinopril and captopril to I/D intron 16 variant of angiotensin converting enzyme protein. J. Pharm. Clin. Res. 2016, 8, 1132–1134. [Google Scholar]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Sieniawski, K.; Starowicz, P. BIOPEP database of sensory peptides and amino acids. Food Res. Int. 2016, 85, 155–161. [Google Scholar] [CrossRef]
- Macià, A.; Motilva, M.-J.; Romero, M.-P.; Labrador, A.; Domínguez, A.; Peiro, L. Improved liquid-chromatography tandem mass spectrometry method for the determination of the bioactive dipeptides, carnosine and anserine: Application to analysis in chicken broth. Talanta 2012, 93, 293–300. [Google Scholar] [CrossRef]
- Gallego, M.; Toldrá, F.; Mora, L. Quantification and in silico analysis of taste dipeptides generated during dry-cured ham processing. Food Chem. 2022, 370, 130977. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heres, A.; Mora, L.; Toldrá, F. Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase enzyme by dipeptides identified in dry-cured ham. Food Prod. Process. Nutr. 2021, 3, 18. [Google Scholar] [CrossRef]
- Caballero, J. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules 2020, 25, 295. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Geng, M.; Liu, C.; Wang, J.; Min, W.; Liu, J. Structural and molecular basis of angiotensin-converting enzyme by computational modeling: Insights into the mechanisms of different inhibitors. PLoS ONE 2019, 14, e0215609. [Google Scholar] [CrossRef] [PubMed]
- Taga, Y.; Hayashida, O.; Ashour, A.; Amen, Y.; Kusubata, M.; Ogawa-Goto, K.; Shimizu, K.; Hattori, S. Characterization of Angiotensin-Converting Enzyme Inhibitory Activity of X-Hyp-Gly-Type Tripeptides: Importance of Collagen-Specific Prolyl Hydroxylation. J. Agric. Food Chem. 2018, 66, 8737–8743. [Google Scholar] [CrossRef] [PubMed]
- Vukic, V.R.; Vukic, D.V.; Milanovic, S.D.; Ilicic, M.D.; Kanuric, K.G.; Johnson, M.S. In silico identification of milk antihypertensive di- and tripeptides involved in angiotensin I–converting enzyme inhibitory activity. Nutr. Res. 2017, 46, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Cao, J.; Guo, H.; Zhao, B. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate. Food Chem. 2012, 130, 121–126. [Google Scholar] [CrossRef]
- Mora, L.; Gallego, M.; Toldrá, F. Degradation of myosin heavy chain and its potential as a source of natural bioactive peptides in dry-cured ham. Food Biosci. 2019, 30, 100416. [Google Scholar] [CrossRef]
- Nurhafsyah, L.P.; Kusumawati, R.; Indarto, D. Neprilysin inhibitor from herbal compounds as the latest adjuvant treatment of chronic heart failure. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 062018. [Google Scholar] [CrossRef]
- Qiu, Z.; Yan, M.; Li, Q.; Liu, D.; Van den Steen, P.E.; Wang, M.; Opdenakker, G.; Hu, J. Definition of peptide inhibitors from a synthetic peptide library by targeting gelatinase B/matrix metalloproteinase-9 (MMP-9) and TNF-α converting enzyme (TACE/ADAM-17). J. Enzym. Inhib. Med. Chem. 2012, 27, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Gu, Q.; Zhao, N.; Xia, F.; Li, Z. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis. J. Drug Target. 2015, 23, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.; Mora, L.; Hayes, M.; Reig, M.; Toldrá, F. Peptides with Potential Cardioprotective Effects Derived from Dry-Cured Ham Byproducts. J. Agric. Food Chem. 2019, 67, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Dave, L.; Hayes, M.; Mora, L.; Montoya, C.; Moughan, P.; Rutherfurd, S. Gastrointestinal Endogenous Protein-Derived Bioactive Peptides: An In Vitro Study of Their Gut Modulatory Potential. Int. J. Mol. Sci. 2016, 17, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, M.; Mora, L.; Aristoy, M.C.; Toldrá, F. Titin-derived peptides as processing time markers in dry-cured ham. Food Chem. 2015, 167, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Sentandreu, M.A.; Toldrá, F. A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem. 2006, 97, 546–554. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [Green Version]
- Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature 2003, 421, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Pina, A.S.; Roque, A.C.A. Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme. J. Mol. Recognit. 2009, 22, 162–168. [Google Scholar] [CrossRef]
- Soubrier, F.; Alhenc-Gelas, F.; Hubert, C.; Allegrini, J.; John, M.; Tregear, G.; Corvol, P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. USA 1988, 85, 9386–9390. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [PubMed]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef] [Green Version]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef] [PubMed]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining Global and Local Measures for Structure-Based Druggability Predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Schöning-Stierand, K.; Diedrich, K.; Fährrolfes, R.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Steinegger, R.; Rarey, M. ProteinsPlus: Interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res. 2020, 48, W48–W53. [Google Scholar] [CrossRef] [Green Version]
Peptide | Sequence | MW 1 | tR 2 | Amount 3 | SD 4 |
---|---|---|---|---|---|
PA | Pro-Ala | 186.21 | 16.2 | 0.18 | 0.13 |
GA | Gly-Ala | 146.15 | 15.6 | 44.88 | 22.27 |
VG | Val-Gly | 174.2 | 12.5 | 2.11 | 1.80 |
EE | Glu-Glu | 276.24 | 17.2 | 8.42 | 3.03 |
ES | Glu-Ser | 234.21 | 16 | 4.43 | 1.28 |
DA | Asp-Ala | 204.18 | 15.7 | 7.82 | 1.83 |
DG | Asp-Gly | 190.15 | 15.9 | 8.28 | 1.83 |
Sequence | IC50 Value | |
---|---|---|
(µM) | ||
GA | Gly-Ala | 516.879 |
VG | Val-Gly | 377.669 |
Ligand | Binding Energy (kcal/mol) | Inhibition Constant (µM) | Protein Residues Involved in H-Bond Interactions [Chain: Residue (Distance Btw Donor-Acceptor) (Protein Donor/Acceptor, Residue From Side Chain)] | Protein Residues Involvedin Hydrophobic Interactions [Chain: Residue (Distance Btw Carbon Atoms)] | Protein Residues Involved in Salt Bridges [Chain: Residue (Distance Btw Centers Of Charge) (Ligand Functional Group Providing the Charge)] |
---|---|---|---|---|---|
Lisinopril | −6.08 | 35.21 | A:Gln281 (2.96 Å) (Donor,sd) A:Asp377 (2.77 Å) (Acceptor,sd) A:Lys511 (3.50 Å) (Donor,sd) A:Tyr520 (2.71 Å) (Donor,sd) | A:Thr282 (3.49 Å) A:Glu376 (3.20 Å) A:Val379 (3.30 Å) A:Val380 (3.66 Å) A:Tyr523 (3.69 Å) | A:Lys511 (3.66 Å) (Carboxilate) A:His513 (3.55 Å) (Carboxilate) |
Captopril | −5.96 | 42.91 | A:Gln281 (3.28 Å) (Donor,sd) A:Tyr520 (2.91 Å) (Donor,sd) | A:Phe457 (3.15 Å) A:Tyr523 (3.89 Å) A:Phe527 (3.04 Å) | A:His353 (5.05 Å) (Carboxilate) A:Lys511 (2.57 Å) (Carboxilate) A:His513 (4.54 Å) (Carboxilate) |
DA | −4.88 | 263.8 | A:Gln281 (3.09 Å) (Donor,sd) A:Glu376 (2.62 Å) (Donor,sd) A:Glu376 (2.62 Å) (Acceptor,sd) A:Tyr520 (3.26 Å) (Donor,sd) | A:Thr282 (3.96 Å) | A:His353 (5.03 Å) (Carboxilate) A:Lys511 (2.48 Å) (Carboxilate) A:His513 (4.84 Å) (Carboxilate) |
ES | −4.50 | 499.08 | A:Asn277 (2.96 Å) (Donor,sd) A:Gln281 (3.00 Å) (Donor,sd) A:Thr282 (3.34 Å) (Donor,sd) A:Glu376 (2.47 Å) (Donor,sd) A:Glu376 (2.47 Å) (Acceptor,sd) A:Lys511 (3.02 Å) (Donor,sd) A:Tyr520 (3.05 Å) (Donor,sd) | A:Thr282 (3.91 Å) | A:His353 (5.40 Å) (Carboxilate) A:Lys511 (3.68 Å) (Carboxilate) A:His513 (4.84 Å) (Carboxilate) |
GA | −5.06 | 196.38 | A:Asn277 (3.43 Å) (Donor,sd) A:Gln281 (3.35 Å) (Donor,sd) A:Thr282 (3.93 Å) (Donor,sd) A:Glu376 (2.84 Å) (Donor,sd) A:Glu376 (2.41 Å) (Acceptor,sd) A:Glu376 (2.84 Å) (Acceptor,sd) A:Glu376 (3.25 Å) (Donor) | A:Thr282 (3.59 Å) | Absent |
VG | −5.10 | 183.45 | A:Asn277 (3.92 Å) (Donor,sd) A:Gln281 (2.97 Å) (Donor,sd) A:Thr282 (3.99 Å) (Donor,sd) A:Thr282 (3.99 Å) (Acceptor,sd) A:Glu376 (2.49 Å) (Donor,sd) A:Tyr520 (3.17 Å) (Donor,sd) | A:Thr282 (3.52 Å) A:Glu376 (3.52 Å) A:Val380 (3.43 Å) | A:His353 (4.87 Å) (Carboxilate) A:Lys511 (2.79 Å) (Carboxilate) A:His513 (4.78 Å) (Carboxilate) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heres, A.; Gallego, M.; Mora, L.; Toldrá, F. Identification and Quantitation of Bioactive and Taste-Related Dipeptides in Low-Salt Dry-Cured Ham. Int. J. Mol. Sci. 2022, 23, 2507. https://doi.org/10.3390/ijms23052507
Heres A, Gallego M, Mora L, Toldrá F. Identification and Quantitation of Bioactive and Taste-Related Dipeptides in Low-Salt Dry-Cured Ham. International Journal of Molecular Sciences. 2022; 23(5):2507. https://doi.org/10.3390/ijms23052507
Chicago/Turabian StyleHeres, Alejandro, Marta Gallego, Leticia Mora, and Fidel Toldrá. 2022. "Identification and Quantitation of Bioactive and Taste-Related Dipeptides in Low-Salt Dry-Cured Ham" International Journal of Molecular Sciences 23, no. 5: 2507. https://doi.org/10.3390/ijms23052507
APA StyleHeres, A., Gallego, M., Mora, L., & Toldrá, F. (2022). Identification and Quantitation of Bioactive and Taste-Related Dipeptides in Low-Salt Dry-Cured Ham. International Journal of Molecular Sciences, 23(5), 2507. https://doi.org/10.3390/ijms23052507