Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing
Abstract
:1. Introduction
2. Results
2.1. Chip Development and Injection System Implementation
2.2. Labeling of OGB in Hippocampal Sections
3. Discussion
4. Materials and Methods
4.1. Design of the Brain Slice-on-a-Chip Device
4.2. Brain Slice-on-a-Chip Fabrication
4.3. Hippocampal Slices MICE
4.4. Slice Preparation
4.5. Procedure of the Brain Slice-on-a-Chip Set-Up
4.6. Organotypic Hippocampal Slice Culture
4.7. Dye Injection and Image Acquisition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DIV | day in vitro |
CA | cornu Ammonis subfield |
DG | dentate gyrus |
DMSO | dimethylsulphoxide |
OGB | Oregon Green Bapta |
OHSC | organotypic hippocampal slice culture |
PDMS | polydimethylsiloxane |
PTFE | polytetrafluoroethylene |
References
- Humpel, C. Neuroscience Forefront Review Organotypic Brain Slice Cultures: A Review. Neuroscience 2015, 305, 86–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pas, S.P. The Rise of Three-Dimensional Human Brain Cultures. Nature 2018, 553, 437–445. [Google Scholar]
- Croft, C.L.; Futch, H.S.; Moore, B.D.; Golde, T.E. Organotypic Brain Slice Cultures to Model Neurodegenerative Proteinopathies. Mol. Neurodegener. 2019, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raineteau, O.; Rietschin, L.; Gradwohl, G.; Guillemot, F.; Gähwiler, B.H. Neurogenesis in Hippocampal Slice Cultures. Mol. Cell. Neurosci. 2004, 26, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Reshetnikov, V.; Ryabushkina, Y.; Kovner, A.; Lepeshko, A.; Bondar, N. Repeated and Single Maternal Separation Specifically Alter Microglial Morphology in the Prefrontal Cortex and Neurogenesis in the Hippocampus of 15-Day-Old Male Mice. NeuroReport 2020, 31, 1256–1264. [Google Scholar] [CrossRef]
- Nikonenko, I.; Toni, N.; Moosmayer, M.; Shigeri, Y.; Muller, D.; Sargent Jones, L. Integrins Are Involved in Synaptogenesis, Cell Spreading, and Adhesion in the Postnatal Brain. Brain Res. Dev. Brain Res. 2003, 140, 185–194. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, H.; Yang, C.H.; Ko, J.S.; Park, C.H.; Woo, R.S.; Kim, J.Y.; Sun, W.; Kim, J.H.; Ho, W.K.; et al. Bidirectional Signaling of Neuregulin-2 Mediates Formation of GABAergic Synapses and Maturation of Glutamatergic Synapses in Newborn Granule Cells of Postnatal Hippocampus. J. Neurosci. 2015, 35, 16479–16493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Byun, J.-W.; Choi, I.; Kim, B.; Jeong, H.-K.; Jou, I.; Joe, E. PINK1 Deficiency Enhances Inflammatory Cytokine Release from Acutely Prepared Brain Slices. Exp. Neurobiol. 2013, 22, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Pandamooz, S.; Salehi, M.S.; Zibaii, M.I.; Safari, A.; Nabiuni, M.; Ahmadiani, A.; Dargahi, L. Modeling Traumatic Injury in Organotypic Spinal Cord Slice Culture Obtained from Adult Rat. Tissue Cell 2019, 56, 90–97. [Google Scholar] [CrossRef]
- Gähwiler, B.H. Organotypic Monolayer Cultures of Nervous Tissue. J. Neurosci. Methods 1981, 4, 329–342. [Google Scholar] [CrossRef]
- Victorov, I.V.; Lyjin, A.A.; Aleksandrova, O.P. A Modified Roller Method for Organotypic Brain Cultures: Free-Floating Slices of Postnatal Rat Hippocampus. Brain Res. Protoc. 2001, 7, 30–37. [Google Scholar] [CrossRef]
- de Simoni, A.; Yu, L.M.Y. Preparation of Organotypic Hippocampal Slice Cultures: Interface Method. Nat. Protoc. 2006, 1, 1439–1445. [Google Scholar] [CrossRef]
- Stoppini, L.; Buchs, P.A.; Muller, D. A Simple Method for Organotypic Cultures of Nervous Tissue. J. Neurosci. Methods 1991, 37, 173–182. [Google Scholar] [CrossRef]
- Hájos, N.; Ellender, T.J.; Zemankovics, R.; Mann, E.O.; Exley, R.; Cragg, S.J.; Freund, T.F.; Paulsen, O. Maintaining Network Activity in Submerged Hippocampal Slices: Importance of Oxygen Supply. Eur. J. Neurosci. 2009, 29, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.X.Z.; Radisic, M. Organ-on-a-Chip Platforms for Evaluation of Environmental Nanoparticle Toxicity. Bioact. Mater. 2021, 6, 2801. [Google Scholar] [CrossRef]
- Rothbauer, M.; Rosser, J.M.; Zirath, H.; Ertl, P. Tomorrow Today: Organ-on-a-Chip Advances towards Clinically Relevant Pharmaceutical and Medical in Vitro Models. Curr. Opin. Biotechnol. 2019, 55, 81–86. [Google Scholar] [CrossRef]
- Tian, C.; Tu, Q.; Liu, W.; Wang, J. Recent Advances in Microfluidic Technologies for Organ-on-a-Chip. TrAC-Trends Anal. Chem. 2019, 117, 146–156. [Google Scholar] [CrossRef]
- Yi, L.; Wang, X.; Dhumpa, R.; Schrell, A.M.; Mukhitov, N.; Roper, M.G. Integrated Perfusion and Separation Systems for Entrainment of Insulin Secretion from Islets of Langerhans. Lab Chip 2015, 15, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Vedarethinam, I.; Kwasny, D.; Andresen, L.; Dimaki, M.; Skov, S.; Svendsen, W.E. Microfluidic Bioreactors for Culture of Non-Adherent Cells. Sens. Actuators B Chem. 2011, 156, 1002–1008. [Google Scholar] [CrossRef]
- Vedarethinam, I.; Avaliani, N.; Tønnesen, J.; Hansen, J.; Sabourin, D.; Dimaki, M.; Kokaia, M.; Dufva, M.; Svendsen, W.E.; Emnéus, J.; et al. Long-Term Brain Slice Culturing in a Microfluidic Platform. In Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Seattle, WA, USA, 2–6 October 2011; pp. 1560–1563. [Google Scholar]
- Hájos, N.; Mody, I. Establishing a Physiological Environment for Visualized in Vitro Brain Slice Recordings by Increasing Oxygen Supply and Modifying ACSF Content. J. Neurosci. Methods 2009, 183, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Williams, J.C.; Johnson, S.M. Brain Slice on a Chip: Opportunities and Challenges of Applying Microfluidic Technology to Intact Tissues. Lab Chip 2012, 12, 2103–2117. [Google Scholar] [CrossRef] [PubMed]
- Bakmand, T.; Troels-Smith, A.R.; Dimaki, M.; Nissen, J.D.; Andersen, K.B.; Sasso, L.; Waagepetersen, H.S.; Gramsbergen, J.B.; Svendsen, W.E. Fluidic System for Long-Term in Vitro Culturing and Monitoring of Organotypic Brain Slices. Biomed. Microdevices 2015, 17, 71. [Google Scholar] [CrossRef] [PubMed]
- Queval, A.; Ghattamaneni, N.R.; Perrault, C.M.; Gill, R.; Mirzaei, M.; McKinney, R.A.; Juncker, D. Chamber and Microfluidic Probe for Microperfusion of Organotypic Brain Slices. Lab Chip 2010, 10, 326–334. [Google Scholar] [CrossRef]
- Rambani, K.; Vukasinovic, J.; Glezer, A.; Potter, S.M. Culturing Thick Brain Slices: An Interstitial 3D Microperfusion System for Enhanced Viability. J. Neurosci. Methods 2009, 180, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Blake, A.J.; Pearce, T.M.; Rao, N.S.; Johnson, S.M.; Williams, J.C. Multilayer PDMS Microfluidic Chamber for Controlling Brain Slice Microenvironment. Lab Chip 2007, 7, 842–849. [Google Scholar] [CrossRef]
- Liu, J.; Pan, L.; Cheng, X.; Berdichevsky, Y. Perfused Drop Microfluidic Device for Brain Slice Culture-Based Drug Discovery. Biomed. Microdevices 2016, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Kaplan, S.V.; Gehringer, R.C.; Limbocker, R.A.; Johnson, M.A. Localized Drug Application and Sub-Second Voltammetric Dopamine Release Measurements in a Brain Slice Perfusion Device. Anal. Chem. 2014, 86, 4151–4156. [Google Scholar] [CrossRef]
- Wilhelm, I.; Krizbai, I.A. In Vitro Models of the Blood-Brain Barrier for the Study of Drug Delivery to the Brain. Mol. Pharm. 2014, 11, 1949–1963. [Google Scholar] [CrossRef]
- Fan, Y.; Nguyen, D.T.; Akay, Y.; Xu, F.; Akay, M. Engineering a Brain Cancer Chip for High-Throughput Drug Screening. Sci. Rep. 2016, 6, 25062. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, B.K.; Jeong, G.S.; Hyun, J.K.; Lee, C.J.; Lee, S.H. Three-Dimensional Brain-on-a-Chip with an Interstitial Level of Flow and Its Application as an in Vitro Model of Alzheimer’s Disease. Lab Chip 2015, 15, 141–150. [Google Scholar] [CrossRef]
- Hasan, M.N.; Radwan, A.N.; Kim, M.; Kucukal, E.; Maji, D.; Pashaei, V.; Chung, C.-Y.; Kakkar, A.; Gurkan, U.A. Emerging Micro and Nanotechnologies in Neuroscience: Devices, Fabrication Methods, and Implementation in Monitoring of Neural Activity and Drug Delivery. Technology 2019, 7, 57–83. [Google Scholar] [CrossRef]
- Gonzalez-Riano, C.; Tapia-González, S.; García, A.; Muñoz, A.; DeFelipe, J.; Barbas, C. Metabolomics and Neuroanatomical Evaluation of Post-Mortem Changes in the Hippocampus. Brain Struct. Funct. 2017, 222, 2831–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapia-González, S.; Insausti, R.; DeFelipe, J. Differential Expression of Secretagogin Immunostaining in the Hippocampal Formation and the Entorhinal and Perirhinal Cortices of Humans, Rats, and Mice. J. Comp. Neurol. 2020, 528, 523–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Mouse Brain in Stereotaxic Coordinates, Compact-3rd Edition. Available online: https://www.elsevier.com/books/the-mouse-brain-in-stereotaxic-coordinates-compact/franklin/978-0-12-374244-5 (accessed on 23 October 2021).
- Guy, Y.; Rupert, A.E.; Sandberg, M.; Weber, S.G. A Simple Method for Measuring Organotypic Tissue Slice Culture Thickness. J. Neurosci. Methods 2011, 199, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.; Tovey, S.C.; Collins, T.J.; Bootman, M.D.; Berridge, M.J.; Lipp, P. A Comparison of Fluorescent Ca2+ Indicator Properties and Their Use in Measuring Elementary and Global Ca2+ Signals. Cell Calcium 2000, 28, 213–223. [Google Scholar] [CrossRef]
- Garaschuk, O.; Milos, R.I.; Konnerth, A. Targeted Bulk-Loading of Fluorescent Indicators for Two-Photon Brain Imaging in Vivo. Nat. Protoc. 2006, 1, 380–386. [Google Scholar] [CrossRef]
- Yuan, F.; Xiong, G.; Cohen, N.A.; Cohen, A.S. Optimized Protocol of Methanol Treatment for Immunofluorescent Staining in Fixed Brain Slices. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 221–224. [Google Scholar] [CrossRef]
- Dissing-Olesen, L.; MacVicar, B.A. Fixation and Immunolabeling of Brain Slices: SNAPSHOT Method. Curr. Protoc. Neurosci. 2015, 71, 1.23.1–1.23.12. [Google Scholar] [CrossRef]
- Herreros, P.; Ballesteros-Esteban, L.M.; Laguna, M.F.; Leyva, I.; Sendiña-Nadal, I.; Holgado, M. Neuronal Circuits on a Chip for Biological Network Monitoring. Biotechnol. J. 2021, 16, 2000355. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Jeong, O.C. PDMS Surface Modification Using Atmospheric Pressure Plasma. Microelectron. Eng. 2011, 88, 2281–2285. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herreros, P.; Tapia-González, S.; Sánchez-Olivares, L.; Laguna Heras, M.F.; Holgado, M. Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing. Int. J. Mol. Sci. 2022, 23, 2549. https://doi.org/10.3390/ijms23052549
Herreros P, Tapia-González S, Sánchez-Olivares L, Laguna Heras MF, Holgado M. Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing. International Journal of Molecular Sciences. 2022; 23(5):2549. https://doi.org/10.3390/ijms23052549
Chicago/Turabian StyleHerreros, Pedro, Silvia Tapia-González, Laura Sánchez-Olivares, María Fe Laguna Heras, and Miguel Holgado. 2022. "Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing" International Journal of Molecular Sciences 23, no. 5: 2549. https://doi.org/10.3390/ijms23052549
APA StyleHerreros, P., Tapia-González, S., Sánchez-Olivares, L., Laguna Heras, M. F., & Holgado, M. (2022). Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing. International Journal of Molecular Sciences, 23(5), 2549. https://doi.org/10.3390/ijms23052549