Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato
Abstract
:1. Introduction
2. Natural Variation and Diversity in Gene Pools
2.1. High Throughput Assay
2.2. Genotype × Environment Interactions (GEI)
2.3. Genetic Variation
2.4. Metabolite Diversity
3. Genetic and Molecular Basis of Variation
3.1. Anthocyanin Biosynthesis
3.2. Functionally Characterized Genes Associated with Anthocyanins
4. Biofortification to Redesign Next-Generation Anthocyanins Rich Vegetable Crops
4.1. Crossbreeding and Genomic-Assisted Breeding
4.2. Transgenes and CRISPR/Cas9 Systems to Enrich Anthocyanins
4.3. Biosafety Regulation and Acceptability of Genetically Modified Anthocyanin-Rich Vegetables
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamage, G.C.V.; Lim, Y.Y.; Choo, W.S. Sources and Relative Stabilities of Acylated and Nonacylated Anthocyanins in Beverage Systems. J. Food Sci. Technol. 2021, 59, 831–845. [Google Scholar] [CrossRef]
- Hu, N.; Zheng, J.; Li, W.; Suo, Y. Isolation, Stability, and Antioxidant Activity of Anthocyanins from Lycium ruthenicum Murray and Nitraria tangutorum Bobr of Qinghai-Tibetan Plateau. Sep. Sci. Technol. 2014, 49, 2897–2906. [Google Scholar] [CrossRef]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Araki, R.; Yada, A.; Ueda, H.; Tominaga, K.; Isoda, H. Differences in the Effects of Anthocyanin Supplementation on Glucose and Lipid Metabolism According to the Structure of the Main Anthocyanin: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2003. [Google Scholar] [CrossRef]
- Tian, Z.; Li, K.; Fan, D.; Zhao, Y.; Gao, X.; Ma, X.; Xu, L.; Shi, Y.; Ya, F.; Zou, J.; et al. Dose-dependent Effects of Anthocyanin Supplementation on Platelet Function in Subjects with Dyslipidemia: A Randomized Clinical Trial. eBioMedicine 2021, 70, 103533. [Google Scholar] [CrossRef]
- Xu, Z.; Xie, J.; Zhang, H.; Pang, J.; Li, Q.; Wang, X.; Xu, H.; Sun, X.; Zhao, H.; Yang, Y.; et al. Anthocyanin Supplementation at Different Doses Improves Cholesterol Efflux Capacity in Subjects with Dyslipidemia—A Randomized Controlled Trial. Eur. J. Clin. Nutr. 2021, 75, 345–354. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, H.; Tian, Z.; Wang, X.; Xu, L.; Li, K.; Gao, X.; Fan, D.; Ma, X.; Ling, W.; et al. Dose-dependent Reductions in Plasma Ceramides after Anthocyanin Supplementation are Associated with Improvements in Plasma Lipids and Cholesterol Efflux Capacity in Dyslipidemia: A Randomized Controlled Trial. Clin. Nutr. 2021, 40, 1871–1878. [Google Scholar] [CrossRef]
- Park, S.; Choi, M.; Lee, M. Effects of Anthocyanin Supplementation on Reduction of Obesity Criteria: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2121. [Google Scholar] [CrossRef]
- Sandoval-Ramírez, B.A.; Catalán, Ú.; Fernández-Castillejo, S.; Rubió, L.; Macià, A.; Solà, R. Anthocyanin Tissue Bioavailability in Animals: Possible Implications for Human Health. A Systematic Review. J. Agric. Food Chem. 2018, 66, 11531–11543. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Li, Y.; Bhupathiraju, S.N.; Rosner, B.A.; Sun, Q.; Giovannucci, E.L.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Stampfer, M.J.; et al. Fruit and Vegetable Intake and Mortality. Circulation 2021, 143, 1642–1654. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Andújar, I.; Vilanova, S.; Plazas, M.; Gramazio, P.; Herraiz, F.J.; Brar, N.S.; Prohens, J. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules 2015, 20, 18464–18481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lestario, L.N.; Muninggar, J.; Pudjihastuti, S. Anthocyanin and Recent Development as Functional Food. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012067. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Sampaio, S.L.; Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Ferreira, I. Grown to be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants 2019, 8, 617. [Google Scholar] [CrossRef] [Green Version]
- Vanlalneihi, B.; Kumar, M.; Chhangte, L.; Gurung, A. Designing Nutraceutical Rich Vegetable Crops Through Conventional and Molecular Approaches. J. Pharmacogn. Phytochem. 2019, 8, 960–966. [Google Scholar]
- Bendokas, V.; Stanys, V.; Mažeikienė, I.; Trumbeckaite, S.; Baniene, R.; Liobikas, J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants 2020, 9, 819. [Google Scholar] [CrossRef]
- Speciale, A.; Saija, A.; Bashllari, R.; Molonia, M.S.; Muscara’, C.; Occhiuto, C.; Cimino, F.; Cristani, M. Anthocyanins as Modulators of Cell Redox-Dependent Pathways in Non-Communicable Diseases. Curr. Med. Chem. 2020, 27, 1955–1996. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Ertani, A.; Serio, G.; Bertea, C. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture 2021, 11, 212. [Google Scholar] [CrossRef]
- Sun, H.-L.; Wang, X.-Y.; Shang, Y.; Wang, X.-Q.; DU, G.-D.; Lü, D.-G. Preharvest Application of Melatonin Induces Anthocyanin Accumulation and Related Gene Upregulation in Red Pear (Pyrus ussuriensis). J. Integr. Agric. 2021, 20, 2126–2137. [Google Scholar] [CrossRef]
- Wangiyana, W.; Aryana, I.G.P.M.; Dulur, N.W.D. Mycorrhiza Biofertilizer and Intercropping with Soybean Increase Anthocyanin Contents and Yield of Upland Red Rice under Aerobic Irrigation Systems. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012087. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Jarillo, J.A.; Carrera, C.; Ferreiro-González, M.; Álvarez, J.; Palma, M.; Ayuso, J.; Barbero, G.F.; Espada-Bellido, E. Optimization of a Novel Method Based on Ultrasound-Assisted Extraction for the Quantification of Anthocyanins and Total Phenolic Compounds in Blueberry Samples (Vaccinium corymbosum L.). Foods 2020, 9, 1763. [Google Scholar] [CrossRef] [PubMed]
- Carrera, C.; Aliaño-González, M.J.; Valaityte, M.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. A Novel Ultrasound-Assisted Extraction Method for the Analysis of Anthocyanins in Potatoes (Solanum tuberosum L.). Antioxidants 2021, 10, 1375. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Palacios, V.; Barbero, G.F. Ultrasound-Assisted Extraction of Anthocyanins and Total Phenolic Compounds in Vitis vinifera L. ‘Tempranillo’ Winemaking Lees. Vitis 2019, 58, 39–47. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; De Peredo, A.V.G.; González, M.F.; Carrera, C.; Palma, M.; Barbero, G.F.; Espada-Bellido, E. Assessment of Ultrasound Assisted Extraction as an Alternative Method for the Extraction of Anthocyanins and Total Phenolic Compounds from Maqui Berries (Aristotelia chilensis (Mol.) Stuntz). Agronomy 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Ginting, E.; Yulifianti, R.; Indriani, F.C. Selected Purple-fleshed Sweet Potato Genotypes with High Anthocyanin Contents. IOP Conf. Ser. Earth Environ. Sci. 2020, 456, 012023. [Google Scholar] [CrossRef]
- Liu, Y.; Lin-Wang, K.; Espley, R.; Wang, L.; Li, Y.; Liu, Z.; Zhou, P.; Zeng, L.; Zhang, X.; Zhang, J.; et al. StMYB44 Negatively Regulates Anthocyanin Biosynthesis at High Temperatures in Tuber Flesh of Potato. J. Exp. Bot. 2019, 70, 3809–3824. [Google Scholar] [CrossRef] [Green Version]
- Hamouz, K.; Lachman, J.; Bečka, D.; Pulkrábek, J. Effect of Growing Conditions and Storage on the Total Anthocyanin Content in Potatoes with Coloured Flesh. Plant Soil Environ. 2018, 64, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Reyes, L.F.; Miller, J.C.; Cisneros-Zevallos, L. Environmental Conditions Influence the Content and Yield of Anthocyanins and Total Phenolics in Purple- and Red-flesh Potatoes during Tuber Dvelopment. Am. J. Potato Res. 2004, 81, 187–193. [Google Scholar] [CrossRef]
- Šulc, M.; Kotíková, Z.; Paznocht, L.; Pivec, V.; Hamouz, K.; Lachman, J. Changes in Anthocyanidin Levels during the Maturation of Color-fleshed Potato (Solanum tuberosum L.) tubers. Food Chem. 2017, 237, 981–988. [Google Scholar] [CrossRef]
- Samaniego, I.; Espin, S.; Cuesta, X.; Arias, V.; Rubio, A.; Llerena, W.; Angós, I.; Carrillo, W. Analysis of Environmental Conditions Effect in the Phytochemical Composition of Potato (Solanum tuberosum) Cultivars. Plants 2020, 9, 815. [Google Scholar] [CrossRef] [PubMed]
- Bellumori, M.; Silva, N.A.C.; Vilca, L.; Andrenelli, L.; Cecchi, L.; Innocenti, M.; Balli, D.; Mulinacci, N. A Study on the Biodiversity of Pigmented Andean Potatoes: Nutritional Profile and Phenolic Composition. Molecules 2020, 25, 3169. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Polit, M.F.; Ayvaz, H.; Tay, D.; Manrique, I. Characterization and Quantification of Anthocyanins and Other Phenolics in Native Andean Potatoes. J. Agric. Food Chem. 2014, 62, 4408–4416. [Google Scholar] [CrossRef] [PubMed]
- Hamouz, K.; Lachman, J.; Pazderů, K.; Tomasek, J.; Hejtmánková, K.; Pivec, V. Differences in anthocyanin content and antioxidant activity of potato tubers with different flesh colour. Plant Soil Environ. 2011, 57, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.W.; Kim, S.R.; Lee, Y.M.; Jang, H.H.; Kim, J.B. Analysis of Variation in Anthocyanin Composition in Korean Coloured Potato Cultivars by LC-DAD-ESI-MS and PLS-DA. Potato Res. 2018, 61, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Hamouz, K.; Orsak, M.; Pivec, V.; Hejtmánková, K.; Pazderů, K.; Dvořák, P.; Čepl, J. Impact of Selected Factors—Cultivar, Storage, Cooking and Baking on the Content of Anthocyanins in Coloured-flesh Potatoes. Food Chem. 2012, 133, 1107–1116. [Google Scholar] [CrossRef]
- Parra-Galindo, M.-A.; Piñeros-Niño, C.; Soto-Sedano, J.C.; Mosquera-Vasquez, T. Chromosomes I and X Harbor Consistent Genetic Factors Associated with the Anthocyanin Variation in Potato. Agronomy 2019, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Hamouz, K.; Šulc, M.; Orsák, M.; Pivec, V.; Hejtmánková, A.; Dvořák, P.; Čepl, J. Cultivar Differences of Total Anthocyanins and Anthocyanidins in Red and Purple-fleshed Potatoes and Their Relation to Antioxidant Activity. Food Chem. 2009, 114, 836–843. [Google Scholar] [CrossRef]
- Lewis, C.E.; Walker, J.R.L.; Lancaster, J.E.; Sutton, K.H. Determination of Anthocyanins, Flavonoids and Phenolic Acids in Potatoes. I: Coloured Cultivars of Solanum tuberosum L. J. Sci. Food Agric. 1998, 77, 45–57. [Google Scholar] [CrossRef]
- Ercoli, S.; Parada, J.; Bustamante, L.; Hermosín-Gutiérrez, I.; Contreras, B.; Cornejo, P.; Ruiz, A. Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile. Molecules 2021, 26, 314. [Google Scholar] [CrossRef]
- D’Amelia, V.; Sarais, G.; Fais, G.; Dessì, D.; Giannini, V.; Garramone, R.; Carputo, D.; Melito, S. Biochemical Characterization and Effects of Cooking Methods on Main Phytochemicals of Red and Purple Potato Tubers, a Natural Functional Food. Foods 2022, 11, 384. [Google Scholar] [CrossRef] [PubMed]
- Ginting, E.; Utomo, J.S.; Restuono, J. Purple-fleshed Sweet Potato Genotypes as the Ingredients for Crisps and Noodle Making. E3S Web Conf. 2021, 306, 01048. [Google Scholar] [CrossRef]
- Stommel, J. Genetic Enhancement of Tomato Fruit Nutritive Value. In Genetic Improvement of Solanaceous Crops, Tomato; Razdan, M.K., Mattoo, A.K., Eds.; Science Publishers: Enfield, NH, USA, 2007; Volume 2, pp. 193–238. ISBN 978-1-57808-179-0. [Google Scholar] [CrossRef]
- Mehta, R.A.; Cassol, T.; Li, N.; Ali, N.; Handa, A.K.; Mattoo, A.K. Engineered Polyamine Accumulation in Tomato Enhances Phytonutrient Content, Juice Quality, and Vine Life. Nat. Biotechnol. 2002, 20, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.-P.; Matros, A.; Peterek, S.; Schijlen, E.G.W.M.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of Tomato Fruit with Health-promoting Anthocyanins by Expression of Select Transcription Factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Gonzali, S.; Mazzucato, A.; Perata, P. Purple as a Tomato: Towards High Anthocyanin Tomatoes. Trends Plant Sci. 2009, 14, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maligeppagol, M.; Chandra, G.S.; Navale, P.M.; Deepa, H.; Rajeev, P.R.; Ashokan, R.; Prasad Babu, K.; Bujji Babu, C.S.; Rao, V.K.; Krishna Kumar, N.K. Anthocyanin Enrichment of Tomato (Solanum lycopersicum L.) Fruit by Metabolic Engineering. Curr. Sci. 2013, 105, 72–80. [Google Scholar]
- Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M.E.; Nicoletti, I.; Gerardi, C.; Mita, G.; Andersen, Ø.M. Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by “Sun Black” Tomato Line. Front. Nutr. 2019, 6, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.M.; Mes, P.; Myers, J.R. Characterization and Inheritance of the Anthocyanin fruit (Aft) Tomato. J. Hered. 2003, 94, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Mes, P.J.; Boches, P.; Myers, J.R.; Durst, R. Characterization of Tomatoes Expressing Anthocyanin in the Fruit. J. Am. Soc. Hortic. Sci. 2008, 133, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Rick, C.M. Tomato. Genet. Coop. Rept. 1959, 9, 41–42. [Google Scholar]
- Kurina, A.B.; Solovieva, A.E.; Khrapalova, I.A.; Artemyeva, A.M. Biochemical Composition of Tomato Fruits of Various Colors. Vavilov J. Genet. Breed. 2021, 25, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Kubow, S.; Iskandar, M.M.; Sabally, K.; Azadi, B.; Ekbatan, S.S.; Kumarathasan, P.; Das, D.D.; Prakash, S.; Burgos, G.; Felde, T.Z. Biotransformation of Anthocyanins from two Purple-fleshed Sweetpotato Accessions in a Dynamic Gastrointestinal System. Food Chem. 2016, 192, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef] [PubMed]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The Structure and Function of Major Plant Metabolite Modifications. Mol. Plant 2019, 12, 899–919. [Google Scholar] [CrossRef]
- Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.-P. Metabolite Profiling of Red and Blue Potatoes Revealed Cultivar and Tissue Specific Patterns for Anthocyanins and other Polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
- Drapal, M.; Rossel, G.; Heider, B.; Fraser, P.D. Metabolic Diversity in Sweet Potato (Ipomoea batatas, Lam.) Leaves and Storage Roots. Hortic. Res. 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.A.; Mahood, E.H.; Fan, K.; Moghe, G.D. Untargeted Metabolomics of Purple and Orange-fleshed Sweet Potatoes Reveals a Large Structural Diversity of Anthocyanins and Flavonoids. Sci. Rep. 2021, 11, 16408. [Google Scholar] [CrossRef]
- Tohge, T.; Scossa, F.; Wendenburg, R.; Frasse, P.; Balbo, I.; Watanab, M.; Alseekh, S.; Jadhav, S.S.; Delfin, J.C.; Lohse, M.; et al. Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. Mol. Plant 2020, 13, 1027–1046. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Booij-James, I.S.; Dube, S.K.; Jansen, M.; Edelman, M.; Mattoo, A.K. Ultraviolet-B Radiation Impacts Light-Mediated Turnover of the Photosystem II Reaction Center Heterodimer in Arabidopsis Mutants Altered in Phenolic Metabolism. Plant Physiol. 2000, 124, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Emiliani, J.; Grotewold, E.; Ferreyra, M.L.F.; Casati, P. Flavonols Protect Arabidopsis Plants against UV-B Deleterious Effects. Mol. Plant 2013, 6, 1376–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Analysis and Biological Activities of Anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front. Chem. 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Pojer, E.; Mattivi, F.; Johnson, D.; Stockley, C.S. The Case for Anthocyanin Consumption to Promote Human Health: A Review. Comp. Rev. Food Sci. Food Saf. 2013, 12, 483–508. [Google Scholar] [CrossRef]
- Sarni, P.; Fulcrand, H.; Souillol, V.; Souquet, J.-M.; Cheynier, V. Mechanisms of Anthocyanin Degradation in Grape must-like Model Solutions. J. Sci. Food Agric. 1995, 69, 385–391. [Google Scholar] [CrossRef]
- Pascual-Teresa, S.; Sanchez-Ballesta, M.Y. Anthocyanins: From Plant to Health. Phytochem. Rev. 2008, 6, 281–299. [Google Scholar] [CrossRef]
- Boss, P.; Davies, C.; Robinson, S. Expression of Anthocyanin Biosynthesis Pathway Genes in Red and White Grapes. Plant Mol. Biol. 1996, 32, 565–569. [Google Scholar] [CrossRef]
- Tohge, T.; Nishiyama, Y.; Hirai, M.Y.; Yano, M.; Nakajima, J.-I.; Awazuhara, M.; Inoue, E.; Takahashi, H.; Goodenowe, D.B.; Kitayama, M.; et al. Functional Genomics by Integrated Analysis of Metabolome and Transcriptome of Arabidopsis Plants Over-expressing an MYB Transcription Factor. Plant J. 2005, 42, 218–235. [Google Scholar] [CrossRef]
- Nakajima, J.; Tanaka, Y.; Yamazaki, M.; Saito, K. Reaction Mechanism from Leu-coanthocyanidin to Anthocyanidin 3-glucoside, a Key Reaction for Coloring in Anthocyanin Biosynthesis. J. Biol. Chem. 2001, 276, 25797–25803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K.M.; Schwinn, K.E. Molecular Biology and Biotechnology of Flavonoid Biosynthesis. In Flavonoids: Chemistry, Biochemistry and Applications; Anderson, Ø.M., Markham, K.R., Eds.; CRC; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 143–218. [Google Scholar]
- Tanaka, Y.; Katsumoto, Y.; Brugliera, F.; Mason, J. Genetic Engineering in Floriculture. Plant Cell Tissue Org. Cult. 2005, 80, 1–24. [Google Scholar] [CrossRef]
- Chen, K.; Wei, X.; Zhang, J.; Pariyani, R.; Jokioja, J.; Kortesniemi, M.; Linderborg, K.M.; Heinonen, J.; Sainio, T.; Zhang, Y.; et al. Effects of Anthocyanin Extracts from Bilberry (Vaccinium myrtillus L.) and Purple Potato (Solanum tuberosum L. var. ‘Synkeä Sakari’) on the Plasma Metabolomic Profile of Zucker Diabetic Fatty Rats. J. Agric. Food Chem. 2020, 68, 9436–9450. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.; Xia, X.; Zhang, Z.; He, J.; Nong, B.; Luo, T.; Feng, R.; Wu, Y.; Pan, Y.; et al. OsTTG1, a WD40 Repeat Gene, Regulates Anthocyanin Biosynthesis in Rice. Plant J. 2021, 107, 198–214. [Google Scholar] [CrossRef] [PubMed]
- Feller, A.; Machemer, K.; Braun, E.L.; Grotewold, E. Evolutionary and Comparative Analysis of MYB and bHLH Plant Transcription Factors. Plant J. 2011, 66, 94–116. [Google Scholar] [CrossRef]
- LaFountain, A.M.; Yuan, Y. Repressors of Anthocyanin Biosynthesis. New Phytol. 2021, 231, 933–949. [Google Scholar] [CrossRef]
- Dhar, M.K.; Sharma, R.; Koul, A.; Kaul, S. Development of Fruit Color in Solanaceae: A story of two biosynthetic pathways. Brief. Funct. Genom. 2015, 14, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Holton, T.A.; Cornish, E.C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell 1995, 7, 1071–1083. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Parra-Galindo, M.A.; Soto-Sedano, J.C.; Mosquera-Vásquez, T.; Roda, F. Pathway-based Analysis of Anthocyanin Diversity in Diploid Potato. PLoS ONE 2021, 16, e0250861. [Google Scholar] [CrossRef]
- Strygina, K.V.; Kochetov, A.V.; Khlestkina, E.K. Genetic Control of Anthocyanin Pigmentation of Potato Tissues. BMC Genet. 2019, 20, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strygina, K.V.; Khlestkina, E.K. Anthocyanins Synthesis in Potato (Solanum tuberosum L.): Genetic Markers for Smart Breeding. Agric. Biol. 2017, 52, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Tan, Y.; Dong, F.; Zhang, Y.; Huang, Y.; Zhou, Y.; Zhao, Z.; Yin, Q.; Xie, X.; Gao, X.; et al. The Expression of IbMYB1 Is Essential to Maintain the Purple Color of Leaf and Storage Root in Sweet Potato [Ipomoea batatas (L.) Lam]. Front. Plant Sci. 2021, 12, 688707. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Shi, T.; Kou, M.; Sun, J.; Xu, T.; Li, Q.; Wu, S.; Cao, Q.; Hou, W.; et al. Genome-wide Analysis of Expression Quantitative Trait Loci (eQTLs) Reveals the Regulatory Architecture of Gene Expression Variation in the Storage Roots of Sweet Potato. Hortic. Res. 2020, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Hu, K.; Zhou, Z.; Zhao, D.; Tang, J.; Wang, H.; Li, L.; Ding, C.; Chen, X.; Yao, G. IbERF71, with IbMYB340 and IbbHLH2, Coregulates Anthocyanin Accumulation by Binding to the IbANS1 Promoter in Purple-fleshed Sweetpotato (Ipomoea batatas L.). Plant Cell Rep. 2021, 40, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Niu, L.; Gu, J.; Gao, F. Isolation of a WD40-repeat Gene Regulating Anthocyanin Biosynthesis in Storage Roots of Purple-fleshed Sweet Potato. Acta Physiol. Plant. 2014, 36, 1123–1132. [Google Scholar] [CrossRef]
- Qin, Z.; Hou, F.; Li, A.; Dong, S.; Huang, C.; Wang, Q.; Zhang, L. Comparative Analysis of Full-length Transcriptomes Based on Hybrid Population Reveals Regulatory Mechanisms of Anthocyanin Biosynthesis in Sweet Potato (Ipomoea batatas (L.) Lam). BMC Plant Biol. 2020, 20, 299. [Google Scholar] [CrossRef]
- Cao, X.; Qiu, Z.; Wang, X.; Van Giang, T.; Liu, X.; Wang, J.; Wang, X.; Gao, J.; Guo, Y.; Du, Y.; et al. A Putative R3 MYB Repressor is the Candidate Gene Underlying Atroviolacium, a Locus for Anthocyanin Pigmentation in Tomato Fruit. J. Exp. Bot. 2017, 68, 5745–5758. [Google Scholar] [CrossRef]
- Kiferle, C.; Fantini, E.; Bassolino, L.; Povero, G.; Spelt, C.; Buti, S.; Giuliano, G.; Quattrocchio, F.M.; Koes, R.; Perata, P.; et al. Tomato R2R3-MYB Proteins SlANT1 and SlAN2: Same Protein Activity, Different Roles. PLoS ONE 2015, 10, e0136365. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Peng, R.; Tian, Y.; Han, H.; Xu, J.; Yao, Q. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum. Plant Cell Physiol. 2016, 57, 1657–1677. [Google Scholar] [CrossRef] [Green Version]
- Zhi, J.; Liu, X.; Li, D.; Huang, Y.; Yan, S.; Cao, B.; Qiu, Z. CRISPR/Cas9-mediated SlAN2 Mutants Reveal Various Regulatory Models of Anthocyanin Biosynthesis in Tomato Plant. Plant Cell Rep. 2020, 39, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Chen, N.; Huang, Z.; Li, D.; Zhi, J.; Yu, B.; Liu, X.; Cao, B.; Qiu, Z. Anthocyanin Fruit Encodes an R2R3-MYB Transcription Factor, SlAN2-like, Activating the Transcription of SlMYBATV to Fine-tune Anthocyanin Content in Tomato Fruit. New Phytol. 2020, 225, 2048–2060. [Google Scholar] [CrossRef]
- Ezkurdia, I.; Tress, M.L.; Valencia, A. Alternative Splicing. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 48–53. [Google Scholar] [CrossRef]
- Colanero, S.; Perata, P.; Gonzali, S. What’s behind Purple Tomatoes? Insight into the Mechanisms of Anthocyanin Synthesis in Tomato Fruits. Plant Physiol. 2020, 182, 1841–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, C.; Luo, D.; Lin, A.; Zhang, C.; Shan, L.; He, P.; Li, B.; Zhang, Q.; Hua, B.; Yuan, Z.; et al. A Tomato B-box Protein SlBBX20 Modulates Carotenoid Biosynthesis by Directly Activating PHYTOENE SYNTHASE 1 and is Targeted for 26S Proteasome-mediated Degradation. New Phytol. 2019, 221, 279–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, D.; Xiong, C.; Lin, A.; Zhang, C.; Sun, W.; Zhang, J.; Yang, C.; Lu, Y.; Li, H.; Ye, Z.; et al. SlBBX20 Interacts with the COP9 Signalosome Subunit SlCSN5-2 to Regulate Anthocyanin Biosynthesis by Activating SlDFR Expression in Tomato. Hortic. Res. 2021, 8, 163. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Swanckaert, J.; de Silva Pereira, G.; Andrade, M.I.; Makunde, G.; Grüneberg, W.J.; Kreuze, J.; David, M.; De Boeck, B.; Carey, E.; et al. Breeding Progress for Vitamin A, Iron and Zinc Biofortification, Drought Tolerance, and Sweetpotato Virus Disease Resistance in Sweetpotato. Front. Sustain. Food Syst. 2021, 5, 616674. [Google Scholar] [CrossRef]
- Lockyer, S.; White, A.; Buttriss, J.L. Biofortified Crops for Tackling Micronutrient Deficiencies—What Impact are These Having in Developing Countries and Could They be of Relevance within Europe? Nutr. Bull. 2018, 43, 319–357. [Google Scholar] [CrossRef]
- Parulekar, Y.R.; Haldankar, P.M.; Dalvi, N.V.; Salvi, B.R.; Bhattacharyya, T. Nutraceuticals and Their Biofortification in Vegetable Crops: A review. Adv. Agric. Res. Technol. J. 2019, 3, 219–229. [Google Scholar]
- Xu, J.; Su, X.; Lim, S.; Griffin, J.; Carey, E.; Katz, B.; Tomich, J.; Smith, J.C.; Wang, W. Characterization and Stability of Anthocyanins in Purple-fleshed Sweetpotato P40. Food Chem. 2015, 186, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.R.; Vales, I.; Yilma, S.; James, S.; Charlton, B.; Culp, D.; Dan, H.; Clinton, S.; Eric, F.; Mark, P.; et al. “AmaRosa,” a Red Skinned, Red Fleshed Fingerling with High Phytonutrient Value. Am. J. Pot. Res. 2012, 89, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Shock, C.C.; Brown, C.R.; Sathuvalli, V.; Charlton, B.A.; Yilma, S.; Hane, D.C.; Quick, R.; Rykbost, K.A.; James, S.R.; Mosley, A.R.; et al. TerraRossa: A Mid-Season Specialty Potato with Red Flesh and Skin and Resistance to Common Scab and Golden Cyst Nematode. Am. J. Potato Res. 2018, 95, 597–605. [Google Scholar] [CrossRef]
- Vales, M.I.; Brown, C.R.; Yilma, S.; Hane, D.C.; James, S.R.; Shock, C.C.; Charlton, B.A.; Karaagac, E.; Mosley, A.R.; Culp, D.; et al. Purple Pelisse: A Specialty ‘Fingerling’ Potato with Purple Skin and Flesh and Medium Specific Gravity. Am. J. Potato Res. 2012, 89, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Mazzucato, A.; Willems, D.; Bernini, R.; Picarella, M.E.; Santangelo, E.; Ruiu, F.; Tilesi, F.; Soressi, G.P. Novel Phenotypes Related to the Breeding of Purple-fruited Tomatoes and Effect of Peel Extracts on Human Cancer Cell Proliferation. Plant Physiol. Biochem. 2013, 72, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Myers, J. Breeding Tomatoes for Increased Flavonoids. In: Strengthening Community Seed Systems. In Proceedings of the 6th Organic Seed Growers Conference, Port Townsend, WA, USA, 19–21 January 2012; pp. 50–51. [Google Scholar]
- Kang, S.-I.; Rahim, A.; Afrin, K.S.; Jung, H.-J.; Kim, H.-T.; Park, J.-I.; Nou, I.-S. Expression of Anthocyanin Biosynthesis-related Genes Reflects the Peel Color in Purple Tomato. Hortic. Environ. Biotechnol. 2018, 59, 435–445. [Google Scholar] [CrossRef]
- da Silva Souza, M.A.; Peres, L.; Freschi, J.R.; Purgatto, E.; Lajolo, F.M.; Hassimotto, N.M.A. Changes in Flavonoid and Carotenoid Profiles Alter Volatile Organic Compounds in Purple and Orange Cherry Tomatoes Obtained by Allele Introgression. J. Sci. Food Agric. 2020, 100, 1662–1670. [Google Scholar] [CrossRef]
- Hazra, P.; Longjam, M.; Chattopadhyay, A. Stacking of Mutant Genes in the Development of “Purple Tomato” Rich in both Lycopene and Anthocyanin Contents. Sci. Hortic. 2018, 239, 253–258. [Google Scholar] [CrossRef]
- Sestari, I.; Zsögön, A.; Rehder, G.G.; Teixeira, L.D.L.; Hassimotto, N.M.A.; Purgatto, E.; Benedito, V.A.; Peres, L. Near-isogenic Lines Enhancing Ascorbic Acid, Anthocyanin and Carotenoid Content in Tomato (Solanum lycopersicum L. cv Micro-Tom) as a Tool to Produce Nutrient-rich Fruits. Sci. Hortic. 2014, 175, 111–120. [Google Scholar] [CrossRef]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K. Transfer of Grain Colors to Elite Wheat 532 Cultivars and Their Characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Jongstra, R.; Mwangi, M.N.; Burgos, G.; Zeder, C.; Low, J.W.; Mzembe, G.; Liria, R.; Penny, M.; Andrade, M.I.; Fairweather-Tait, S.; et al. Iron Absorption from Iron-Biofortified Sweetpotato Is Higher Than Regular Sweetpotato in Malawian Women while Iron Absorption from Regular and Iron-Biofortified Potatoes Is High in Peruvian Women. J. Nutr. 2020, 150, 3094–3102. [Google Scholar] [CrossRef]
- Luthra, S.K.; Gupta, V.K.; Kumar, R.; Rawal, S.; Lal, M.; Kumar, S.; Dalamu; Tiwari, J.K.; Raigond, P.; Bandana; et al. Kufri Neelkanth: Purple Skin Coloured Specialty Potato Variety of India. Potato J. 2020, 47, 1–8. [Google Scholar]
- Park, Y.; Cho, J.; Cho, H.; Yi, J.; Seo, H.; Choung, M. A New Potato Cultivar “Hongyoung”, with Red Skin and Flesh Color, and High Concentrations of Anthocyanins. Korean J. Breed. Sci. 2009, 41, 502–506. [Google Scholar]
- Park, Y.; Cho, J.; Cho, H.; Yi, J.; Seo, H.; Chung, M. A New Potato Cultivar “Jayoung”, with High Concentration of Anthocyanin. Korean J. Breed. Sci. 2009, 41, 51–55. [Google Scholar] [CrossRef]
- Hillebrand, S.; Naumann, H.; Kitzinski, N.; Kohler, N.; Winterhalter, P. Isolation and Characterization of Anthocyanins from Blue-fleshed Potatoes (Solanum tuberosum L.). Food Red. Global Sci. 2009, 3, 96–101. [Google Scholar]
- Lee, M.J.; Park, J.S.; Choi, D.S.; Jung, M.Y. Characterization and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in Korea by HPLC-DAD and HPLC-ESI-QTOF-MS/MS. J. Agric. Food Chem. 2013, 61, 3148–3158. [Google Scholar] [CrossRef] [PubMed]
- Montilla, C.E.; Hillebrand, S.; Winterhalter, P. Anthocyanins in Purple Sweetpotato (Ipomoea batatas L.) Varieties. Fruit Veg. Cereal Sci. Biotechnol. 2011, 5, 19–24. [Google Scholar]
- Lim, S.-H.; Kim, D.-H.; Kim, J.K.; Lee, J.-Y.; Ha, S.-H. A Radish Basic Helix-Loop-Helix Transcription Factor, RsTT8 Acts a Positive Regulator for Anthocyanin Biosynthesis. Front. Plant Sci. 2017, 8, 1917. [Google Scholar] [CrossRef]
- Sharma, S.; Holme, I.B.; Dionisio, G.; Kodama, M.; Dzhanfezova, T.; Joernsgaard, B.; Brinch-Pedersen, H. Cyanidin Based Anthocyanin Biosynthesis in Orange Carrot is Restored by Expression of AmRosea1 and AmDelila, MYB and bHLH Transcription Factors. Plant Mol. Biol. 2020, 103, 443–456. [Google Scholar] [CrossRef]
- Xu, Z.-S.; Yang, Q.-Q.; Feng, K.; Xiong, A.-S. Changing Carrot Color: Insertions in DcMYB7 Alter the Regulation of Anthocyanin Biosynthesis and Modification. Plant Physiol. 2019, 181, 195–207. [Google Scholar] [CrossRef]
- Ge, J.; Hu, Y.; Wang, H.; Huang, Y.; Zhang, P.; Liao, Z.; Chen, M. Profiling of Anthocyanins in Transgenic Purple Fleshed Sweetpotatoes by HPLC-MS/MS. J. Sci. Food Agric. 2017, 97, 4995–5003. [Google Scholar] [CrossRef]
- Hassanin, A.A.; Saad, A.M.; Bardisi, E.A.; Salama, A.; Sitohy, M.Z. Transfer of Anthocyanin Accumulating Delila and Rosea1 Genes from the Transgenic Tomato Micro-Tom Cultivar to Moneymaker Cultivar by Conventional Breeding. J. Agric. Food Chem. 2020, 68, 10741–10749. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Cao, H.; Yuan, S.; Liu, Y.; Lu, J.; Lu, W.; Li, N.; Wang, J.; Zou, J.; Tang, N.; et al. SlMYB75, an MYB-type Transcription Factor, Promotes Anthocyanin Accumulation and Enhances Volatile Aroma Production in Tomato Fruits. Hortic. Res. 2019, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schifferstein, H.N.J.; Wehrle, T.; Carbon, C.-C. Consumer Expectations for Vegetables with Typical and Atypical Colors: The Case of Carrots. Food Qual. Prefer. 2019, 72, 98–108. [Google Scholar] [CrossRef]
- Colanero, S.; Tagliani, A.; Perata, P.; Gonzali, S. Alternative Splicing in the Anthocyanin Fruit Gene Encoding an R2R3 MYB Transcription Factor Affects Anthocyanin Biosynthesis in Tomato Fruits. Plant Commun. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Van Der Straeten, D.; Bhullar, N.K.; De Steur, H.; Gruissem, W.; MacKenzie, D.; Pfeiffer, W.; Qaim, M.; Slamet-Loedin, I.; Strobbe, S.; Tohme, J.; et al. Multiplying the Efficiency and Impact of Biofortification through Metabolic Engineering. Nat. Commun. 2020, 11, 5203. [Google Scholar] [CrossRef]
- KC, K.B.; Dias, G.M.; Veeramani, A.; Swanton, C.J.; Fraser, D.; Steinke, D.; Lee, E.; Wittman, H.; Farber, J.M.; Dunfield, K.; et al. When too much isn’t enough: Does Current Food Production Meet Global Nutritional needs? PLoS ONE 2018, 13, e0205683. [Google Scholar] [CrossRef] [Green Version]
- Mason-D’Croz, D.; Bogard, J.R.; Sulser, T.B.; Cennachi, N.; Dunston, S.; Herrero, M.; Wiebe, K. Gaps between Fruit and Vegetable Production, Demand, and Recommended Consumption at Global and National Levels: An Integrated Modelling Study. Lancet Public Health 2019, 3, e319–e329. [Google Scholar] [CrossRef] [Green Version]
Gene | Description | Reference |
---|---|---|
Potato | ||
PAL | PAL, being in close proximity of multiple MYB TFs on chromosome 10, linked with anthocyanin accumulation; it being pleiotropic an excellent target for enhancing anthocyanin content by recurrent selection | [82] |
StF3’5’ | Partially disrupt anthocyanin synthesis affecting blue and purple but not red pigmentation; attractive target for marker-aided identification of potatoes with purple or red flesh color tubers | [84] |
Sweet Potato | ||
IbMYB1 | A major anthocyanin biosynthesis regulatory gene | [85] |
IbANS1 | IbERF71-IbMYB340-IbbHLH2, a novel TF complex, coregulate anthocyanin biosynthesis by binding to the IbANS1 promoter in purple-fleshed sweet potatoes than other color cultivars; expression levels positively correlated with anthocyanin contents | [87] |
IbMYB1, IbWD40 | IbMYB1 expressed in purple-fleshed cultivars but not in other with orange-, yellow-, or white-fleshed color; IbWD40 expression limited to one anthocyanin rich cultivar; Arabidopsis seedling overexpressing IbWD40 accumulated anthocyanins, indicating that it regulates anthocyanin biosynthesis in purple sweet potato | [88] |
Tomato | ||
SIDFR | SIBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SIDFR | [98] |
Slan2 | Slan2 mutants regulate anthocyanins in Aft locus | [93] |
Slan2-like | Slan2-like mutants downregulate anthocyanins in Aft locus | [94] |
Cultivar | Characteristics | Reference |
---|---|---|
Potato | ||
‘Kufri Neelkanth’ | Adapted for cultivation in northern Indian plains; much higher yield (35 to 38 t ha−1) compared to national average of 23 t ha−1; anthocyanin >100 µg 100 g−1 fresh weight (FW) [115] | https://icar.org.in/content/kufri-neelkanth-new-antioxidant-rich-potato-variety-developed-icar-central-potato-research, accessed on 22 February 2022 |
‘Puma Makin’, ‘Leona’, ‘Yawar Manto’, ‘Añil’, ‘Sangre de Toro’, ‘Qequrani’ | Native pigmented (red and purple) cultivars grown in Huancavelica region of Peru; Anthocyanin: ‘Puma Makin’, 74.3 mg kg−1 skin dry weight, SDW; Leona, 6.32 mg kg−1 flesh dry weight, FDW and 166.65 mg kg−1 SDW; ‘Yawar Manto’, 602.9 mg kg−1 FDW and 709.4 mg kg−1 SDW; ‘Añil’, 104 mg kg−1 FDW and 273.9 mg kg−1 SDW; ‘Sangre de Toro’, 27.5 mg kg−1 FDW and 124.2 mg kg−1 SDW; ‘Qequrani’, 10.2 mg kg−1 FDW | [32] |
‘AmaRosa’, ‘Purple Pelisse’, and ‘Terra Rossa’ | Released for cultivation in USA (‘AmaRosa’: Total anthocyanin content (TAC) 18.2 mg compared to 13.8 mg 100 g FW in control ‘All Blue’; ‘Purple Pelisse’: TAC 34.2 mg compared to 12.6 mg 100 g FW in control ‘All Blue’) | [104,105,106] |
‘Hongyoung’, ‘Jayoung’ | Released for cultivation in South Korea (‘Hongyoung’: TAC 31.8 mg 100 g FW, 3.6 times higher than control Jasim) | [116,117] |
‘Hermanns Blaue’, ‘Vitelotte’, ‘Shetland Black’, ‘Valfi’ | European blue-fleshed potato cultivars | [118] |
Sweet Potato | ||
‘Antin 1’, ‘Antin 2’, ‘Antin 3’ | Released in Indonesia (TAC 8.4, 130.2, and 150.7 mg 100 g−1 FW) | [26] |
‘Bhu Krishna’ | Released in India (TAC 90.0 mg 100 g compared to nil in control) | [102] |
P4 | Released in USA (TAC up to 14 mg g DW) | [103] |
‘Borami’, ‘Mokpo 62’; ‘Shinzami’, ‘Zami’ | Released in South Korea | [119] |
‘Yamagawamurasaki’, ‘Ayamurasaki’, ‘Chiran Murasaki’, ‘Tanegashima Murasaki’, ‘Naka Murasaki’, ‘Purple Sweet’ | Released for cultivation in Japan | [120] |
Tomato | ||
Near isogenic line (NIL) | Enhanced accumulation of anthocyanins and bioactive compounds with distinct changes in volatile compounds in NIL carrying Aft, atv, and hp2 in the genetic background of red-fruited tomato | [110] |
Breeding line | A purple-fruited line derived from a cross between ‘OSU blue’ (blue fruit) and ‘Purple mini’ (brown fruit) | [109] |
‘Sun Black’ | Deep purple skin but with a normal red color pulp and taste similar to traditional tomato released in Europe; TAC 7.1 mg 100 g FW, comparable to eggplant or red cherry [48] | [107] |
‘Indigo Rose’ | A blue colored tomato released for cultivation in USA (TAC up to 10 mg 100 g−1 FW on a whole fruit basis, normal tomato fruits devoid of anthocyanin) | [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattoo, A.K.; Dwivedi, S.L.; Dutt, S.; Singh, B.; Garg, M.; Ortiz, R. Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato. Int. J. Mol. Sci. 2022, 23, 2634. https://doi.org/10.3390/ijms23052634
Mattoo AK, Dwivedi SL, Dutt S, Singh B, Garg M, Ortiz R. Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato. International Journal of Molecular Sciences. 2022; 23(5):2634. https://doi.org/10.3390/ijms23052634
Chicago/Turabian StyleMattoo, Autar K., Sangam L. Dwivedi, Som Dutt, Brajesh Singh, Monika Garg, and Rodomiro Ortiz. 2022. "Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato" International Journal of Molecular Sciences 23, no. 5: 2634. https://doi.org/10.3390/ijms23052634
APA StyleMattoo, A. K., Dwivedi, S. L., Dutt, S., Singh, B., Garg, M., & Ortiz, R. (2022). Anthocyanin-Rich Vegetables for Human Consumption—Focus on Potato, Sweetpotato and Tomato. International Journal of Molecular Sciences, 23(5), 2634. https://doi.org/10.3390/ijms23052634