Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer
Abstract
:1. Introduction
2. Families of Protein Kinases
3. Cardiotoxicity of Oncologic Drugs
4. Molecular Mechanisms of Cardiotoxicity of Selected Kinase Inhibitors
5. Cardiotoxicity of Protein Kinase Inhibitors
5.1. Hypertension
5.2. Arrhythmias
5.2.1. Bradycardia
5.2.2. QTc Prolongation
5.2.3. Other Arrhythmias
5.3. Cardiomyopathy and Heart Failure
5.4. Fluid Retention
5.5. Arterial Thromboembolic Events
5.6. Venous Thromboembolic Events
5.7. Myocardial Ischemia and Infarction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AKT | Ak strain transforming protein kinase |
ALL | Acute lymphoblastic leukemia |
ALK | Anaplastic lymphoma kinase |
AML | Acute myeloid leukemia |
ATP | Adenosine triphosphate |
BCR-ABL | Breakpoint cluster region-Abelson proto-oncogene |
BLNK | B-cell linker protein |
BRAF | V-raf murine sarcoma viral oncogene homolog B |
BTK | Bruton tyrosine kinase |
CDK 4/6 | Cyclin-dependent kinases 4 and 6 |
CLL | Chronic lymphocytic leukemia |
CML | Chronic myelogeneus leukemia |
CSF-1R | Colony stimulating factor receptor |
DDR | Discoidin domain receptor |
EGFR | Epidermal growth factor receptor |
ER | Endoplasmic reticulum |
ERK | Extracellular-signal-regulated kinases |
ET-1 | Endothelin-1 |
E2F | E2 factor |
FGFR | Fibroblast growth factor receptors |
FLT3 | Fms-like tyrosine kinase-3 |
GAP | GTPase-activating protein |
GIST | Gastrointestinal stromal tumor |
HCC | Hepatocellular carcinoma |
HER2 | Human epidermal growth factor receptor 2 |
HGFR | Hepatocyte growth factor receptor |
HCN4 | Hyperpolarization activated cyclic nucleotide gated potassium channel 4 |
HR | Hormone receptor |
ICE | Inducer of C-repeat binding factor expression |
IGF-1R | Insulin-like growth factor 1 receptor |
JAK1 | Janus kinase 1 |
KIT | Stem cell growth factor receptor |
LYN | Lck/Yes novel tyrosine kinase |
MAPK | Mitogen activated protein kinase |
MCL | Mantle cell lymphoma |
MEK 1/2 | Mitogen-activated protein kinase kinases 1 and 2 |
mTOR | Mammalian target of rapamycin |
mCRC | Metastatic colorectal cancer |
mRCC | Metastatic renal cell carcinoma |
NO | Nitric oxide |
NSCLC | Non-small cell lung cancer |
PDGFR | Platelet-derived growth factor receptors |
Ph | Philadelphia chromosome |
PGI2 | Prostaglandin I2 |
PI-3K | Phospatidylinositol-3 kinase |
PIM-1 | Proviral integration site for Moloney murine leukemia virus |
PI3K | Phosphatidylinositol-3- kinase |
PKC | Protein kinase C |
PLC-γ | Phospholipase C gamma |
pNET | Pancreatic neuroendocrine tumor |
RAF | V-raf murine sarcoma viral oncogene |
RAS | Rat sarcoma virus |
Rb | Retinoblastoma |
RET | Rearranged during transfection |
ROS1 | Ros protooncogene 1 |
SOS | Son of Sevenless guanine nucleotide exchange factor |
STAT | Signal transducer and activator of transcription |
SYK | Spleen tyrosine kinase |
TIF | Transcriptional intermediary factor |
TKI | Tyrosine kinase inhibitor |
VEGF | Vascular endothelial growth factor |
VEGFR | Vascular endothelial growth factor receptor |
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the Global Cancer Incidence and Mortalityin 2018: GLOBOCAN Sources and Methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.K.; Jemal, A. Socioeconomic and Racial/Ethnic Disparities in Cancer Mortality, Incidence, and Survival in the United States, 1950-2014: Over Six Decades of Changing Patterns and Widening Inequalities. J. Environ. Public Health 2017, 2017, 2819372. [Google Scholar] [CrossRef]
- Hiatt, R.A.; Beyeler, N. Cancer and Climate Change. Lancet Oncol. 2020, 21, e519–e527. [Google Scholar] [CrossRef]
- Esteban-Villarrubia, J.; Soto-Castillo, J.J.; Pozas, J.; Román-Gil, M.S.; Orejana-Martín, I.; Torres-Jiménez, J.; Carrato, A.; Alonso-Gordoa, T.; Molina-Cerrillo, J. Tyrosine Kinase Receptors in Oncology. Int. J. Mol. Sci. 2020, 21, 8529. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.C.; Shokat, K.M. The Evolution of Protein Kinase Inhibitors from Antagonists to Agonists of Cellular Signaling. Annu. Rev. Biochem. 2011, 80, 769–795. [Google Scholar] [CrossRef] [Green Version]
- Suter, T.M.; Ewer, M.S. Cancer Drugs and the Heart: Importance and Management. Eur. Heart J. 2013, 34, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Gonciar, D.; Mocan, L.; Zlibut, A.; Mocan, T.; Agoston-Coldea, L. Cardiotoxicity in HER2-Positive Breast Cancer Patients. Heart Fail. Rev. 2021, 26, 919–935. [Google Scholar] [CrossRef]
- Bhagat, A.; Kleinerman, E.S. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Adv. Exp. Med. Biol. 2020, 1257, 181–192. [Google Scholar] [CrossRef]
- Stone, J.R.; Kanneganti, R.; Abbasi, M.; Akhtari, M. Monitoring for Chemotherapy-Related Cardiotoxicity in the Form of Left Ventricular Systolic Dysfunction: A Review of Current Recommendations. JCO Oncol. Pract. 2021, 17, 228–236. [Google Scholar] [CrossRef]
- Gavrin, L.K.; Saiah, E. Approaches to Discover Non-ATP Site Kinase Inhibitors. MedChemComm 2013, 4, 41–51. [Google Scholar] [CrossRef]
- Lamba, V.; Ghosh, I. New Directions in Targeting Protein Kinases: Focusing Upon True Allosteric and Bivalent Inhibitors. Curr. Pharm. Des. 2012, 18, 2936–2945. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R. Classification of Small Molecule Protein Kinase Inhibitors Based upon the Structures of Their Drug-Enzyme Complexes. Pharmacol. Res. 2016, 103, 26–48. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.N.; Wang, T.; Cohen, M.S. BRAF and MEK Inhibitors: Use and Resistance in BRAF-Mutated Cancers. Drugs 2018, 78, 549–566. [Google Scholar] [CrossRef] [PubMed]
- García-Valverde, A.; Rosell, J.; Serna, G.; Valverde, C.; Carles, J.; Nuciforo, P.; Fletcher, J.A.; Arribas, J.; Politz, O.; Serrano, C. Preclinical Activity of PI3K Inhibitor Copanlisib in Gastrointestinal Stromal Tumor. Mol. Cancer Ther. 2020, 19, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Reita, D.; Pabst, L.; Pencreach, E.; Guérin, E.; Dano, L.; Rimelen, V.; Voegeli, A.C.; Vallat, L.; Mascaux, C.; Beau-Faller, M. Molecular Mechanism of Egfr-Tki Resistance in Egfr-Mutated Non-Small Cell Lung Cancer: Application to Biological Diagnostic and Monitoring. Cancers 2021, 13, 4926. [Google Scholar] [CrossRef]
- Chaar, M.; Kamta, J.; Ait-Oudhia, S. Mechanisms, Monitoring, and Management of Tyrosine Kinase Inhibitors–Associated Cardiovascular Toxicities. OncoTargets Ther. 2018, 11, 6227–6237. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Feng, C.; Di, W.; Hong, S.; Chen, H.; Ejaz, M.; Yang, Y.; Xu, T.R. Clinical Use of Vascular Endothelial Growth Factor Receptor Inhibitors for the Treatment of Renal Cell Carcinoma. Eur. J. Med. Chem. 2020, 200, 2. [Google Scholar] [CrossRef]
- Babaei, M.A.; Kamalidehghan, B.; Saleem, M.; Huri, H.Z.; Ahmadipour, F. Receptor Tyrosine Kinase (c-Kit) Inhibitors: A Potential Therapeutic Target in Cancer Cells. Drug Des. Dev. Ther. 2016, 10, 2443–2459. [Google Scholar] [CrossRef] [Green Version]
- Thein, K.Z.; Velcheti, V.; Mooers, B.H.M.; Wu, J.; Subbiah, V. Precision Therapy for RET-Altered Cancers with RET Inhibitors. Trends Cancer 2021, 7, 1074–1088. [Google Scholar] [CrossRef]
- Holla, V.R.; Elamin, Y.Y.; Bailey, A.M.; Johnson, A.M.; Litzenburger, B.C.; Khotskaya, Y.B.; Sanchez, N.S.; Zeng, J.; Shufean, M.A.; Shaw, K.R.; et al. ALK: A Tyrosine Kinase Target for Cancer Therapy. Mol. Case Stud. 2017, 3, a001115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez, J.C.; Sahakian, E.; Pinilla-Ibarz, J. Ibrutinib: An Evidence-Based Review of Its Potential in the Treatment of Advanced Chronic Lymphocytic Leukemia. Core Evid. 2013, 8, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheiblecker, L.; Kollmann, K.; Sexl, V. Cdk4/6 andMapk—Crosstalkas Opportunity for Cancer Treatment. Pharmaceuticals 2020, 13, 418. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, V.E.; Smith, C.C. FLT3Mutationsin Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front. Oncol. 2020, 10, 2974. [Google Scholar] [CrossRef]
- Hahn, V.S.; Lenihan, D.J.; Ky, B. Cancer Therapy-Induced Cardiotoxicity: Basic Mechanisms and Potential Cardioprotective Therapies. J. Am. Hear. Assoc. 2014, 3, e000665. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.-Y.; Guo, Z.; Song, P.; Zhang, X.; Yuan, Y.-P.; Teng, T.; Yan, L.; Tang, Q.-Z. Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. Int. J. Biol. Sci. 2021, 18, 760–770. [Google Scholar] [CrossRef]
- Shaikh, A.Y.; Shih, J.A. Chemotherapy-Induced Cardiotoxicity. Curr. Heart Fail. Rep. 2012, 9, 117–127. [Google Scholar] [CrossRef]
- Perez, I.E.; Taveras Alam, S.; Hernandez, G.A.; Sancassani, R. Cancer Therapy-Related Cardiac Dysfunction: An Overviewfor the Clinician. Clin. Med. Insights Cardiol. 2019, 13, 1179546819866445. [Google Scholar] [CrossRef] [Green Version]
- Allouchery, M.; Tomowiak, C.; Lombard, T.; Pérault-Pochat, M.C.; Salvo, F. Safety Pr ofile of Ibrutinib: An Analysis oftheWHOPharmacovigilance Database. Front. Pharmacol. 2021, 12, 5. [Google Scholar] [CrossRef]
- Singh, A.P.; Glennon, M.S.; Umbarkar, P.; Gupte, M.; Galindo, C.L.; Zhang, Q.; Force, T.; Becker, J.R.; Lal, H. Ponatinib-Induced Cardiotoxicity: Delineatingthe Signalling Mechanisms and Potential Rescue Strategies. Cardiovasc. Res. 2019, 115, 966–977. [Google Scholar] [CrossRef]
- Lamore, S.D.; Kohnken, R.A.; Peters, M.F.; Kolaja, K.L. Cardiovascular Toxicity Inducedby Kinase Inhibitors: Mechanisms and Preclinical Approaches. Chem. Res. Toxicol. 2020, 33, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Giudice, V.; Vecchione, C.; Selleri, C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life 2020, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yang, F.; Liu, J.; Yang, D.; Zhang, S.; Yu, Y.; Jiang, S.; Dong, M. Tyrosine Kinase Inhibitors-Induced Arrhythmias: From Molecular Mechanisms, Pharmacokinetics to Therapeutic Strategies. Front. Cardiovasc. Med. 2021, 8, 75801. [Google Scholar] [CrossRef]
- Møller, N.B.; Budolfsen, C.; Grimm, D.; Krüger, M.; Infanger, M.; Wehland, M.; Magnusson, N.E. Drug-Induced Hypertension Caused by Multikinase Inhibitors (Sorafenib, Sunitinib, Lenvatinib and Axitinib) in Renal Cell Carcinoma Treatment. Int. J. Mol. Sci. 2019, 20, 4712. [Google Scholar] [CrossRef] [Green Version]
- Kerkelä, R.; Grazette, L.; Yacobi, R.; Iliescu, C.; Patten, R.; Beahm, C.; Walters, B.; Shevtsov, S.; Pesant, S.; Clubb, F.J.; et al. Cardiotoxicity of the Cancer Therapeutic Agent Imatinib Mesylate. Nat. Med. 2006, 12, 908–916. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, T.-Q.; Nepliouev, I.; Zhang, H.; Barnett, A.S.; Rosenberg, P.B.; Ou, S.-H.I.; Stiber, J.A. Crizotinib Inhibits Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 4 Activity. Cardio-Oncology 2017, 3, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, C.; Tsui, S.T.; Liu, D. Second-Generation Inhibitors of Bruton Tyrosine Kinase. J. Hematol. Oncol. 2016, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Lenz, G.; Hawkes, E.; Verhoef, G.; Haioun, C.; Thye Lim, S.; SeogHeo, D.; Ardeshna, K.; Chong, G.; Haaber, J.; Shi, W.; et al. Single-Agent Activity of Phosphatidylinositol3-Kinase Inhibition with Copanlisib in Patients with Molecularly Defined Relapsedor Refractory Diffuse Large B-Cell Lymphoma. Leukemia 2020, 34, 2184–2197. [Google Scholar] [CrossRef] [Green Version]
- Northcott, C.A.; Poy, M.N.; Najjar, S.M.; Watts, S.W. Phosphoinositide3-Kinase Mediates Enhanced Spontaneous and Agonist-Induced Contraction in Aorta of Deoxycorticosterone Acetate-Salt Hypertensive Rats. Circ. Res. 2002, 91, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Mincu, R.I.; Mahabadi, A.A.; Michel, L.; Mrotzek, S.M.; Schadendorf, D.; Rassaf, T.; Totzeck, M. Cardiovascular Adverse Events Associated with BRAF and MEK Inhibitors: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2019, 2, e198890. [Google Scholar] [CrossRef] [Green Version]
- Arangalage, D.; Degrauwe, N.; Michielin, O.; Monney, P.; Özdemir, B.C. Pathophysiology, Diagnosis and Management of Cardiac Toxicity Induced by Immune Checkpoint Inhibitors and BRAF and MEK Inhibitors. Cancer Treat. Rev. 2021, 100, 10228. [Google Scholar] [CrossRef] [PubMed]
- Banks, M.; Crowell, K.; Proctor, A.; Jensen, B.C. Cardiovascular Effects of the MEK Inhibitor, Trametinib: A Case Report, Literature Review, and Consideration of Mechanism. Cardiovasc. Toxicol. 2017, 17, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Bloomquist, E.; Tang, S.; Fu, W.; Bi, Y.; Liu, Q.; Yu, J.; Zhao, P.; Palmby, T.R.; Goldberg, K.B.; et al. FDA Approval: Ribociclib for the Treatment of Postmenopausal Women with Hormone Receptor-Positive, HER2-Negative Advancedor Metastatic Breast Cancer. Clin. Cancer Res. 2018, 24, 2999–3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Stergiopoulos, K.; Wu, S. Risk of Hypertension and Renal Dysfunction with an Angiogenesis Inhibitor Sunitinib: Systematic Review and Meta-Analysis. Acta Oncol. 2009, 48, 9–17. [Google Scholar] [CrossRef]
- Rini, B.I.; Quinn, D.I.; Baum, M.; Wood, L.S.; Tarazi, J.; Rosbrook, B.; Arruda, L.S.; Cisar, L.; Roberts, W.G.; Kim, S.; et al. Hypertension among Patients with Renal Cell Carcinoma Receiving Axitinibor Sorafenib: Analysis from the R and omized Phase III AXIS Trial. Target. Oncol. 2015, 10, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.F.; Rupnick, M.A.; Kerkela, R.; Dallabrida, S.M.; Zurakowski, D.; Nguyen, L.; Morgan, J.A. Cardiotoxicity Associated with Tyrosine Kinase Inhibitor Sunitinib. Lancet 2007, 370, 2011–2019. [Google Scholar] [CrossRef] [Green Version]
- Robinson, E.S.; Khankin, E.V.; Choueiri, T.K.; Dhawan, M.S.; Rogers, M.J.; Karumanchi, S.A.; Humphreys, B.D. Suppression of the Nitric Oxide Pathway in Metastatic Renal Cell Carcinoma Patients Receiving Vascular Endothelial Growth Factor-Signaling Inhibitors. Hypertension 2010, 56, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Mayer, E.L.; Dallabrida, S.M.; Rupnick, M.A.; Redline, W.M.; Hannagan, K.; Ismail, N.S.; Burstein, H.J.; Beckman, J.A. Contrary Effects of the Rtk Inhibitor Vandetanibon Constitutive and Flow-Stimulated Nitric Oxide Elaboration in Humans. Hypertension 2015, 58, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Veronese, M.L.; Mosenkis, A.; Flaherty, K.T.; Gallagher, M.; Stevenson, J.P.; Townsend, R.R.; O’Dwyer, P.J. Mechanisms of Hypertension Associated with BAY43-9006. J. Clin. Oncol. 2006, 24, 1363–1369. [Google Scholar] [CrossRef]
- Shopp, G.M.; Helson, L.; Bouchard, A.; Salvail, D.; Majeed, M. Liposomes Ameliorate Crizotinib-and Nilotinib-Induced Inhibition of the Cardiac IKr Channel and QTc Prolongation. Anticancer Res. 2014, 34, 4733–4740. [Google Scholar]
- Hsieh, P.C.H.; Davis, M.E.; Gannon, J.; Mac Gillivray, C.; Lee, R.T. Controlled Delivery of PDGF-BB for Myocardial Protection Using Injectable Self-Assembling Peptide Nanofibers. J. Clin. Investig. 2006, 116, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wu, L.L.; Li, L.; Zhang, L.; Song, Z.E. Growth-Promoting Effect of Platelet-Derived Growth Factor on Rat Cardiac Myocytes. Regul. Pept. 2005, 127, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Schmidinger, M.; Zielinski, C.C.; Vogl, U.M.; Bojic, A.; Bojic, M.; Schukro, C.; Ruhsam, M.; Hejna, M.; Schmidinger, H. Cardiac Toxicity of Sunitinib and Sorafenib in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2008, 26, 5204–5212. [Google Scholar] [CrossRef] [PubMed]
- Force, T.; Krause, D.S.; Van Etten, R.A. Molecular Mechanisms of Cardiotoxicity of Tyrosine Kinase Inhibition. Nat. Rev. Cancer 2007, 7, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Izumiya, Y.; Shiojima, I.; Sato, K.; Sawyer, D.B.; Colucci, W.S.; Walsh, K. Vascular Endothelial Growth Factor Blockade Promotes the Transition from Compensatory Cardiac Hypertrophy to Failure in Response to Pressure Overload. Hypertension 2006, 47, 887–893. [Google Scholar] [CrossRef]
- Kamba, T.; Tam, B.Y.Y.; Hashizume, H.; Haskell, A.; Sennino, B.; Mancuso, M.R.; Norberg, S.M.; O’Brien, S.M.; Davis, R.B.; Gowen, L.C.; et al. VEGF-Dependent Plasticity of Fenestrated Capillaries in the Normal Adult Microvasculature. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, 560–576. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Shinagare, A.B.; Krajewski, K.M.; Pyo, J.; Tirumani, S.H.; Jagannathan, J.P.; Ramaiya, N.H. Fluid Retention Associated with Imatinib Treatment in Patients with Gastrointestinal Stromal Tumor: Quantitative Radiologic Assessment and Implications for Management. Korean J. Radiol. 2015, 16, 304–313. [Google Scholar] [CrossRef] [Green Version]
- De Jesus-Gonzalez, N.; Robinson, E.; Moslehi, J.; Humphreys, B.D. Management of Antiangiogenic Therapy-Induced Hypertension. Hypertension 2012, 60, 607–615. [Google Scholar] [CrossRef] [Green Version]
- .Opolski, G.; Krzakowski, M.; Szmit, S.; Banach, J.; Chudzik, M.; Cygankiewicz, I.; Drozdz, J.; Filipiak, K.J.; Grabowski, M.; Kaczmarek, K.; et al. Recommendations of National Team of Cardiologic and Oncologic Supervision on Cardiologic Safety of Patients with Breast Cancer. The Prevention and Treatment of Cardiovascular Complications in Breast Cancer. The Task Force of National Consultants in Cardiology and Clinical Oncology for the Elaboration of Recommendations of Cardiologic Proceeding with Patients with Breast Cancer. Kardiol. Pol. 2011, 69, 520–530. [Google Scholar]
- .Laurent, S.; Narkiewicz, K.; Ruilope, L.; Rynkiewicz, A.; Schmieder, R.E.; Struijker Boudier, H.A.; Zanchetti, A. 2007 ESH-ESC Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 2007, 16, 135–232. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal Cell Carcinoma. Nat. Rev. Dis. Prim. 2017, 3, 17009. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, Y.; Wang, K. Incidence and Risk of Hypertension Associated with Cabozantinib in Cancer Patients: A Systematic Review and Meta-Analysis. Expert Rev. Clin. Pharmacol. 2016, 9, 1109–1115. [Google Scholar] [CrossRef]
- Ravaud, A.; Motzer, R.J.; Pandha, H.S.; George, D.J.; Pantuck, A.J.; Patel, A.; Chang, Y.-H.; Escudier, B.; Donskov, F.; Magheli, A.; et al. Adjuvant Sunitinib in High-Risk Renal-Cell Carcinoma after Nephrectomy. N. Engl. J. Med. 2016, 375, 2246–2254. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Staehler, M.; Negrier, S.; Chevreau, C.; Desai, A.A.; Rolland, F.; et al. Sorafenibfor Treatment of Renal Cell Carcinoma: Final Efficacy and Safety Results of the Phase III Treatment Approaches in Renal Cancer Global Evaluation Trial. J. Clin. Oncol. 2009, 27, 3312–3318. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Tiseo, M.; Ahn, M.J.; Reckamp, K.L.; Hansen, K.H.; Kim, S.W.; Huber, R.M.; West, H.L.; Groen, H.J.M.; Hochmair, M.J.; et al. Brigatinib in Patients with Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial. J. Clin. Oncol. 2017, 35, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.-E.; Manouchehri, A.; Bretagne, M.; Lebrun-Vignes, B.; Groarke, J.D.; Johnson, D.B.; Yang, T.; Reddy, N.M.; Funck-Brentano, C.; Brown, J.R.; et al. Cardiovascular Toxicities Associated with Ibrutinib. J. Am. Coll. Cardiol. 2019, 74, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, T.; Wiczer, T.; Waller, A.; Philippon, J.; Porter, K.; Haddad, D.; Guha, A.; Rogers, K.A.; Bhat, S.; Byrd, J.C.; et al. Hypertension and Incident Cardiovascular Events Following Ibrutinib Initiation. Blood 2019, 134, 1919–1928. [Google Scholar] [CrossRef]
- Tam, C.S.; Dimopoulos, M.A.; Garcia-Sanz, R.; Trotman, J.; Opat, S.; Roberts, A.W.; Owen, R.G.; Song, Y.; Xu, W.; Zhu, J.; et al. Pooled Safety Analysis of Zanubrutinib Monotherapy in Patients with B-Cell Malignancies. Blood Adv. 2021, 6, 1296–1308. [Google Scholar] [CrossRef]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinibin RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; Mc Coach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinibin RET Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Dreyling, M.; Morschhauser, F.; Bouabdallah, K.; Bron, D.; Cunningham, D.; Assouline, S.E.; Verhoef, G.; Linton, K.; Thieblemont, C.; Vitolo, U.; et al. Phase II Study of Copanlisib, a PI3K Inhibitor, in Relapsedor Refractory, Indolentor Aggressive Lymphoma. Ann. Oncol. 2017, 28, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Celletti, F.L.; Hilfiker, P.R.; Ghafouri, P.; Dake, M.D. Effect of Human Recombinant Vascular Endothelial Growth Factor 165 on Progression of Atherosclerotic Plaque. J. Am. Coll. Cardiol. 2001, 37, 2126–2130. [Google Scholar] [CrossRef]
- Rini, B.I.; Schiller, J.H.; Fruehauf, J.P.; Cohen, E.E.W.; Tarazi, J.C.; Rosbrook, B.; Bair, A.H.; Ricart, A.D.; Olszanski, A.J.; Letrent, K.J.; et al. Diastolic Blood Pressure as a Biomarker of Axitinib Efficacy in Solid Tumors. Clin. Cancer Res. 2011, 17, 3841–3849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szmit, S.; Langiewicz, P.; Łnierek, J.; Nurzyński, P.; Zaborowska, M.; Filipiak, K.J.; Opolski, G.; Szczylik, C. Hypertension as a Predictive Factor for Survival Outcomes in Patients with Metastatic Renal Cell Carcinoma Treated with Sunitinib after Progression on Cytokines. Kidney Blood Press. Res. 2012, 35, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.H.I.; Tong, W.P.; Azada, M.; Siwak-Tapp, C.; Dy, J.; Stiber, J.A. Heart Rate Decrease during Crizotinib Treatment and Potential Correlation to Clinical Response. Cancer 2013, 119, 1969–1975. [Google Scholar] [CrossRef]
- Ye, J.Z.; Hansen, F.B.; Mills, R.W.; Lundby, A. Oncotherapeutic Protein Kinase Inhibitors Associated with Pro-Arrhythmic Liability. JACC CardioOncol. 2021, 3, 88–97. [Google Scholar] [CrossRef]
- Cirne, F.; Zhou, S.; Kappel, C.; El-Kadi, A.; Barron, C.C.; Ellis, P.M.; Sanger, S.; Leong, D.P. ALKInhibitor-Induced Bradycardia: A Systematic-Review and Meta-Analysis. Lung Cancer 2021, 161, 9–17. [Google Scholar] [CrossRef]
- Summary of Product Characteristics–Xalkori. Available online: https://www.ema.europa.eu/en/documents/product-information/xalkori-epar-product-information_en.pdf (accessed on 30 January 2022).
- Shah, R.R.; Morganroth, J.; Shah, D.R. Cardiovascular Safety of Tyrosine Kinase Inhibitors: With a Special Focus on Cardiac Repolarisation (QT Interval). Drug Saf. 2013, 36, 295–316. [Google Scholar] [CrossRef]
- Bello, C.L.; Mulay, M.; Huang, X.; Patyna, S.; Dinolfo, M.; Levine, S.; Van Vugt, A.; Toh, M.; Baum, C.; Rosen, L. Electrocardiographic Characterization of the QTc Intervalin Patients with Advanced Solid Tumors: Pharmacokinetic-Pharmacodynamic Evaluation of Sunitinib. Clin. Cancer Res. 2009, 15, 7045–7052. [Google Scholar] [CrossRef] [Green Version]
- Ghatalia, P.; Je, Y.; Kaymakcalan, M.D.; Sonpavde, G.; Choueiri, T.K. QTc Interval Prolongation with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors. Br. J. Cancer 2015, 112, 296–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, J.; Wu, S.; Tang, L.; Xu, X.; Bai, J.; Ding, C.; Chang, Y.; Yue, L.; Kang, E.; He, J. Incidence and Risk of QTc Interval Prolongation among Cancer Patients Treated with Vandetanib: A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7, e30353. [Google Scholar] [CrossRef] [PubMed]
- Roden, D.M. Predicting Drug-Induced QT Prolongation and Torsadesde Pointes. J. Physiol. 2016, 594, 2459–2468. [Google Scholar] [CrossRef] [Green Version]
- Coppola, C.; Rienzo, A.; Piscopo, G.; Barbieri, A.; Arra, C.; Maurea, N. Management of QT Prolongation Induced by Anti-Cancer Drugs: Target Therapy and Old Agents. Different Algorithms for Different Drugs. Cancer Treat. Rev. 2018, 63, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, I.B.; De Langen, A.J.; Honeywell, R.J.; Giovannetti, E.; Peters, G.J. Overcoming Crizotinib Resistance in ALK-Rearranged NSCLC with the Second-Generation ALK-Inhibitor Ceritinib. Expert Rev. Anticancer. Ther. 2016, 16, 147–157. [Google Scholar] [CrossRef]
- Schiefer, M.; Hendriks, L.E.L.; Dinh, T.; Lalji, U.; Dingemans, A.M.C. Current Perspective: Osimertinib-Induced QT Prolongation: New Drugs with New Side-Effects Need Careful Patient Monitoring. Eur. J. Cancer 2018, 91, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Ghidini, A.; Pedersini, R.; Cabiddu, M.; Borgonovo, K.; Chiara Parati, M.; Ghilardi, M.; Amoroso, V.; Berruti, A.; Barni, S. Comparative Efficacy of Palbociclib, Ribociclib and Abemaciclib for ER+ Metastatic Breast Cancer: An Adjusted Indirect Analysis of Randomized Controlled Trials. Breast Cancer Res. Treat. 2019, 174, 597–604. [Google Scholar] [CrossRef] [PubMed]
- LouwrensBraal, C.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.; Koolen, S.L.W.; Jager, A. Inhibiting CDK 4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021, 81, 317–331. [Google Scholar] [CrossRef]
- Tripathy, D.; Im, S.-A.; Colleoni, M.; Franke, F.; Bardia, A.; Harbeck, N.; Hurvitz, S.A.; Chow, L.; Sohn, J.; Lee, K.S.; et al. Ribociclib plus Endocrine Therapy for Premenopausal Women with Hormone-Receptor-Positive, Advanced Breast Cancer (MONALEESA-7): A Randomised Phase 3 Trial. Lancet Oncol. 2018, 19, 904–915. [Google Scholar] [CrossRef]
- Porta-Sánchez, A.; Gilbert, C.; Spears, D.; Amir, E.; Chan, J.; Nanthakumar, K.; Thavendiranathan, P. Incidence, Diagnosis, and Management of QT Prolongation Induced by Cancer Therapies: A Systematic Review. J. Am. Heart Assoc. 2017, 6, e007724. [Google Scholar] [CrossRef] [Green Version]
- Strevel, E.L.; Ing, D.J.; Siu, L.L. Molecularly Targeted Oncology Therapeutics and Prolongation of the QT Interval. J. Clin. Oncol. 2007, 25, 3362–3371. [Google Scholar] [CrossRef] [PubMed]
- 93. De Oliveira Neto, N.R.; De Oliveira, W.S.; Campos Pinto, G.D.; De Oliveira, E.S.R.; Da Silveira Barros, M.d.N.D. A Practical Method for QTc Interval Measurement. Cureus 2020, 12, e12122. [Google Scholar] [CrossRef]
- Muluneh, B.; Richardson, D.R.; Hicks, C.; Jensen, B.C.; Zeidner, J.F. Trials and Tribulations of Corrected QT Interval Monitoring in Oncology: Rationale for a Practice-Changing Standardized Approach. J. Clin. Oncol. 2019, 37, 2719–2721. [Google Scholar] [CrossRef]
- De Lemos, M.L.; Kung, C.; Kletas, V.; Badry, N.; Kang, I. Approach to Initiating QT-Prolonging Oncology Drugs in the Ambulatory Setting. J. Oncol. Pharm. Pract. 2019, 25, 198–204. [Google Scholar] [CrossRef] [PubMed]
- AbuRmilah, A.A.; Lin, G.; Begna, K.H.; Friedman, P.A.; Herrmann, J. Risk of QTc Prolongation among Cancer Patients Treated with Tyrosine Kinase Inhibitors. Int. J. Cancer 2020, 147, 3160–3167. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, J.J.; Deininger, M. Tyrosine Kinase Inhibitor-Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. J. Clin. Oncol. 2015, 33, 4210–4218. [Google Scholar] [CrossRef]
- Cirmi, S.; ElAbd, A.; Letinier, L.; Navarra, M.; Salvo, F. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors Used in Chronic Myeloid Leukemia: An Analysis of the FDA Adverse Event Reporting System Database (FAERS). Cancers 2020, 12, 826. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Sanguino, A.; Peng, Z.; Ozturk, E.; Chen, J.; Crespo, A.; Wulf, S.; Shavrin, A.; Qin, C.; Ma, J.; et al. An Anticancer C-Kit Kinase Inhibitor Is Reengineered to Make It More Active and Less Cardiotoxic. J. Clin. Investig. 2007, 117, 4044–4054. [Google Scholar] [CrossRef]
- Trent, J.C.; Patel, S.S.; Zhang, J.; Araujo, D.M.; Plana, J.C.; Lenihan, D.J.; Fan, D.; Patel, S.R.; Benjamin, R.S.; Khakoo, A.Y. Rare Incidence of Congestive Heart Failure in Gastrointestinal Stromal Tumor and Other Sarcoma Patients Receiving Imatinib Mesylate. Cancer 2010, 116, 184–192. [Google Scholar] [CrossRef]
- Estabragh, Z.R.; Knight, K.; Watmough, S.J.; Lane, S.; Vinjamuri, S.; Hart, G.; Clark, R.E. A Prospective Evaluation of Cardiac Function in Patients with Chronic Myeloid Leukaemia Treated with Imatinib. Leuk. Res. 2011, 35, 49–51. [Google Scholar] [CrossRef]
- Perik, P.J.; Rikhof, B.; deJong, F.A.; Verweij, J.; Gietema, J.A.; van der Graaf, W.T.A. Results of Plasma N-Terminalpro B-Type Natriuretic Peptide and Cardiac Troponin Monitoring in GIST Patients Do Not Support the Existence of Imatinib-Induced Cardiotoxicity. Ann. Oncol. 2008, 19, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.-Y.; Serrano, C.; Heinrich, M.C.; Zalcberg, J.; Bauer, S.; Gelderblom, H.; Schöffski, P.; Jones, R.L.; Attia, S.; D’Amato, G.; et al. Ripretinibin Patients with Advanced Gastrointestinal Stromal Tumours (INVICTUS): A Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2020, 21, 923–934. [Google Scholar] [CrossRef]
- Von Mehren, M.; Serrano, C.; Bauer, S.; Gelderblom, H.; George, S.; Heinrich, M.; Schöffski, P.; Zalcberg, J.; Chi, P.; Jones, R.L.; et al. INVICTUS: A Phase III, Interventional, Double-Blind, Placebo-Controlled Study to Assess the Safety and Efficacy of Ripretinibas ≥ 4th-Line Therapyin Patients with Advanced Gastrointestinal Stromal Tumors (GIST) Who Have Received Treatment with Prior Ant. Ann. Oncol. 2019, 30, v925–v926. [Google Scholar] [CrossRef]
- Kim, K.B.; Kefford, R.; Pavlick, A.C.; Infante, J.R.; Ribas, A.; Sosman, J.A.; Fecher, L.A.; Millward, M.; Mc Arthur, G.A.; Hwu, P.; et al. Phase II Study of the MEK1/MEK2 Inhibitor Trametinibin Patients with Metastatic BRAF-Mutant Cutaneous Melanoma Previously Treated with or without a BRAF Inhibitor. J. Clin. Oncol. 2013, 31, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, K.T.; Robert, C.; Hersey, P.; Nathan, P.; Garbe, C.; Milhem, M.; Demidov, L.V.; Hassel, J.C.; Rutkowski, P.; Mohr, P.; et al. Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. N. Engl. J. Med. 2012, 367, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Mok, T.S.; Wu, Y.-L.; Ahn, M.-J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; et al. Osimertinibor Platinum-Pemetrexed in EGFRT790 M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Ewer, M.S.; Tekumalla, S.H.; Walding, A.; Atuah, K.N. Cardiac Safety of Osimertinib: A Review of Data. J. Clin. Oncol. 2021, 39, 328–337. [Google Scholar] [CrossRef]
- Mobocertinib Succinate. Am. J. Health Pharm. 2021, 79, 3–5. [CrossRef]
- Rock, E.P.; Goodman, V.; Jiang, J.X.; Mahjoob, K.; Verbois, S.L.; Morse, D.; Dagher, R.; Justice, R.; Pazdur, R. Food and Drug Administration Drug Approval Summary: Sunitinib Malate for the Treatment of Gastrointestinal Stromal Tumor and Advanced Renal Cell Carcinoma. Oncologist 2007, 12, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Ghatalia, P.; Morgan, C.J.; Je, Y.; Nguyen, P.L.; Trinh, Q.D.; Choueiri, T.K.; Sonpavde, G. Congestive Heart Failure with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors. Crit. Rev. Oncol. Hematol. 2015, 94, 228–237. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Van Der Graaf, W.T.A.; Blay, J.Y.; Chawla, S.P.; Kim, D.W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for Metastatic Soft-Tissue Sarcoma (PALETTE): A Randomised, Double-Blind, Placebo-Controlled Phase3 Trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef]
- Marina, M.; Serra, M.F.; Del Rio, P.; Ceresini, G. Evaluation of the QTc Interval during Lenvatinib Treatment in Radioiodine-Refractory Differentiated Thyroid Cancer: Reports from the Real-Life Clinical Practice. Future Oncol. 2019, 15, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.D.; Chang, M.J. Cardiac Toxicities of Lapatinib in Patients with Breast Cancer and Other HER2-Positive Cancers: A Meta-Analysis. Breast Cancer Res. Treat. 2017, 166, 927–936. [Google Scholar] [CrossRef]
- Habibian, M.; Lyon, A.R. Monitoring the Heart during Cancer Therapy. Eur. Heart J. 2019, 21, M44–M49. [Google Scholar] [CrossRef] [Green Version]
- Skubitz, K.M. Cardiotoxicity Monitoring in Patients Treated with Tyrosine Kinase Inhibitors. Oncologist 2019, 24, e600–e602. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.U.; Reeves, D.J.; Chugh, A.R.; O’Quinn, R.; Fradley, M.G.; Raghavendra, M.; Dent, S.; Barac, A.; Lenihan, D. Clinical Approachto Cardiovascular Toxicity of Oral Antineoplastic Agents: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2693–2716. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.W.; Kantarjian, H.M.; Brümmendorf, T.H.; Dyagil, I.; Griskevicius, L.; Malhotra, H.; Powell, C.; Gogat, K.; Countouriotis, A.M.; et al. Bosutinib versus Imatinib in Newly Diagnosed Chronic-Phase Chronic Myeloid Leukemia: Results from the BELA Trial. J. Clin. Oncol. 2012, 30, 3486–3492. [Google Scholar] [CrossRef]
- Khoury, H.J.; Gambacorti-Passerini, C.; Brümmendorf, T.H. Practical Management of Toxicities Associated with Bosutinib in Patients with Philadelphia Chromosome-Positive Chronic Myeloid Leukemia. Ann. Oncol. 2018, 29, 578–587. [Google Scholar] [CrossRef]
- Cortes, J.E.; Jimenez, C.A.; Mauro, M.J.; Geyer, A.; Pinilla-Ibarz, J.; Smith, B.D. Pleural Effusion in Dasatinib-Treated Patients with Chronic Myeloid Leukemia in Chronic Phase: Identification and Management. Clin. Lymphoma Myeloma Leuk. 2017, 17, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caocci, G.; Mulas, O.; Bonifacio, M.; Abruzzese, E.; Galimberti, S.; Orlandi, E.M.; Iurlo, A.; Annunziata, M.; Luciano, L.; Castagnetti, F.; et al. Recurrent Arterial Occlusive Events in Patients with Chronic Myeloid Leukemia Treated with Second- and Third-Generation Tyrosine Kinase Inhibitors and Role of Secondary Prevention. Int. J. Cardiol. 2019, 288, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Schutz, F.A.B.; Je, Y.; Rosenberg, J.E.; Bellmunt, J. Risk of Arterial Thromboembolic Events with Sunitinib and Sorafenib: A Systematic Review and Meta-Analysis of Clinical Trials. J. Clin. Oncol. 2010, 28, 2280–2285. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Szczylik, C.; Lee, E.; Salman, P.V.; Mardiak, J.; Davis, I.D.; Pandite, L.; Chen, M.; McCann, L.; Hawkins, R. A Randomized, Double-Blind Phase III Study of Pazopanib in Treatment-Naive and Cytokine-Pretreated Patients with Advanced Renal Cell Carcinoma (RCC). J. Clin. Oncol. 2009, 27, 5021. [Google Scholar] [CrossRef]
- Qi, W.-X.; Min, D.-L.; Shen, Z.; Sun, Y.-J.; Lin, F.; Tang, L.-N.; He, A.-N.; Yao, Y. Risk of Venous Thromboembolic Events Associated with VEGFR-TKIs: A Systematic Review and Meta-Analysis. Int. J. Cancer 2013, 132, 2967–2974. [Google Scholar] [CrossRef] [Green Version]
- Cabanillas, M.E.; Takahashi, S. Managingthe Adverse Events Associated with Lenvatinib Therapy in Radioiodine-Refractory Differentiated Thyroid Cancer. Semin. Oncol. 2019, 46, 57–64. [Google Scholar] [CrossRef]
- Farge, D.; Debourdeau, P.; Beckers, M.; Baglin, C.; Bauersachs, R.M.; Brenner, B.; Brilhante, D.; Falanga, A.; Gerotzafias, G.T.; Haim, N.; et al. International Clinical Practice Guidelines for the Treatment and Prophylaxis of Venous Thromboembolism in Patients with Cancer. J. Thromb. Haemost. 2013, 11, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Streiff, M.B.; Agnelli, G.; Connors, J.M.; Crowther, M.; Eichinger, S.; Lopes, R.; Mc Bane, R.D.; Moll, S.; Ansell, J. Guidance for the Treatment of Deep Vein Thrombosis and Pulmonary Embolism. J. Thromb. Thrombolysis 2016, 41, 32–67. [Google Scholar] [CrossRef] [Green Version]
- Citro, R.; Prota, C.; Resciniti, E.; Radano, I.; Posteraro, A.; Fava, A.; Monte, I.P. Thrombotic Risk in Cancer Patients: Diagnosis and Management of Venous Thromboembolism. J. Cardiovasc. Echogr. 2020, 30, S38–S44. [Google Scholar] [CrossRef]
- Sonpavde, G.; Je, Y.; Schutz, F.; Galsky, M.D.; Paluri, R.; Rosenberg, J.E.; Bellmunt, J.; Choueiri, T.K. Venous Thromboembolic Events with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Crit. Rev. Oncol. Hematol. 2013, 87, 80–89. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Ou, F.-S.; Ahn, D.H.; Boland, P.M.; Ciombor, K.K.; Heying, E.N.; Dockter, T.J.; Jacobs, N.L.; Pasche, B.C.; Cleary, J.M.; et al. Articles Regorafenib Dose-Optimisation in Patients with Refractory Metastatic Colorectal Cancer (ReDOS): AR andomised, Multicentre, Open-Label, Phase 2 Study. Lancet Oncol. 2019, 20, 1070–1082. [Google Scholar] [CrossRef]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. CORRECT Study Group. Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicentre, R andomised, Placebo-Controlled, Phase 3 Trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. ESC Scientific Document Group. 2016 ESC Position Paper on Cancer Treatments and Cardiovascular Toxicity Developed under the Auspices of the ESC Committee for Practice Guidelines: The Task Force for Cancer Treatments and Cardiovascular Toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 357027. [Google Scholar] [CrossRef] [PubMed]
- Grela-Wojewoda, A.; Niemiec, J.; Sas-Korczyńska, B.; Zemełka, T.; Puskulluoglu, M.; Wysocki, W.M.; Wojewoda, T.; Pacholczak-Madej, R.; Adamczyk, A.; Mucha-Małecka, A.; et al. Adjuvant combined therapy with trastuzumab in patients with HER2-positive breast cancer and cardiac alterations: Implications for optimal cardio-oncology care. Pol. Arch. Intern. Med. 2022; epub ahead of print. [Google Scholar] [CrossRef]
Inhibitor | Subtype | Molecular Targets | Therapeutic Indications | Type and Incidence of Cardiotoxicity & | Class ^ |
---|---|---|---|---|---|
Vascular endothelial growth factor receptor tyrosine kinase inhibitors | |||||
Sunitinib | Receptor TKI | PDGFRα, PDGFRβ, VEGFR-1, -2, -3, KIT, FLT3, CSF-1R, RET |
|
| I/II |
Pazopanib | Receptor TKI | PDGFRα, PDGFRβ, VEGFR-1, -2, -3, KIT |
|
| I |
Lenvatinib | Receptor TKI | PDGFRα, VEGFR-1, -2, -3, KIT, RET, FGFR-1, -2, -3, -4 |
|
| I/II |
Sorafenib | Multikinase inhibitor | PDGFRß, VEGFR-2, -3, CRAF, BRAF, KIT, FLT3 |
|
| II |
Axitinib | Receptor TKI | VEGFR-1, -2, -3 |
|
| II |
Cabozantinib | Receptor TKI | MET, VEGFR, AXL, RET, ROS1, TYRO3, MER, KIT, TRKB, FLT3, TIE-2 |
|
| I |
Vandetanib | Receptor TKI | VEGFR-2, EGFR, RET |
|
| I |
Regorafenib | Multikinase inhibitor | VEGFR-1, -2, -3, TIE-2, PDGFR, FGFR, KIT, RET, RAF-1, BRAF, CSF1R |
| 1. Myocardial ischemia (1.2%) | II |
Bruton tyrosine kinase inhibitors | |||||
Ibrutinib | Bruton TKI | BTK |
|
| VI |
Zanubrutinib * | Bruton TKI | BTK |
|
| n/d |
Phosphoinositide 3-kinase inhibitors | |||||
Copanlisib * | PI-3K kinase inhibitor | PI-3K |
|
| n/d |
Janus kinases inhibitors | |||||
Ruxolitinib | Janus kinases inhibitor (JAKs) | JAK-1, -2 |
|
| I |
Anaplastic lymphoma kinase inhibitors | |||||
Crizotinib | ALK—receptor TKI | ALK, HGFR, ROS-1 |
|
| I |
Ceritinib | ALK—receptor TKI | ALK |
|
| I |
Alectinib | ALK—eceptor TKI | ALK, RET |
|
| n/d |
Brigatinib | ALK—eceptor TKI | ALK, ROS-1, IGF-1R |
|
| n/d |
Lorlatinib | ALK—receptor TKI | ALK, ROS-1 |
|
| n/d |
RET inhibitors | |||||
Selpercatinib | RET—receptor TKI | RET, VEGFR-1, -2, -3, FGFR-1, -2, -3 |
|
| n/d |
Epidermal growth factor receptor inhibitors | |||||
Osimertinib | Receptor TKI | EGFR, TKI-resistant mutation T790M |
|
| n/d |
Lapatinib | Receptor TKI | EGFR, HER2 |
|
| I |
Mobocertinib * | Kinase inhibitor of EGFR | EGFR exon 20 insertion mutation |
|
| n/d |
BRAF/MEK inhibitors | |||||
Vemurafenib | Inhibitor of RAF kinases | RAF |
|
| I |
Encorafenib | Inhibitor of RAF kinases | RAF |
|
| n/d |
Dabrafenib | Inhibitor of RAF kinases | RAF |
|
| II |
Trametinib | MEK inhibitor | MEK 1/2 |
|
| III |
Cyclin-dependent kinase 4/6 inhibitors | |||||
Ribociclib | CDK 4/6 inhibitor | CDK 4/6 |
|
| n/d |
Abemaciclib | CDK 4/6 inhibitor | CDK 4/6 |
|
| n/d |
Palbociclib | CDK 4/6 inhibitor | CDK 4/6 |
|
| I |
BCR-ABL tyrosine kinase inhibitors | |||||
Bosutinib | Receptor TKI | BCR-ABL, Src, Lyn and Hck, PDGF, c-KIT |
|
| I/II |
Dasatinib | Receptor TKI | BCR-ABL, c-KIT, PDGFR-ß |
|
| I |
Nilotinib | Receptor TKI | BCR-ABL |
|
| II |
Imatinib | Receptor TKI | BCR-ABL, c-KIT, CSF-1R, PDGFRα, -β, DDR-1, -2 |
|
| II |
KIT/PDGFR inhibitors | |||||
Ripretinib | Receptor TKI | KIT, PDGFRα, -ß, TIE-2, VEGFR2, BRAF |
|
| n/d |
FMS-like tyrosine kinase-3 inhibitors | |||||
Gilteritinib | Protein kinase inhibitor | FLT3, AXL |
|
| n/d |
Kinase Inhibitor | Cardiotoxicity | Suggested Mechanism | Reference |
TKIs used in kidney cancer | Hypertension | VEGFR inhibition NO and PGI2 synthesis inhibition Increase in ET-1 concentration Vasoconstriction Capillary rarefaction Reduction in vessel density | [34] |
Ibrutinib | Ischemic heart disease Hypertension Bradyarrhythmias/atrial fibrillation | VEGFR2 inhibition NO formation inhibition Endothelial disfunction Vascular remodeling Inhibition of Src kinase Downregulation of PI3K-Akt pathway Cardiac fibrosis | [29,37] |
Copanlisib | Hypertension | Mechanism remains unclear Vasoconstriction due to inhibition of PI3K (in the endothelium) suspected | [38,39] |
Crizotinib | Sinus bradycardia | If inhibition Reduced current density of HCN4 | [36] |
Ponatinib | Myocardial infarction | AKT signaling pathway inhibition ERK inhibition Apoptosis induction | [30] |
Dabrafenib | Cardiomyopathy | ERK inhibition Lower protection against oxidative stress | [40,41] |
Trametinib | Cardiomyopathy | ERK inhibition Lower protection against oxidative stress CD47 transcription stimulation (inhibition of NO production) “Two-hit” hypothesis | [40,42] |
Ribocyclib | qTc prolongation | Mechanism remains unclear Probably not due to CDK 4/6 inhibition The role of metabolites suspected | [43] |
Imatinib | Fluid retention Cardiomyopathy | Mitochondrial dysfunction: reduction in mitochondrial membrane potential, cytochrome c release into the cytosol Activation of the ER stress response Cellular ATP content reduction | [35] |
Arterial Hypertension (Grade) | Action |
---|---|
Grade 1 140–149/90–99 mmHg | Antihypertensive treatment Continuation of TKI therapy |
Grade 2 160–179/100–109 mmHg | Antihypertensive treatment modifications Continuation of TKI therapy |
Grade 3 ≥180/≥110 mmHg | Aggressive antihypertensive treatment Discontinuation of TKI therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grela-Wojewoda, A.; Pacholczak-Madej, R.; Adamczyk, A.; Korman, M.; Püsküllüoğlu, M. Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer. Int. J. Mol. Sci. 2022, 23, 2815. https://doi.org/10.3390/ijms23052815
Grela-Wojewoda A, Pacholczak-Madej R, Adamczyk A, Korman M, Püsküllüoğlu M. Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer. International Journal of Molecular Sciences. 2022; 23(5):2815. https://doi.org/10.3390/ijms23052815
Chicago/Turabian StyleGrela-Wojewoda, Aleksandra, Renata Pacholczak-Madej, Agnieszka Adamczyk, Michał Korman, and Mirosława Püsküllüoğlu. 2022. "Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer" International Journal of Molecular Sciences 23, no. 5: 2815. https://doi.org/10.3390/ijms23052815
APA StyleGrela-Wojewoda, A., Pacholczak-Madej, R., Adamczyk, A., Korman, M., & Püsküllüoğlu, M. (2022). Cardiotoxicity Induced by Protein Kinase Inhibitors in Patients with Cancer. International Journal of Molecular Sciences, 23(5), 2815. https://doi.org/10.3390/ijms23052815