How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Adverse Health Effects Induced by CS2 Exposure
3.1.1. Nervous System Effects Induced by Developmental or Adult Exposure to CS2
3.1.2. Cardiovascular Impairments
3.2. Disrupting Effect of CS2 on Thyroid Function
3.2.1. Molecular Evidence
3.2.2. Thyroid Disruption as a Potential Early Key Events of Neurotoxicity
3.2.3. Thyroid Disruption as a Potential Early Key Events of Cardiovascular Disease
3.3. Which MoA(s) Are Responsible for Neurotoxicity?
3.3.1. Other Potential Molecular Events Involved in Neurotoxicity
3.3.2. Is It Possible to Distinguish the Different MoAs Underlying CS2 Neurotoxicity?
3.4. Which MoA(s) Are Responsible for Cardiotoxicity?
3.4.1. Other Potential Molecular Events Involved in the Alteration of the Cardiovascular System
3.4.2. Is It Possible to Distinguish between the Different MoA(s) Responsible for the Damage to the Cardiovascular System?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANSES | Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (French Agency for Food, Environmental and Occupational Health & Safety) |
AOP | Adverse outcome pathway |
CS2 | Carbon disulfide |
DBH | Dopamine-β-hydroxylase |
EATS | Estrogen, Androgen, Steroidogenesis, Thyroid |
ECHA | European chemical agency |
ED | Endocrine disrupting |
EFSA | European food safety authority |
EOGRTS | Extended One-Generation Reproductive Toxicity Study |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
LD | Lactating day |
MoA | Mode of action |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
OECD | Organisation for Economic Co-operation and Development |
PND | Postnatal day |
REACh | Regulation (EC) No 1907/2006 of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals; |
ROS | Reactive oxygen species |
TH | Thyroid hormone |
T4 | Thyroxin |
TPO | Thyroid peroxidase |
References
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety). Élaboration d’une Liste de Substances Chimiques D’intérêt En Raison de Leur Activité Endocrine Potentielle: Méthode D’identification et Stratégie de Priorisation Pour L’évaluation; ANSES Report and Opinion; Anses: Maisons-Alfort, France, 2021. (In French) [Google Scholar]
- IPCS (International Programme on Chemical Safety). Global Assessment on the State of the Science of Endocrine Disruptors. World Health Organization. 2002. Available online: https://apps.who.int/iris/handle/10665/67357 (accessed on 31 January 2022).
- Gore, A.C.; Krishnan, K.; Reilly, M.P. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior. Horm. Behav. 2018, 111, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Munn, S.; Heindel, J. Assessing the risk of exposures to endocrine disrupting chemicals. Chemosphere 2013, 93, 845–846. [Google Scholar] [CrossRef] [PubMed]
- ECHA (European Chemical Agency); EFSA (European Food Safety Agency). Guidance for the Identification of Endocrine Disruptors in the Context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. 2018. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/5311 (accessed on 31 January 2022).
- ECHA Disseminated Database. Available online: https://echa.europa.eu/ (accessed on 31 January 2022).
- Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Available online: https://eur-lex.europa.eu (accessed on 31 January 2022).
- Commission Directive 2009/161/EU of 17 December 2009 Establishing a Third List of Indicative Occupational Exposure Limit Values in Implementation of Council Directive 98/24/EC and Amending Commission Directive 2000/39/EC. Available online: https://eur-lex.europa.eu (accessed on 31 January 2022).
- SCOEL (Scientific Committee on Occupational Exposure). Recommendation from the Scientific Committee on Occupational Exposure Limits for Carbon Disulphide. 2008. SCOEL/SUM/82. Available online: Ec.europa.eu/social/BlobServlet?docId=3860&langId=en (accessed on 31 January 2022).
- Cai, S.X.; Bao, Y.S. Placental transfer, secretion into mother milk of carbon disulphide and the effects on maternal function of female viscose rayon workers. Ind. Health 1981, 19, 15–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirla, A.M.; Bertazzi, P.A.; Tomasini, M.; Villa, A.; Graziano, C.; Invernizzi, R.; Gilioli, R. Study of endocrinological functions and sexual behaviour in carbon disulphide workers. Med. Lav. 1978, 69, 118–129. [Google Scholar] [PubMed]
- Guo, Y.; Ma, Y.; Chen, G.; Cheng, J. The Effects of Occupational Exposure of Carbon Disulfide on Sexual Hormones and Semen Quality of Male Workers from a Chemical Fiber Factory. J. Occup. Environ. Med. 2016, 58, e294–e300. [Google Scholar] [CrossRef]
- Hemminki, K.; Niemi, M.-L. Community study of spontaneous abortions: Relation to occupation and air pollution by sulfur dioxide, hydrogen sulfide, and carbon disulfide. Int. Arch. Occup. Environ. Health 1982, 51, 55–63. [Google Scholar] [CrossRef]
- Lancranjan, I. Alterations of spermatic liquid in patients chronically poisoned by carbon disulphide. Med. Lav. 1972, 63, 29–33. [Google Scholar]
- Ma, J.-Y.; Ji, J.-J.; Ding, Q.; Liu, W.-D.; Wang, S.-Q.; Wang, N.; Chen, G.-Y. The effects of carbon disulfide on male sexual function and semen quality. Toxicol. Ind. Health 2010, 26, 375–382. [Google Scholar] [CrossRef]
- Pieleszek, A. The effect of carbon disulphide on menopause, concentration of monoamines, gonadotropins, estrogens and androgens in women. Ann. Acad. Med. Stetin. 1997, 43, 255–267. [Google Scholar]
- Vanhoorne, M.; Vermeulen, A.; De Bacquer, D. Epidemiological Study of Endocrinological Effects of Carbon Disulfide. Arch. Environ. Health Int. J. 1993, 48, 370–375. [Google Scholar] [CrossRef]
- Wägar, G.; Tolonen, M.; Tanner, P.; Helpiö, E. Serum gonadotropins and testosterone in men occupationally exposed to carbon disulfide. J. Toxicol. Environ. Health Part A 1983, 11, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Y.; Liang, Y.X.; Chen, Z.Q.; Wang, Y.L. Effects of occupational exposure to low-level carbon disulfide (CS2) on menstruation and pregnancy. Ind. Health 1988, 26, 203–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalleri, A. Seram Thyroxine in the Early Diagnosis of Carbon Disulfide Poisoning. Arch. Environ. Health Int. J. 1975, 30, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Cirla, A.M. Health Impairment in Viscose-Rayon Workers with Carbon Disulfide Risks below 30 Mg/M3. G. Ital. Med. Lav. 1981, 3, 69–73. [Google Scholar]
- Takebayashi, T.; Nishiwaki, Y.; Nomiyama, T.; Uemura, T.; Yamauchi, T.; Tanaka, S.; Sakurai, H.; Omae, K.; The Japanese Rayon Worker’s Health Study Group. Lack of relationship between occupational exposure to carbon disulfide and endocrine dysfunction: A six-year cohort study of the Japanese rayon workers. J. Occup. Health 2003, 45, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sobkey, M.K.; Massoud, A.A.; Abdel-Karim, A.H.; Fares, R. Serum Thyroxine, Serum Cholesterol and Its Fractions in Workers Exposed to Carbon Disulphide. J. Egypt. Public Health Assoc. 1979, 54, 431–442. [Google Scholar]
- DEDuCt. Database of Endocrine Disrupting Chemicals and Their Toxicity Profiles. Available online: https://cb.imsc.res.in/deduct/ (accessed on 31 January 2022).
- TEDX. The Endocrine Disruption Exchange. Available online: https://endocrinedisruption.org/interactive-tools/tedx-list-of-potential-endocrine-disruptors/search-the-tedx-list (accessed on 31 January 2022).
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [Green Version]
- ACGIH. Documentation of the Threshold Limit Values and Biological Exposure Indices: Carbon Disulfide. 2006. Available online: https://www.acgih.org (accessed on 31 January 2022).
- HCNL (Health Council Netherland). Health-Based Recommended Occupational Exposure Limit, Carbon Disulphide. 2011. Available online: https://www.healthcouncil.nl (accessed on 31 January 2022).
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Carbon Disulfide; US Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 1996. Available online: https://www.atsdr.cdc.gov/ (accessed on 31 January 2022).
- ATSDR (Agency for Toxic Substances and Disease Registry). Addendum to the Toxicological Profile for Carbon Disulfide; US Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2012. Available online: https://www.atsdr.cdc.gov/ (accessed on 31 January 2022).
- WRc-NSF. European Commission Study on the Scientific Evaluation of 12 Substances in the Context of Endocrine Disrupter Priority List of Actions (No. WRc-NSF Ref: UC 6052). 2002. Available online: https://ec.europa.eu/environment/chemicals/endocrine/pdf/wrc_report.pdf (accessed on 31 January 2022).
- US EPA (United States Environmental Protection Agency). EDSP21 (Endocrine Disruptor Screening Program in the 21st Century). Available online: https://comptox.epa.gov/dashboard/chemical-lists/EDSPUOC (accessed on 31 January 2022).
- Klimisch, H.-J.; Andreae, M.; Tillmann, U. A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data. Regul. Toxicol. Pharmacol. 1997, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- OECD (Organisation for Economic Co-Operation and Development). Revised Guidance Document on standardised test guidelines for evaluating chemicals for endocrine disruption. In OECD Series on Testing and Assessment; OECD Publishing: Paris, France, 2018. [Google Scholar] [CrossRef]
- Manibusan, M.K.; Touart, L.W. A comprehensive review of regulatory test methods for endocrine adverse health effects. Crit. Rev. Toxicol. 2017, 47, 440–488. [Google Scholar] [CrossRef] [Green Version]
- ANSES on Behalf of the French Ministry of Environment, Substance Evaluation Conclusion as Required by REACH Article 48 and Evaluation Report for Carbon Disulfide. 2022; in press.
- Noyes, P.D.; Friedman, K.; Browne, P.; Haselman, J.T.; Gilbert, M.E.; Hornung, M.W.; Barone, S., Jr.; Crofton, K.M.; Laws, S.C.; Stoker, T.E.; et al. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. Environ. Health Perspect. 2019, 127, 095001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.; Kilby, M.D. Thyroid hormone and central nervous system development. J. Endocrinol. 2000, 165, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoeller, R.T.; Rovet, J. Timing of Thyroid Hormone Action in the Developing Brain: Clinical Observations and Experimental Findings. J. Neuroendocr. 2004, 16, 809–818. [Google Scholar] [CrossRef] [PubMed]
- La Vignera, S.; Vita, R. Thyroid dysfunction and semen quality. Int. J. Immunopathol. Pharmacol. 2018, 32, 1–5. [Google Scholar] [CrossRef]
- Wagner, M.S.; Wajner, S.M.; Maia, A.L. The role of thyroid hormone in testicular development and function. J. Endocrinol. 2008, 199, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Leitch, V.D.; Bassett, J.H.D.; Williams, G.R. Role of thyroid hormones in craniofacial development. Nat. Rev. Endocrinol. 2020, 16, 147–164. [Google Scholar] [CrossRef]
- Fedail, J.S.; Zheng, K.; Wei, Q.; Kong, L.; Shi, F. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine 2013, 46, 594–604. [Google Scholar] [CrossRef]
- Extended One Generation Reproductive Toxicity Study of Carbon Disulfide by Oral Gavage in Rats. Unpublished Study Report. Summary Available in ECHA Disseminated Database. 2019. Available online: https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/14292/7/9/2 (accessed on 31 January 2022).
- Haber, S.N. Corticostriatal Circuitry. Dialogues Clin. Neurosci. 2016, 18, 7–21. [Google Scholar]
- Tabacova, S.; Hinkova, L.; Balabaeva, L. Carbon Disulphide Tetratogenicity and Postnataleffects in Rat. Toxicol. Lett. 1978, 2, 252–254. [Google Scholar] [CrossRef]
- Tabacova, S.; Balabaeva, L. Subtle Consequences of Prenatal Exposure to Low Carbon Disulphide Levels. In Further Studies in the Assessment of Toxic Actions; Archives of Toxicology (Supplement); Springer: Berlin/Heidelberg, Germany, 1980; Volume 4, pp. 252–254. [Google Scholar] [CrossRef]
- Tabacova, S.; Nikiforov, B.; Balabaeva, L. Carbon disulphide intrauterine sensitization. J. Appl. Toxicol. 1983, 3, 223–229. [Google Scholar] [CrossRef]
- Lehotsky, K.; Szeberenyi, J.M.; Ungvary, G.; Kiss, A. Behavioural Effects of Prenatal Exposure to Carbon Disulfide and to Aromatol in Rats. Arch. Toxicol. Suppl. 1985, 8, 442–446. [Google Scholar]
- 90-Day Vapor Inhalation Toxicity Study of Carbon Disulfide in Fischer 344 Rats. Study Report. Unpublished Report. 1983. Available online: https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/14292/7/6/3 (accessed on 31 January 2022).
- 90-Day Vapor Inhalation Toxicity Study of Carbon Disulfide in Sprague-Dawley Rats. Study Report. Unpublished Report. 1983. Available online: https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/14292/7/6/3/?documentUUID=e8305a96-98fa-4f42-9f32-361e5757c560 (accessed on 31 January 2022).
- 90-Day Vapor Inhalation Toxicity Study of Carbon Disulfide in B6C3F1 Mice. Study Report. Unpublished Report. 1983. Available online: https://echa.europa.eu/fr/registration-dossier/-/registered-dossier/14292/7/6/3/?documentUUID=40e5a301-2d25-4ccd-ac73-fc323334ede5 (accessed on 31 January 2022).
- Clerici, W.J.; Fechter, L.D. Effects of chronic carbon disulfide inhalation on sensory and motor function in the rat. Neurotoxicol. Teratol. 1991, 13, 249–255. [Google Scholar] [CrossRef]
- Colombi, A.; Maroni, M.; Picchi, O.; Rota, E.; Castano, P.; Ag, V.F. Carbon Disulfide Neuropathy in Rats. A Morphological and Ultrastructural Study of Degeneration and Regeneration. Clin. Toxicol. 1981, 18, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Frantík, E. The development of motor disturbances in experimental chronic carbon disulphide intoxication. Med. Lav. 1970, 61, 309–313. [Google Scholar] [PubMed]
- Goldberg, M.E.; Johnson, H.E.; Pozzani, U.C.; Smyth, H.F. Behavioural Response of Rats During Inhalation of Trichloroethylene and Carbon Disulphide Vapours. Acta Pharmacol. Toxicol. 1964, 21, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Moser, V.C.; Phillips, P.M.; Morgan, D.L.; Sills, R.C. Carbon Disulfide Neurotoxicity in Rats: VII. Behavioral Evalua-tions Using a Functional Observational Battery. Neurotoxicology 1998, 19, 147–157. [Google Scholar]
- Song, F.; Yu, S.; Zhao, X.; Zhang, C.; Xie, K. Carbon Disulfide-Induced Changes in Cytoskeleton Protein Content of Rat Cerebral Cortex. Neurochem. Res. 2006, 31, 71–79. [Google Scholar] [CrossRef]
- Song, F.; Zhao, X.; Zhou, G.; Zhu, Y.; Xie, K. Carbon Disulfide-Induced Alterations of Neurofilaments and Calpains Content in Rat Spinal Cord. Neurochem. Res. 2006, 31, 1491–1499. [Google Scholar] [CrossRef]
- Sun, D.-Q.; Li, A.-W.; Li, J.; Li, D.-G.; Li, Y.-X.; Feng, H.; Gong, M.-Z. Changes of lipid peroxidation in carbon disulfide-treated rat nerve tissues and serum. Chem. Interact. 2009, 179, 110–117. [Google Scholar] [CrossRef]
- Wang, S.; Irving, G.; Jiang, L.; Wang, H.; Li, M.; Wang, X.; Han, W.; Xu, Y.; Yang, Y.; Zeng, T.; et al. Oxidative Stress Mediated Hippocampal Neuron Apoptosis Participated in Carbon Disulfide-Induced Rats Cognitive Dysfunction. Neurochem. Res. 2016, 42, 583–594. [Google Scholar] [CrossRef]
- Eskin, T.A.; Merigan, W.H.; Wood, R.W. Carbon Disulfide Effects on the Visual System. II. Retinogeniculate Degeneration. Investig. Ophthalmol. Vis. Sci. 1988, 29, 519–527. [Google Scholar]
- Merigan, W.H.; Wood, R.W.; Zehl, D.; Eskin, T.A. Carbon Disulfide Effects on the Visual System. I. Visual Thresholds and Ophthalmoscopy. Investig. Ophthalmol. Vis. Sci. 1988, 29, 512–518. [Google Scholar]
- Rebert, C.S.; Becker, E. Effects of inhaled carbon disulfide on sensory-evoked potentials of Long-Evans rats. Neurobehav. Toxicol. Teratol. 1986, 8, 533–541. [Google Scholar]
- Sills, R.C.; Harry, G.J.; Morgan, D.L.; Valentine, W.M.; Graham, D.G. Carbon Disulfide Neurotoxicity in Rats: V. Morphology of Axonal Swelling in the Muscular Branch of the Posterior Tibial Nerve and Spinal Cord. Neurotoxicology 1998, 19, 117–127. [Google Scholar]
- Sills, R.; Valentine, W.; Moser, V.; Graham, D.; Morgan, D. Characterization of Carbon Disulfide Neurotoxicity in C57BL6 Mice: Behavioral, Morphologic, and Molecular Effects. Toxicol. Pathol. 2000, 28, 142–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toews, A.D.; Harry, G.J.; Lowrey, K.B.; Morgan, D.L.; Sills, R.C. Carbon Disulfide Neurotoxicity in Rats: IV. Increased MRNA Expression of Low-Affinity Nerve Growth Factor Receptor—A Sensitive and Early Indicator of PNS Damage. Neurotoxicology 1998, 19, 109–116. [Google Scholar] [PubMed]
- Valentine, W.M.; Amarnath, V.; Amarnath, K.; Erve, J.C.; Graham, D.G.; Morgan, D.L.; Sills, R.C. Covalent Modification of Hemoglobin by Carbon Disulfide: III. A Potential Biomarker of Effect. Neurotoxicology 1998, 19, 99–107. [Google Scholar]
- Valentine, W.M. CS2-Mediated Cross-linking of Erythrocyte Spectrin and Neurofilament Protein: Dose Response and Temporal Relationship to the Formation of Axonal Swellings. Toxicol. Appl. Pharmacol. 1997, 142, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Tepe, S.; Zenick, H. The effects of carbon disulfide on the reproductive system of the male rat. Toxicology 1984, 32, 47–56. [Google Scholar] [CrossRef]
- Zenick, H.; Blackburn, K.; Hope, E.; Baldwin, D. An evaluation of the copulatory, endocrinologic, and spermatotoxic effects of carbon disulfide in the rat. Toxicol. Appl. Pharmacol. 1984, 73, 275–283. [Google Scholar] [CrossRef]
- Vanhoorne, M.; Comhaire, F.; De Bacquer, D. Epidemiological Study of the Effects of Carbon Disulfide on Male Sexuality and Reproduction. Arch. Environ. Health Int. J. 1994, 49, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Wronska-Nofer, T.; Szendzikowski, S.; Obrebska-Parke, M. Influence of chronic carbon disulphide intoxication on the development of experimental atherosclerosis in rats. Occup. Environ. Med. 1980, 37, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, J.G.; Graham, D.G.; Valentine, W.M.; Morris, R.W.; Morgan, D.L.; Sills, R.C. Exposure of C57BL/6 mice to carbon disulfide induces early lesions of atherosclerosis and enhances arterial fatty deposits induced by a high fat diet. Toxicol. Sci. 1999, 49, 124–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antov, G.; Kazakova, B.; Spasovski, M.; Zaikov, K.; Parlapanova, M.; Pavlova, S.; Stefanova, M. Effect of Carbon Disulphide on the Cardiovascular System. J. Hyg. Epidemiol. Microbiol. Immunol. 1985, 29, 329–335. [Google Scholar]
- Gelbke, H.-P.; Göen, T.; Mäurer, M.; Sulsky, S.I. A review of health effects of carbon disulfide in viscose industry and a proposal for an occupational exposure limit. Crit. Rev. Toxicol. 2009, 39, 1–126. [Google Scholar] [CrossRef]
- Sulsky, S.; Hooven, F.; Burch, M.; Mundt, K. Critical review of the epidemiological literature on the potential cardiovascular effects of occupational carbon disulfide exposure. Int. Arch. Occup. Environ. Health 2002, 75, 365–380. [Google Scholar] [CrossRef]
- Van Stee, E.W.; Simmons, J.E.; Sloane, R.A.; Moorman, M.P.; Adkins, B., Jr.; Cockrell, B.Y. Failure of carbon disulfide and levothyroxine to modify the cardiovascular response of rabbits to a high-cholesterol diet. Toxicology 1986, 40, 45–58. [Google Scholar] [CrossRef]
- AOP (Adverse Outcom Pathway). Knowledge Base. Available online: https://aopkb.oecd.org/ (accessed on 31 January 2022).
- Duntas, L.; Brenta, G. A Renewed Focus on the Association Between Thyroid Hormones and Lipid Metabolism. Front. Endocrinol. 2018, 9, 511. [Google Scholar] [CrossRef]
- Damiano, F.; Rochira, A.; Gnoni, A.; Siculella, L. Action of Thyroid Hormones, T3 and T2, on Hepatic Fatty Acids: Differences in Metabolic Effects and Molecular Mechanisms. Int. J. Mol. Sci. 2017, 18, 744. [Google Scholar] [CrossRef]
- Caroldi, S.; Jarvis, J.; Magos, L. Carbon disulphide exposure affects the response of rat adrenal medulla to hypothermia and hypoglycaemia. J. Cereb. Blood Flow Metab. 1985, 84, 357–363. [Google Scholar] [CrossRef] [Green Version]
- DeMartino, A.W.; Zigler, D.F.; Fukuto, J.M.; Ford, P.C. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chem. Soc. Rev. 2016, 46, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Füzesi, T.; Wittmann, G.; Lechan, R.M.; Liposits, Z.; Fekete, C. Noradrenergic innervation of hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in rats. Brain Res. 2009, 1294, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Zhou, Y.; Ma, J.; Wang, N.; Zhang, Z.; Ji, J.; Ding, Q.; Chen, G. Nitric oxide mediated effects on reproductive toxicity caused by carbon disulfide in male rats. Environ. Toxicol. Pharmacol. 2012, 34, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Dawson, V. Nitric Oxide: Role in Neurotoxicity. Clin. Exp. Pharmacol. Physiol. 1995, 22, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.; Michel, L.Y.; Balligand, J.-L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-M.; Tang, R.-H.; Qin, X.-Y.; Yang, J.; Chen, G.-Y. Effects of carbon disulfide on the expression and activity of nitric oxide synthase in rat hippocampus. Chin. Med. J. 2008, 121, 2553–2556. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Kou, R.; Wang, Y.; Zeng, T.; Xie, K.; Song, F. Carbon disulfide activates p62-Nrf2-keap1 pathway in rat nerve tissues. Toxicology 2016, 368–369, 19–27. [Google Scholar] [CrossRef]
- Sun, Y.; Dai, B.; Wu, Y.; Yang, L.; Liu, P.; Wang, Z. Carbon disulfide exposure at peri-implantation disrupts embryo implantation by decreasing integrin β3 expression in the uterine tissue of pregnant mice. Chem. Interact. 2013, 206, 126–133. [Google Scholar] [CrossRef]
- Luo, J.-C.J.; Chang, H.-Y.; Chang, S.-J.; Chou, T.-C.; Chen, C.-J.; Shih, T.-S.; Huang, C.-C. Elevated Triglyceride and Decreased High Density Lipoprotein Level in Carbon Disulfide Workers in Taiwan. J. Occup. Environ. Med. 2003, 45, 73–78. [Google Scholar] [CrossRef]
- Jian, L.; Hu, D. Antioxidative stress response in workers exposed to carbon disulfide. Int. Arch. Occup. Environ. Health 2000, 73, 503–506. [Google Scholar] [CrossRef]
- Laurman, W.; Salmon, S.; Mazière, C.; Mazière, J.-C.; Auclair, M.; Theron, L.; Santus, R. Carbon disulfide modification and impaired catabolism of low density lipoprotein. Atherosclerosis 1989, 78, 211–218. [Google Scholar] [CrossRef]
- Wronska-Nofer, T.; Laurman, W.; Nofer, J.-R.; Seedorf, U.; Walter, M. Carbon disulfide-induced modification and cytotoxicity of low-density lipoproteins. Toxicol. Vitr. 1996, 10, 423–429. [Google Scholar] [CrossRef]
- Wronska-Nofer, T.; Chojnowska-Jezierska, J.; Nofer, J.-R.; Halatek, T.; Wisniewska-Knypl, J. Increased oxidative stress in subjects exposed to carbon disulfide (CS2)—An occupational coronary risk factor. Arch. Toxicol. 2002, 76, 152–157. [Google Scholar] [CrossRef] [PubMed]
Parameters | Effect |
---|---|
Sperm morphology abnormalities | ↑ |
Sperm number | ↓ |
Time to mating | ↑ |
Ovary primary follicles | ↓ |
Malformations (visceral and skeletal) | ↑ |
Embryonic or fetal deaths | ↑ |
Brain histopathology | Altered |
Brain morphometry | Altered |
Behavior | Altered |
Retinal atrophy | ↑ |
Carbohydrate level | ↑ |
Low density lipoprotein (LDL) cholesterol | ↑ |
Coronary histopathology | Altered |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Printemps, N.; Le Magueresse-Battistoni, B.; Mhaouty-Kodja, S.; Viguié, C.; Michel, C. How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data. Int. J. Mol. Sci. 2022, 23, 3153. https://doi.org/10.3390/ijms23063153
Printemps N, Le Magueresse-Battistoni B, Mhaouty-Kodja S, Viguié C, Michel C. How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data. International Journal of Molecular Sciences. 2022; 23(6):3153. https://doi.org/10.3390/ijms23063153
Chicago/Turabian StylePrintemps, Nathalie, Brigitte Le Magueresse-Battistoni, Sakina Mhaouty-Kodja, Catherine Viguié, and Cécile Michel. 2022. "How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data" International Journal of Molecular Sciences 23, no. 6: 3153. https://doi.org/10.3390/ijms23063153
APA StylePrintemps, N., Le Magueresse-Battistoni, B., Mhaouty-Kodja, S., Viguié, C., & Michel, C. (2022). How to Differentiate General Toxicity-Related Endocrine Effects from Endocrine Disruption: Systematic Review of Carbon Disulfide Data. International Journal of Molecular Sciences, 23(6), 3153. https://doi.org/10.3390/ijms23063153