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Abstract: Small vessel strokes (SVS) and intracerebral haemorrhages (ICH) are acute outcomes of
cerebral small vessel disease (SVD). Genetic studies combining both phenotypes have identified
three loci associated with both traits. However, the genetic cis-regulation at the protein level asso-
ciated with SVD has not been studied before. We performed a proteome-wide association study
(PWAS) using FUSION to integrate a genome-wide association study (GWAS) and brain proteomic
data to discover the common mechanisms regulating both SVS and ICH. Dorsolateral prefrontal
cortex (dPFC) brain proteomes from the ROS/MAP study (N = 376 subjects and 1443 proteins)
and the summary statistics for the SVS GWAS from the MEGASTROKE study (N = 237,511) and
multi-trait analysis of GWAS (MTAG)-ICH–SVS from Chung et al. (N = 240,269) were selected.
We performed PWAS and then a co-localization analysis with COLOC. The significant and nom-
inal results were validated using a replication dPFC proteome (N = 152). The replicated results
(q-value < 0.05) were further investigated for the causality relationship using summary data-based
Mendelian randomization (SMR). One protein (ICA1L) was significantly associated with SVS
(z-score = −4.42 and p-value = 9.6 × 10−6) and non-lobar ICH (z-score = −4.8 and
p-value = 1.58 × 10−6) in the discovery PWAS, with a high co-localization posterior probability
of 4. In the validation PWAS, ICA1L remained significantly associated with both traits. The SMR
results for ICA1L indicated a causal association of protein expression levels in the brain with SVS
(p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5). Our results show that the
association of ICA1L with SVS and non-lobar ICH is conditioned by the cis-regulation of its protein
levels in the brain.

Keywords: small vessel disease; small vessel stroke; intracerebral haemorrhage; PWAS; proteome-
wide association study; genome-wide association study (GWAS)

1. Introduction

Cerebral small vessel disease (SVD) is a chronic and progressive heterogeneous disor-
der affecting small arteries, arterioles, venules, and capillaries in the brain [1,2]. Among
the different outcomes of SVD, small vessel stroke (SVS) and spontaneous intracerebral
haemorrhage (ICH) are the most acute and devastating manifestations [3–5]. One-quarter
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of all ischemic strokes (IS) are SVS [6], and ICH is the most common cause of haemorrhagic
stroke [7]. The incidence of SVD increases with age, and it is, thus, expected that with
the increase in life expectancy, the frequency of SVD manifestations will also increase in
following years [1,3].

SVD causes parenchyma lesions, such as white matter hyperintensities (WMHs),
enlarged perivascular spaces, lacunes, small subcortical infarcts, cerebral microbleeds, and
brain atrophy, among others [1,3]. These parenchyma lesions are used as surrogate markers
of SVD and can be quantified using brain imaging techniques. The extent of these lesions
predicts poor outcomes after ICH [8] and SVS [9]. The two major pathophysiological
mechanisms beyond SVD are arteriosclerosis and cerebral amyloid angiopathy (CAA) [1].
Cardiovascular risk factors, mainly hypertension, are associated with arteriosclerotic SVD.
It can cause the rupture or occlusion of small arteries and arterioles, producing non-lobar
(or deep) ICH and SVS, respectively [10].

There is no effective treatment for SVD, apart from controlling cardiovascular risk
factors [4]. Genome-wide association studies (GWAS) have been helpful in identifying
genes involved in SVD, analysing magnetic resonance image (MRI) SVD surrogate mark-
ers [11–21], and, moreover, specifically studying SVS and ICH.

Two GWAS have been performed with ICH patients. The first study identified a risk
locus for non-lobar ICH in 1q22, overlapping with PMF1 and SLC25A44 genes [5,11,12]. The
second performed a meta-analysis that allowed for the identification of APOE associated
with lobar ICH [4]. In order to improve the statistical power of these studies, Chung et al.
applied a novel strategy, using a multi-trait analysis of GWAS (MTAG) and combining
genotype data from two related phenotypes, ICH and SVS. This approach permitted the
identification of two novel associations in 2q33 (ICA1L) and 13q34 (COL4A2 and COL4A1)
associated with non-lobar ICH [4]. Interestingly, these loci presented a nominal association
(p-value < 5 × 10−3) with non-lobar ICH and SVS in the corresponding GWAS but not at a
genome-wide level [4]. Three different GWAS in SVS have identified significant associations
with this phenotype in 16q24.2 (ZCCHC14) [6], 2q33.2 (ICA1L and WDR12) [22], ULK4;
SPI1-SLC39A13-PSMC3-RAPSN, and ZBTB14-EPB41L3 [23]. Recently, an MTAG combining
SVS and WMH allowed for the identification of seven loci associated with SVS for the first
time but some of them were previously associated with ICH (SLC25A44-PMF1-BGLAP,
LOX-ZNF474-LOC100505841, FOXF2 FOXQ1, SH3PXD2A, VTA1-GPR126, HTRA1-ARMS2,
and COL4A2) [23].

Proteome-wide association studies (PWAS) have been proposed as a novel strategy to
recover causal protein-coding genes and to identify new associations for a disease. Since
proteins are the focus of PWAS [24], it is a potentially beneficial tool for the identification
of drug targets for disease [25]. This method, combined with Bayesian or Mendelian ran-
domization, allows for the identification of gene-phenotype associations causally mediated
by protein levels [24–26]. We performed a proteome-wide association study (PWAS) to
integrate the genomic and proteomic data to discover common mechanisms regulating the
two main acute manifestations of SVD: SVS and ICH.

2. Results
2.1. Stringent Criterion PWAS Analysis

From the 1475 proteins evaluated in the discovery cohort, only ICA1L reached a
significant q-value in association with SVS (z-score = −4.93; q-value = 1.42 × 10−2) and
with non-lobar ICH (z-score = −4.8; q-value = 2.33 × 10−3) (Table 1). The results from the
Bayesian colocalization analysis showed a high posterior probability for the rs7582720 to be
the causal variant for both the ICA1L levels and the significant GWAS traits (SVS and non-
lobar ICH) (posterior probability 4 (PP4) = 0.9 for SVS and non-lobar ICH) (Table 1). The
association of ICA1L with SVS and non-lobar ICH was the only one to reach the stringent
criterion, and it was considered for the replication stage. Both associations resulted as
significant in the replication analysis (the z-score = −3.55; q-value = 5.08 × 10−3, and
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PP4 = 0.99 for SVS and the z-score = −4.07, q-value = 6.19 × 10−4, and PP4 = 0.99 for
non-lobar ICH) (Table 1).

Table 1. PWAS results for the stringent criteria. Significant PWAS associations using the stringent
criteria in the discovery and replication. P0–P1: initial-final position for the analysed protein; pQTL
ID: ID for the pQTL strongly associated with ICA1L; pQTL z-score: z-score for the pQTL strongly
associated with ICA1L; pQTL z-score: z-score in the correspondent GWAS for the best pQTL; NSNP:
number of SNPs in the locus; TWAS z-score: z-score for the PWAS association; PWAS p-value: p-value
for the PWAS association; PP4: posterior probability 4 in the COLOC analysis; q-value: FDR-adjusted
PWAS p-value.

Discovery Replication

Trait Protein Chr P0–P1 pQTL
ID

pQTL
z-

Score

pQTL
GWAS
z-Score

NSNP
PWAS

z-
Score

PWAS
p-

Value
PP4 q-

Value

PWAS
z-

Score

PWAS
p-

Value
PP4 q-

Value

SVS
ICA1L 2

203640690
-

203736708
rs7582720 7.21

−4.426
81

−4.43 9.60 ×
10−6 0.90 1.42 ×

10−2 −3.55 3.91 ×
10−4 0.99 5.08 ×

10−3

Non-lobar
ICH −4.801 −4.80 1.58 ×

10−6 0.93 2.33 ×
10−3 −4.07 4.76 ×

10−5 0.99 6.19 ×
10−4

We also tested, specifically, those proteins from loci associated previously with SVD.
The PWAS aimed to interrogate 26 proteins corresponding to 13 different loci previously
associated with ICH (4 loci) and/or SVS (12 loci). From these, only ICA1L was present
among the proteins analysed in the PWAS.

2.2. SMR and Conditional Analysis

In order to ensure that the genetic association of ICA1L with SVS and non-lobar ICH
was mediated by the cis-regulation of the ICA1L protein levels, SMR and a conditional
analysis were performed. The SMR results indicated that the pQTL was associated with
SVS (p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5) through the
ICA1L protein expression regulation (Table 2, Figure 1). Similarly, the conditional analysis
plot showed a conditional effect by the expression levels of ICA1L on the GWAS results
(Figure 2). Table 2 shows the Summary statistics for the SMR results with the beta (b_SMR)
and p-values (p_SMR) for all the significant and replicated associations from PWAS.

Table 2. SMR results.

Trait Protein b_SMR p_SMR

SVS ICA1L −2.78 3.66 × 10−5

SVS SPATA20 −0.24 3.69 × 10−1

ICH ICA1L −1.55 1.81 × 10−5

Non-lobar ICH ICA1L −1.55 1.81 × 10−5

Lobar ICH SPATA20 −0.05 7.98 × 10−1
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2.3. Open Criterion PWAS Analysis

In considering the open criterion (p-value < 1 ×10−5 in the discovery PWAS), five
proteins reached a nominal association with all ICH, four proteins with SVS (exclud-
ing ICA1L) and lobar ICH, and two proteins with non-lobar ICH (excluding ICA1L)
(Table 3). In the replication of the open analysis, only SPATA20 and ICA1L were significant
(p-value < 0.05), with a PP4 higher than 0.5 in the replication proteome panel. SPATA20
was significantly associated with SVS and lobar ICH (q-value = 1.95 × 10−3 and PP4 = 0.97
for SVS; 8.82 × 10−3 and PP4 = 0.55 for lobar ICH). ICA1L was significantly associated
with all ICH (q-value = 1.25 × 10−2 and PP4 = 0.99 for all ICH). Two proteins (NRBF2 and
OSBPL11) could not be evaluated in the replication because they were not present in the
panel (Table 3). Results from the SMR indicated that an ICA1L abundance was mediating
the association through the pQTL and all ICH (p-value = 3.66 × 10−5). However, the SMR
results for the SPATA20 were not significant (p-value = 3.69 × 10−1 for SVS and 7.98 × 10−1

for lobar ICH) (Table 2). The conditional analyses for both proteins showed that the genetic
results were conditionally affected by a protein abundance (Figures 2 and 3).

Table 3. PWAS results for the open criteria. The results for the discovery and replication of PWAS
associations for proteins with a nominal p-value in the discovery (open criteria).

Discovery Replication

Trait Protein Chr pQTL ID
pQTL

z-
Score

pQTL
GWAS

z-
Score

NSNP
PWAS

z-
Score

PWAS
p-

Value
PP4 q-Value

PWAS
Z-

Score

PWAS
p-

Value
PP4 q-

Value

SVS SPATA20 17 rs878619 −10.89 −2.917 102 3.71 2.10 ×
10−4 0.17 3.10 ×

10−1 3.79 1.50 ×
10−4

0.97
*

1.95 ×
10−3

SVS ALDH2 12 rs4648328 −7.25 −3.437 61 3.58 3.38 ×
10−4 0.29 4.99 ×

10−1 3.38 7.28 ×
10−4 0.27 9.46 ×

10−3

SVS EXOC6 10 rs980204 4.98 −2.469 210 −3.58 3.41 ×
10−4 0.19 5.03 ×

10−1 3.37 7.36 ×
10−1 - 1

SVS OSBPL11 3 rs2922170 4.11 3577 111 3.58 3.48 ×
10−4 0.35 5.14 ×

10−1 - - -

ICH ICA1L 2 rs7582720 7.21 −3.935 81 −3.94 8.32 ×
10−5 0.68 1.23 ×

10−1 −3.30 9.66 ×
10−4

0.99
*

1.25 ×
10−2

ICH NRBF2 10 rs4379723 −4.19 −3.96 77 3.85 1.19 ×
10−4 0.18 1.76 ×

10−1 - - -

ICH DLGAP2 8 rs7842425 4.32 −3.742 225 −3.74 1.83 ×
10−4 0.12 2.70 ×

10−1 1.14 2.54 ×
10−1 - 1

ICH SPATA20 17 rs878619 −10.89 −2.89 102 3.58 3.47 ×
10−4 0.12 5.12 ×

10−1 3.27 1.09 ×
10−3 0.33 1.41 ×

10−2

ICH MADD 11 rs11570115 −9.09 −2.565 99 3.54 4.06 ×
10−4 0.03 5.99 ×

10−1 1.88 6.04 ×
10−2 - 0.78

Non-lobar
ICH SPATA20 17 rs878619 −10.89 −2.672 102 3.69 2.19 ×

10−4 0.42 3.23 ×
10−1 3.51 4.44 ×

10−4 0.27 5.77 ×
10−3

Non-lobar
ICH NRBF2 10 rs4379723 −4.19 −3.569 77 3.43 6.00×

10−4 0.29 8.90 ×
10−1 - - -

Lobar ICH MRVI1 11 rs753002 −5.36 2.452 211 −3.69 2.20 ×
10−4 0.02 3.25 ×

10−1 −1.87 6.22×
10−2 - 0.80

Lobar ICH NRBF2 10 rs4379723 −4.19 −3.804 77 3.68 2.33 ×
10−4 0.11 3.44 ×

10−1 - -

Lobar ICH SPATA20 17 rs878619 −10.89 −3.186 102 3.51 4.44×
10−4 0.28 6.55 ×

10−1 3.40 6.79×
10−4

0.55
*

8.82 ×
10−3

Lobar ICH ICA1L 2 rs7582720 7.21 81 −3.30 9.6×
10−4 0.2 1 −2.5692 1.02 ×

10−2 0.9 0.13

* Significant PP4 in the replication. pQTL ID: ID for the pQTL strongly associated with proteins; pQTL z-score:
z-score for the pQTL strongly associated with proteins; pQTL z-score: z-score in the correspondent GWAS for the
best pQTL; NSNP: number of SNPs in the locus; TWAS z-score: z-score for the PWAS association; PWAS p-value:
p-value for the PWAS association; PP4: posterior probability 4 in the COLOC analysis; q-value: FDR-adjusted
PWAS p-value.
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3. Discussion

In the present study, we performed a PWAS for the two main acute manifestations
of SVD: SVS and ICH. We identified an association at the proteomic level of ICA1L with
SVS and non-lobar ICH. Moreover, ICA1L was also associated with lobar ICH in our study.
However, it was not a statistically significant association after a multivariable correction.

Although different loci have previously been found to be associated with ICH and
SVS, how these genes contribute to their risk is not fully understood. One approach used
to prioritize the likely causal gene within an associated locus with multiple genes is the use
of a transcriptome-wide association study (TWAS) [27]. The TWAS from the SVS GWAS
results found that the expression of SLC25A44 in the arteries and the 2q33·2 locus (CARF,
FAM117B, ICA1L, and NBEAL1) in the arteries and brain was causally associated with an
SVS risk [23]. Very similar results regarding the 2q33·2 locus were previously obtained by
Persyn et al. and Sargurupremraj et al. in their TWAS of WMH [16,17]. In contrast, the
ULK4 expression was negatively associated with an SVS risk in the arterial tissues, whole
blood, and in the brain [23].

Our study implemented a similar strategy, focused on proteins, that allowed for a
better characterization of a previously known association of ICA1L with non-lobar ICH,
SVS [4,23], and related SVD traits, such as WMH [16,17] and fractional anisotropy (FA) [16].
Based on our results, genetics are responsible for the cis-regulation of an ICA1L abundance
in brain tissue. Specifically, the top pQTL for ICA1L determines a higher abundance in
ICA1L, which, in turn, reduces the risk for non-lobar ICH and SVS.

Although no previous PWAS has investigated the association of a protein abundance
with SVS nor ICH, an ICA1L abundance was previously found to be associated with
Alzheimer’s disease (AD) risk using a PWAS approach [25,28]. These studies used the same
proteomic data as in our work and found that a higher expression of the ICA1L protein
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was linked with a decrease in AD risk [25,28]. Thus, both results for AD and SVD showed
that elevated ICA1L levels are a protective factor. These AD studies, using single-cell
RNA-sequencing, also identified enrichment in the ICA1L expression in glutamatergic
excitatory neurons [25,28]. Excitatory processes involving glutamate are related tothe cell
death features in stroke and ICH [29,30]. Furthermore, there is a clear relationship between
AD and SVD. Both have common features that lead to dementia, such as a blood–brain
barrier breakdown [31]. Moreover, cerebral amyloid angiopathy and arteriolosclerosis,
common SVD mechanisms, worsen the threshold for AD dementia. Different SVD features
have been found in post-mortem brains from AD patients, such as small cortical and
subcortical infarcts, microbleeds, perivascular spacing, and WMH [32]. Additionally, ApoE
is the major genetic factor associated both with lobar ICH and AD [33]. The Ica1l results
suggest that this protein could also be commonly regulated in AD and SVD.

SPATA20 was also identified as a potential protein affecting SVS and lobar ICH.
Previous genetic studies using a GWAS found polymorphisms in this gene associated
with platelet distribution width [34], reticulocyte count [34], and subcortical volume [35].
However, pleiotropy was not found in the SMR analysis, indicating that different genetic
regulations could be mediating the protein abundance and the trait risk.

The main limitation of our study is the number of proteins that we were able to
evaluate. In this sense, only ICA1L was present in the proteomic panel from all proteins
from loci previously associated with SVS or ICH. Moreover, we only had access to proteomic
data from dPFC, and other brain regions could be relevant in SVD.

The results from this PWAS, combined with the previous results at the genomic and
transcriptomic levels, highlight the relevance of ICA1L in the risk of SVD and specific
SVD outcomes. As all these outcomes (SVS, non-lobar ICH, and lobar ICH) are common
manifestations of SVD, the ICA1L regulation could be a common mechanism in SVD. Given
that this regulation is also produced at the protein level and in brain tissue, future studies
could focus on the investigation of ICA1L as a potential drug target.

4. Materials and Methods
4.1. Proteome-Wide Associations Study (PWAS)

We used FUSION software (Boston, MA, USA) [36] to estimate the association of brain
protein levels with SVS and ICH. FUSION is implemented to identify associations between
a functional phenotype (i.e., protein expression levels) and a GWAS phenotype. FUSION
takes two inputs: 1) Precomputed functional weights, and 2) GWAS summary statistics
unified to a reference single-nucleotide polymorphism (SNP) panel. In the PWAS, the
functional weights consist of estimations of the strength of association between proteomic
expression levels and the SNPs from the cis-locus of the protein (only considered in the
heritable proteins). The SNPs associated with cis-locus protein expression levels are protein
quantitative-traits (or pQTLs).

In our PWAS analysis, we selected, as functional weights, the freely available pre-
computed weights for the proteome expression analysis published by Wingo et al. [28].
As mentioned, in this case, the functional weights consisted of a summary-based file with
data for the association between protein levels and SNPs (for the same locus of the protein).
In the study from Wingo et al., from which we selected the functional weights, post-mortem
dorsolateral prefrontal cortex (dPFC) human brain proteomes from 400 participants of
European ancestry from the ROS/MAP cohorts were generated [37]. Proteomic sequencing
was performed using isobaric tandem mass tag (TMT) peptide labelling combined with
liquid chromatography coupled to mass spectrometry. They carried out different quality
controls (QCs), which are described in the original article [28]. First, they randomized the
400 samples and 100 global internal standards into 50 batches before TMT labeling with
the TMT10plex kit (Thermo Fisher Scientific, Waltham, MA, USA). Each batch contained
two exact global internal standards. After running mass spectrometry, they assigned a
peptide spectral using the Proteome Discoverer suite v.2.3 (Thermo Fisher Scientific) and a
search in the canonical UniProtKB human proteome database. Then, the peptide spectral
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matches were collated into proteins. They did not include, in the analysis, the peptides
whose protein quantification was outside the 95% confidence interval of the global internal
standard, nor proteins with missing values in more than 50% of the samples. After the QCs,
8356 proteins remained for analysis. The abundance of these proteins was log2 transformed.
Then, QC for the samples was also performed, removing samples outstanding more than
four standard deviations from the first two principal components. The effect of the batch,
sex, age of death, study, mass spectrometry reporter quantification mode, postmortem
interval, and clinical diagnosis was detected and removed [28].

They coupled this proteomic data with genetic data for weight calculation purposes,
and the genotype data from 1,190,321 HapMap SNPs present in 489 individuals from the
same cohort was processed. The genotypes were obtained from whole-genome sequencing
or genome-wide genotyping. Classical QCs were applied to the genotype data: removal
of variants deviating from the HardyWeinberg equilibrium, with a missing genotype rate
of >5%, and rare variants with a minor allele frequency of <1%. Individuals with >5%
genotyping missingness and related individuals were also excluded from the analysis.
For genome-wide genotyped data, imputation was performed, and only HapMap SNPs
selected from the 1000 Genomes Project were included. After considering all the QCs for
proteomic and genotyping data, the functional weight included dPFC proteome abundance
from heritable proteins (a total of 1475 heritable proteins) in 376 subjects, combined with
1,190,321 SNPs [28].

For the PWAS, we selected the GWAS summary statistics from the traits of interest
considering the largest sample size published. For SVS, we selected summary statistics
for the European ancestry MEGASTROKE SVS GWAS (N = 5386 SVS patients and 406,111
controls) [22]. For ICH, we selected the three different ICH subtypes (all ICH, ICH lobar,
and ICH non-lobar) GWAS summary statistics available from the MTAG published by
Chung et al. (N = 6255 ICH cases and 233,058 control subjects) [4].

Using FUSION, we first unified the GWAS SNPs (total SNPs SVS = 8,177,651; total
SNPs all ICH = 7,136,230; total SNPs non-lobar ICH = 7,136,333; and total SNPs lobar
ICH = 7,495,490) with the reference panel from the 1000 Genomes Project (Linkage dise-
quilibrium (LD) reference panel). Secondly, SNPs from the GWAS not present in the LD
reference panel were imputed. Finally, the association between the functional weights
(1475 proteins) and the GWAS summary statistics was estimated. We corrected the re-
sults, considering multiple testing by 1475 proteins with a False Discovery Rate (FDR)
multivariable test correction (q-values).

4.2. Colocalization Analysis

We performed a Bayesian colocalization analysis for the PWAS results with a p-value
of <0.05. The objective of this analysis was to assess whether the association of protein
levels with the GWAS phenotype was caused by the same variant (or pQTL). We used
COLOC, currently implemented in FUSION, for this purpose. Five different COLOC
hypotheses were tested: no association (posterior probability (PP0), functional association
only (PP1), GWAS association only (PP2), independent functional/GWAS associations
(PP3), or colocalized functional/GWAS associations (PP4)). We considered plausible causal
relationships for those with a posterior PP4 > 0.5.

We considered two criteria to assign significant terms to the PWAS results from the
discovery analysis. First, using a stringent criterion, we considered significant PWAS results,
those proteins with a significant q-value (<0.05) in the discovery PWAS, and a PP4 > 0.5
in the colocalization analysis [28]. Proteins following this criterion were considered in the
replication analysis. Second, using an open criterion, we selected for the replication of all
the proteins with a nominal p-value in the discovery PWAS (p-value < 10−5) (Figure 4).
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4.3. Replication Analysis

For replication purposes, we selected a confirmation dPFC brain proteome panel
obtained in 198 participants of European ancestry from the Banner Sun Health Research
Institute [38]. Proteomic profiles were obtained using the same methodology used in the
discovery panel [28]. After applying the QCs previously described, a total of 152 patients
with proteomic and genetic data were used in the functional weight construction. Finally,
proteomic weights included 1139 heritable proteins [28] that were combined with the
above-mentioned GWAS summary statistics using the same protocol we used for the
discovery panel.

All the proteins evaluated were considered significant in the replication study when
the q-value was <0.05 (adjusting for all the proteins analysed in the replication) and the
PP4 was >0.5 (Figure 1).

4.4. Summary-Based Mendelian Randomization (SMR)

We applied SMR to test whether the cis-regulated protein abundance was pleiotropi-
cally regulating the relationship between the SNPs and the trait of interest [39]. To perform
the analysis for proteins achieving the stringent PWAS criterion, we followed the prede-
termined criteria of at least one pQTL at a p-value < 5 × 10−8 and included only SNPs
with pQTL p-values < 1.5654 × 10−3. SNPs with LD r2 between the top SNP > 0.9 or <0.05
were excluded [39]. For the results from the open criterion, we included SNPs with pQTL
p-values < 0.05.

We considered that protein levels were mediating the effect of an SNP on the phenotype
when they had a p-value < 0.05 in SMR.

4.5. Conditional Analysis

For the significant PWAS proteins, we identified SNPs from the GWAS (p-value < 0.05)
in the regions cis-overlapped with the selected proteins. In order to assess whether the
significant associations between these polymorphisms and the trait were mediated by the
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cis-regulated protein abundance, we applied conditional tests using FUSION [27]. We plot-
ted the results to observe that mediation visually, and we calculated conditional statistics.
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