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Abstract: Transcript signatures are a promising approach to identify and classify genotoxic and
non-genotoxic compounds and are of interest as biomarkers or for future regulatory application.
Not much data, however, is yet available about the concordance of transcriptional responses in
different cell types or tissues. Here, we analyzed transcriptomic responses to selected genotoxic food
contaminants in the human p53-competent lymphoblastoid cell line TK6 using RNA sequencing.
Responses to treatment with five genotoxins, as well as with four non-genotoxic liver toxicants, were
compared with previously published gene expression data from the human liver cell model HepaRG.
A significant overlap of the transcriptomic changes upon genotoxic stress was detectable in TK6
cells, whereas the comparison with the HepaRG model revealed considerable differences, which
was confirmed by bioinformatic data mining for cellular upstream regulators or pathways. Taken
together, the study presents a transcriptomic signature for genotoxin exposure in the human TK6
blood cell model. The data demonstrate that responses in different cell models have considerable
variations. Detection of a transcriptomic genotoxin signature in blood cells indicates that gene
expression analyses of blood samples might be a valuable approach to also estimate responses to
toxic exposure in target organs such as the liver.

Keywords: toxicogenomics; TK6 cells; molecular markers; genotoxicity; gene expression

1. Introduction

Genotoxicity testing for regulatory purposes regularly includes several in vitro and,
sometimes also, in vivo tests, e.g., aimed to analyze the micronucleus formation or the
occurrence of chromosomal aberrations. The interpretation of positive findings in these
assays, however, remains challenging sometimes [1,2]. As a possible alternative to the
established test systems, different approaches for the use of omics technologies, especially
transcriptomics, have been put forward in the past years, in order to allow for an identifi-
cation of genotoxic compounds and for the stratification of genotoxic and non-genotoxic
carcinogens based on their cellular effects [3–7]. Transcriptome analyses might therefore
help to identify molecular signaling pathways that allow to distinguish genotoxins (GTX)
from non-genotoxins (NGTX), which could be useful for health risk assessments [8,9].
However, omics analyses are not yet generally accepted for regulatory purposes, partly
due to difficulties in standardizing experimental approaches and data processing but also
related to the difficulty in defining adversity in an omics context [10–12].

In a previous comparative reanalysis of published literature data, we investigated
microarray datasets from the metabolically competent human liver cell model HepaRG
treated with the model GTX aflatoxin B1 (AB1), a mycotoxin, or the polycyclic aromatic
hydrocarbon benzo[a]pyrene (BaP) [13]. The results highlight that, even using the same cell
line and treatment, considerable differences in the obtained gene expression profiles may
arise based on differences in the experimental design and data processing. The comparison
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of different experiments with these two GTX resulted in a rather limited overlap with
respect to individual differentially expressed genes (DEGs), whereas the concordance was
considerably more pronounced at the level of affected biological functions and signaling
pathways [13].

In a follow-up project, we performed a comparative transcriptome analysis using
mRNA sequencing in HepaRG cells with five food-relevant GTX (AB1, BaP, Las or lasio-
carpine, NPYR or N-nitrosopyrrolidine, and ME or methyleugenol) and identified a 37 gene
signature commonly regulated by all five compounds [14]. Further pathway analyses re-
vealed that the obtained transcript signature was closely related to a DNA damage response
and activation of the tumor suppressor TP53. Subsequent analyses with six non-genotoxic
substances (3-MCPD or 3-monochloropropane-1,2-diol, ethanol, MPH or methapyrilene
hydrochloride, PFOA or perfluorooctanoic acid, PFOS or perfluorooctanesulfonic acid, and
WY-14643) underlined the specificity of the transcript signature for genotoxic stress. This is
in line with previous works demonstrating that GTX transcript signatures or DEGs also
cover pathways such as DNA damage response [5,15], cell proliferation [16], and/or TP53
signaling [17].

The liver as a major target organ of the abovementioned GTX, however, is not ac-
cessible for routine analyses in humans. Instead, blood samples can easily be obtained
and analyzed for potential biomarkers of toxicity resulting from exposure to genotoxic
compounds. In a previous study, Georgiadis et al. [18] demonstrated the impact of smok-
ing on genome-wide gene expression and DNA methylation profiles in blood leukocytes
of smokers, as well as the prediction of diseases linked to smoking. Therefore, in order
to investigate whether the signature derived from the target organ (i.e., the liver model
HepaRG) can also be used for detecting consequences of genotoxic stress in blood, we now
analyzed the gene expression of lymphoblastoid TK6 cells. TK6 cells were derived from
progenitor cells originally isolated from a male spherocytosis patient and are heterozygous
at the thymidine kinase locus [19]. TK6 cells are a suitable and widely used model to
study the TP53 signaling pathway [20,21], due to their TP53 wildtype status, to elucidate
genotoxic mechanisms and modes of action [22–25] and to distinguish between genotoxic
and non-genotoxic compounds [26–30]. Moreover, TK6 cells are a frequently used cell
system for the determination of genotoxicity, as, for example, laid down for gene mutation
testing in test guidelines (TGs) 476 or 490 of the Organisation for Economic Co-operation
and Development [31].

Here, we present a comparative analysis of the transcriptomic effects of genotoxic
and non-genotoxic food contaminants in hepatic and blood cells, highlighting similarities
and differences.

2. Results

Lymphoblastoid TK6 cells were treated with five GTX and four NGTX compounds,
and RNA sequencing was performed to obtain information about global alterations of
gene expression. Bioinformatic pathway analyses were conducted to attribute effects to
GTX- or NGTX-specific properties and to link biological functions and processes to the
gene expression data. Furthermore, the sequencing results were compared with previously
published data from the human liver cell model HepaRG, where sequencing and pathway
analyses were performed using five GTX [14]. The transcriptomic responses in the two
cell models were used to draw conclusions about the comparability of effects between the
different in vitro models.

2.1. Gene Expression Analysis by RNA Sequencing in TK6 Cells

For better comparability between the data derived from the liver cell model HepaRG
and the blood cell model TK6, the same concentrations were used for the treatment of
the TK6 cells for RNA sequencing as previously used for the HepaRG cells, if possible.
Staining with calcein-AM was performed with and without S9 mix to check for cytotoxicity
(Supplementary Table S1). Except for AB1, the tests showed no cytotoxicity at the selected
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concentrations for the GTX substances BaP (5 µM), Las (1 µM), ME (250 µM), and NPYR
(20 mM). Only AB1 had a toxic effect on TK6 cells, so that 0.05 µM was used instead of
the previously used concentration in HepaRG (1 µM). For the NGTX, also no decrease
in viability was found for 3-MCPD (1 mM), MPH (40 µM), PFOA (250 µM), and PFOS
(50 µM).

RNA sequencing was carried out on an Illumina platform. Each treatment was se-
quenced in triplicate, while, for the solvent controls, five samples were analyzed and
mapped to the human genome. Upon subsequent inspection of the data, samples num-
ber 15 (3-MPCD) and number 23 (NPYR) stood out with unusually reduced numbers of
mapped fragments (40.4% and 32.3%, respectively). These two extreme outlier samples
were therefore excluded from further analysis. After filtering for genes with low expression,
35,324 genes were retained for the subsequent analyses.

A padj < 0.05 and a fold change |FC| > 1.5 were chosen as the cut-off criteria for
defining the DEGs. ME showed the lowest number of DEGs (435) among the GTX com-
pounds, whereas the numbers were 544 for Las, 623 for NPYR, 647 for BaP, and 700 for
AB1 (Figure 1). Among the NGTX substances, the treatment with 3-MCPD stood out with
611 DEGs, whereas MPH, PFOA, and PFOS yielded 79, 11, and 22 DEGs, respectively. It
was also clearly visible that more genes were downregulated than upregulated for each
treatment [14]. However, while the sequencing of HepaRG revealed clear differences in
the number of DEGs with the GTX treatment, ranging from 3528 with BaP to 161 with
Las, the number of DEGs in the TK6 cells was more similar when comparing the different
GTX treatments.
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Figure 1. Bar plot of the number of differentially expressed genes (DEGs). Lymphoblastoid
TK6 cells were treated with the genotoxins (GTX) aflatoxin B1 (AB1), benzo[a]pyrene (BaP), la-
siocarpine (Las), methyleugenol (ME), or N-nitrosopyrrolidine (NPYR) or with non-genotoxins
(NGTX) 3-monochloropropane-1,2-diol (3-MCPD), methapyrilene (MPH), perfluorooctanoic acid
(PFOA), or perfluorooctanesulfonic acid (PFOS) for 24 h at high but non-cytotoxic concentrations
for RNA sequencing. DEGs were analyzed by the R package DESeq2, version 1.30.1. Genes were
considered deregulated with padj < 0.05 and a fold change |FC| > 1.5. Downregulated genes are
depicted in dark gray, and upregulated genes are depicted in light gray. The genotoxic compounds
yielded between 435 and 700 deregulated genes, but with the NGTX compounds, only 3-MCPD with
611 genes led to a high number of deregulated genes.
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2.2. Bioinformatic Analysis of Impact of Treatments on Gene Expression in TK6 Cells

Looking at the intersections of DEGs for treatments among the GTX compounds
AB1, BaP, Las, ME, and NPYR in TK6 cells, 116 genes were significantly regulated by
all five compounds (Figure 2). AB1 had the most distinct gene pattern with 326 genes
differentially regulated only by AB1, followed by NPYR with 168 unique genes, BaP
(112 genes), Las (91 genes), and ME (61 genes). Among the 116 commonly regulated genes,
few could be linked to DNA damage and repair (e.g., BRCA2 and ANKLE1); some were
connected to cell migration and adhesion (CSTA, FSCN1, ENPP2, and CD302) or to lipid or
vitamin metabolism (CETP and APOD). Many protein-coding genes are related to immune
responses, e.g., SERPINB10, CCR8, IGIP, LIME1, and NFKBID (Supplementary Table S2).
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Figure 2. Commonalities of differentially expressed genes of GTX in an UpSet plot. RNA sequencing
with lymphoblastoid TK6 cells was performed using genotoxic and non-genotoxic compounds, but
only genotoxic compounds revealed many differentially expressed genes (padj < 0.05 and |FC| > 1.5;
cp. Figure 1). These genes were visualized for overlap in an UpSet plot using R package UpSetR
version 1.4.0 with the genotoxic compounds AB1, BaP, NPYR, Las, and ME. The number of DEGs is
depicted on the left, the number of intersections in the upper half. The plot shows 116 genes that are
commonly regulated by all five compounds.

2.3. Comparison with Published Effect Marker Pattern for Genotoxicity

The purpose of the RNA sequencing experiment was to establish a transcriptional
pattern for GTX or NGTX treatment in TK6 cells. In the liver cell model HepaRG, such
a pattern has already been published [14]. Of the 37 published genes, 33 genes were
chosen for further analysis. For the establishment of the HepaRG pattern, only significantly
deregulated genes were used, which were always altered in the same direction by the
different GTX test compounds.

A simple comparison of the two RNA sequencing approaches showed clear differences
between HepaRG and TK6 cells in the regulation of the 33 genes of the published HepaRG
GTX marker pattern. For the TK6 cells, hardly any of these 33 genes were affected by
the GTX treatment; many genes were only weakly regulated (Figure 3). Only six of the
genes from the HepaRG GTX pattern were also significantly altered in TK6 cells (GPR56,
NCF2, GDF15, SUGCT, WWOX, and COL5A2), with three of those not corresponding to
the direction of the alteration observed in HepaRG (GDF15, SUGCT, and WWOX). The
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expression of these genes in TK6 cells was additionally verified with independent samples
by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (Supplementary
Table S3). It was also striking that there was no distinction between the GTX and NGTX
effects in the mapped genes in the TK6 cells, contrasting the previously published findings
with the HepaRG model [14].
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Figure 3. Comparison of the TK6 data with a published GTX effect marker pattern for genotoxicity.
In Kreuzer et al. [14], a gene signature for GTX in the liver cell model HepaRG was published.
There, 37 genes were identified, all significantly regulated in one direction with padj < 0.05 and
|FC| > 1.5 after treatment with GTX, of which 33 genes were chosen for further analysis. The
heatmap here shows a comparison of HepaRG- and TK6-derived transcriptomic data for the 33 GTX
marker genes from HepaRG cells expressed as log2 FC values. Upregulation is depicted in red
and downregulation in blue. Significance of the gene expression changes is indicated as follows:
* padj < 0.05, ** padj < 0.01, and *** padj < 0.001.

2.4. Pathways Analysis of Gene Expression Response in TK6 Cells

Previous analyses of the transcriptomic data from GTX-treated cells showed that,
despite considerable differences in the identity of individual DEGs, GTX-affected cellular
functions in HepaRG cells showed a high degree of similarity across very different experi-
ments [13]. Therefore, the pathway analysis of TK6- and HepaRG-derived gene expression
data was performed using Ingenuity Pathway Analysis (IPA) to identify changes to the
molecular signaling pathways and to comparatively assess the GTX effects in the different
cell models (Figure 4). DEG data were used for predictions regarding “upstream regulators”
and “canonical pathways”, and only |z-scores| ≥ 2 were considered to enhance the strin-
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gency. Data from the HepaRG and TK6 models were analyzed together here. A complete
list of the results, including all z-scores, can be found in Supplementary Tables S4 and S5.
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Figure 4. Prediction results by Ingenuity Pathway Analysis (IPA). A bioinformatic analysis with IPA
indicates transcriptional factors and pathways possibly associated with the DEGs measured by RNA
sequencing. In a previous study, we performed RNA sequencing in the liver cell model HepaRG
with five genotoxic agents, which we have now extended to the lymphoblastoid TK6 cell model with
additional non-genotoxic agents. These data from the HepaRG and TK6 models were analyzed here
together using IPA software. RNA sequencing with HepaRG cells was described in Kreuzer et al. [14].
(A) IPA results for “upstream regulators”. The “upstream regulators” were filtered to include only
transcriptional regulators. The z-score ≥ 2 or ≤−2 predicts a significantly activated or inhibited
transcriptional regulator state, respectively. (B) IPA results for the “canonical pathways”. The z-score
≥ 2 or ≤−2 predicts a significantly activated or inhibited pathway, respectively.

While, for the HepaRG cells, only GTX were examined (due to the lack of data), NGTX
could also be included in the analysis for the TK6 cells. However, the IPA predictions
revealed that, from the NGTX compounds, only 3-MCPD showed sufficiently high z-scores
to be considered further. Strikingly, 3-MCPD was always predicted to be similar to the GTX
compounds. No delineation of GTX and NGTX was therefore possible by pathway analysis.
Looking at each cell line individually, the predicted “upstream regulators” and “canonical
pathways” were mostly similar in direction and strength for the different treatments
(Figure 4). Comparing the two cell lines showed less-predicted “upstream regulators” and
“canonical pathways” in TK6 cells and, frequently, an opposite direction of the predicted
direction of regulation. For example, the transcription factor CREB1 was predicted as
strongly inhibited in TK6 with a z-score range from −4.227 for Las to −4.583 for NPYR,
while, in HepaRG cells, CREB1 was predicted to be activated with z-scores from 0.463 (ME)
to 3.373 (BaP). In the “canonical pathways” analysis, IL-17 signaling was predominantly
predicted as inhibited in TK6 cells with the z-scores −1.342 (NPYR), −2.000 (ME), and
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−2.236 (Las and 3-MCPD), whereas the pathway was predicted to be activated in HepaRG
cells with z-scores from 0.707 (ME) to 3.55 (BaP).

In particular, far less “canonical pathways” were predicted in TK6 cells, as compared
to HepaRG cells. The regulated pathways predicted in TK6 cells were often connected
with blood-specific features (e.g., systematic lupus erythematosus in the B-cell signaling
pathway and IL-17 signaling) or with apparently irrelevant organs such as the brain (e.g.,
CREB signaling in neurons and the synaptogenesis signaling pathway) and heart (e.g.,
cardiac hypertrophy signaling). In contrast, the most striking pathways that were affected in
HepaRG cells are grouped around the downregulation of lipids and cholesterol metabolism,
as well as the liver X receptor (LXR).

Jointly activated transcriptional regulators in both cell lines predicted as “upstream
regulators” were the two oncogenes CCND1 and FOS. The mutually inhibited regulators
were CDKN2A and SREBF1, involved in the stabilization of TP53 and in sterol biosynthesis,
respectively. In TK6 cells, the transcription factors FOXL2, SMAD3, CREB1, TP53, NUPR1,
ATF4, and FOXO3 were very strongly predicted to be inactivated, with SMAD3, TP53, ATF4,
and FOXO3 possibly associated with the stress response. Among HepaRG cells, SMAD3
and TP53 were predicted to be more strongly activated transcription factors, whereas ATF4
and FOXO3 were predicted to be only weakly involved overall.

Thus, altogether, there were more differences than similarities when comparing the
two cell lines, HepaRG and TK6, considering both the “canonical pathways” and the
“upstream regulators” in the pathway analysis with IPA. On the other hand, the results
obtained within the individual cell lines were mostly consistent across all compounds,
whether GTX or NGTX (pathway analyses in HepaRG cells refer only to GTX, as RNA
sequencing data are lacking for NGTX).

2.5. Classification of GTX and NGTX Compounds by Transcript Markers

As detailed above, no distinction between GTX and NGTX in TK6 cells was observed
regarding the expression of the 33 specific marker genes from the HepaRG model, and IPA
analyses revealed also that, at the level of the pathway and regulator predictions, the TK6
cells responded substantially different to GTX treatment than HepaRG cells.

Thus, a different strategy had to be chosen to establish the criteria for a clear separation
between GTX and NGTX compounds in TK6 cells independent from the previous results
in the liver cell model. Therefore, Principal Component Analysis (PCA) of the TK6 tran-
scriptome data was performed as a first approach. Comparing the overall gene expression
profiles in TK6 cells by PCA, only the control samples clustered together (Figure 5). Most
of the other samples clustered together, with no apparent separation between treatments
or differentiation between GTX and NGTX treatments. Only AB1 set apart, as well as
individual samples treated with MPH, PFOA, and PFOS, which mapped more toward
the control.

To improve the separation of GTX and NGTX compounds, Partial Least Squares
Discriminant Analysis (PLS-DA) was conducted as an additional bioinformatics approach
(Figure 6). Even though the majority of the samples tended to appear rather centered, a
virtual diagonal line divided the GTX compounds into the lower right corner and NGTX
compounds into the center of the graph. Leave-one-out cross-validation was performed to
evaluate the modeling performance, resulting in a Balanced Error Rate (BER) of 0.35 for
component 1 and an averaged Area Under the Curve (AUC) of 0.59. Thus, it appeared
possible to derive a gene signature from the RNA sequencing data of the TK6 cell line.

Based on the PLS-DA to discriminate GTX from NGTX, 12 protein-coding genes were
selected that were both significantly regulated by as many compounds as possible and
listed as highly informative classifiers, i.e., among the top predictors of components 1 and
2 in the PLS-DA.
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Figure 5. Principal Component Analysis (PCA) scores plot of transcriptome profiles for individual
samples. To establish the criteria for a clear separation between GTX and NGTX compounds in TK6
cells after incubation with genotoxins AB1, BaP, Las, ME, or NPYR or with non-genotoxins 3-MCPD,
MPH, PFOA, or PFOS for RNA sequencing, a PCA scores plot was created as a first attempt. PCA
scores reflecting the overall structure of gene expression were performed for a subset of significant
DEGs based on normalized variance-stabilized read counts. Each treatment is indicated by an
individual color. Only controls cluster together, so a finer separation analysis is necessary.
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Figure 6. PLS-DA for separation between GTX and NGTX. To improve the separation of GTX and
NGTX compounds based on TK6 RNA sequencing data with genotoxins AB1, BaP, Las, ME, or NPYR
or with non-genotoxins 3-MCPD, MPH, PFOA, or PFOS, PLS-DA was conducted as an additional
bioinformatics approach. For PLS-DA, R package mixOmics version 6.14.1, leave-one-out cross-
validation was performed to evaluate the modeling performance, resulting in a BER of 0.35 for
component 1 and averaged AUC of 0.59. A clear separation between GTX and NGTX treatments is
visible and highlighted by a line. GTX compounds are depicted in red and NGTX in blue.
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Validation of the marker candidate genes was performed by qRT-PCR and was suc-
cessful for all genes except for DNLZ. Overall, the qRT-PCR data were in agreement with
the RNA sequencing-derived log2 FC values (Pearson correlation coefficient: 0.75, p-value:
5.24 × 10−19) and mostly confirmed the direction of expression (Figure 7; for details, see
Supplementary Table S6). In particular, the gene expression patterns of AFAP1L2, CACNB2,
FSCN1, and RIN3 were verified as a potential marker gene set to distinguish GTX from
NGTX compounds, as these genes showed a pronounced upregulation by GTX compounds.
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Figure 7. Expression changes of transcript markers in TK6 cells measured by RNA sequencing and
quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Based on the PLS-DA to
discriminate GTX from NGTX, 12 protein-coding genes were selected that were both significantly
regulated by as many compounds as possible and listed as highly informative classifiers, i.e., among
the top predictors of components 1 and 2 in the PLS-DA. Validation of the genes was performed by
qRT-PCR compounds and was successful for all genes except for DNLZ. Here, the log2 FC values
are depicted for GTX (red) and NGTX (blue), the upper panel shows downregulated genes and
the lower panel upregulated genes. Overall, the qRT-PCR data were in agreement with the RNA
sequencing-derived log2 FC values (Pearson correlation coefficient: 0.75, p-value: 5.24 × 10−19) and
mostly confirmed the direction of expression.

3. Discussion

The determination of the possible genotoxic potential of a chemical compound is an es-
sential part of a toxicological evaluation. Currently, genotoxicity testing is performed using
a battery of in vitro or in vivo tests [1,32–36]. The need for a test battery for genotoxicity
arises from the limitations of individual test systems, as no single test is capable of detecting
all genotoxic mechanisms. For example, the bacterial reverse mutation assay (Ames test)
assesses mutagenicity, and problems with interpretation of the data may arise due to the
need for an external metabolism system such as S9 mix to form reactive metabolites, with
significant differences between human and rat xenobiotic metabolisms [37]. The Ames test
is often complemented by tests in mammalian cells, such as the micronucleus test, which
identifies chromosomal breaks and aneuploidy; here, the choice of the cell line is decisive
for the outcome [2]. The progressive development in the field of in vitro cell culture, as
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well as in digitalization and bioinformatics, could support genotoxicity testing. Sugges-
tions to complement the test battery used so far are in silico methods, organ-on-a-chip
models, or toxicogenomics-based assays for mode of action evaluation [36,38–40]. It should
be emphasized that classic genotoxicity assays and omics-based analyses might be used
together in parallel, complementing specific shortcomings of individual approaches in
order to improve the overall predictivity of genotoxicity testing.

Gene expression profiling, yielding transcript signatures, patterns, or fingerprints to
distinguish genotoxic from non-genotoxic substances, has been proposed as a promising
approach for almost two decades [28,41–43]. In particular, liver samples or in vitro liver
cell models have been used for these approaches, referring to the liver as the main organ
of xenobiotic metabolism. Xenobiotics are often ingested via the oral route and enter the
liver through the portal vein. The liver is the main organ of xenobiotic metabolism, and
a large number of phase I and phase II reactions take place there [44]. It is important to
note here that many compounds, such as AB1 or BaP, must first be metabolized into an
active form to have genotoxic potential [36]. In addition, blood cell models have been used
in genotoxicity testing and for studying xenobiotic distribution [18,31,45]. Each model
has advantages and disadvantages: animal models are expensive and lengthy, and recent
approaches have tended to avoid animal testing for ethical reasons [1]. However, while
in vitro models are cheap and easy to handle, they often lack adequate enzyme equipment
to metabolically activate genotoxins. This can lead to contradicting results between two
cell lines with different enzyme equipment or when compared with in vivo results [2,38].

Unlike the liver cell line HepaRG, lymphoblastoid TK6 cells are not equipped with
high levels of xenobiotic-metabolizing enzymes [46]. In order to achieve the formation of
metabolites of the original substances in the TK6 cell line, the use of exogenous metabolic
systems is necessary. It is known that the different exogenous metabolic systems, such as
liver microsomes, cytosol, or S9 fraction, differ in the levels of phase I and II enzymes [47].
Additionally, considering species-specific differences, such as between the most commonly
used systems from rats and humans [48,49], the varying efficiencies between batches,
and the cytotoxic potential of the mixes, it can be assumed that the gene expression
responses will diverge, depending on the exogenous metabolizing systems used [50,51].
Godderis et al. [22] studied TK6 cells with human liver S9 mix and suggested that the S9
mix induces non-target effects on the number of DEGs, as well as on some pathways,
making it difficult to identify the specific effects. Buick et al. [26] examined the transcript
response of TK6 cells to increasing concentrations of GTX and NGTX compounds, including
AB1 and BaP, in the presence of rat liver S9, addressing also the influence of S9 to the
postulated gene signature TGx-28.65. Comparisons between controls with and without
S9 showed no difference in relative survival, and classification based on signature was
correct. It is concluded that the use of S9 results in changes in gene expression, but these
changes do not appear to affect the ability to recognize a non-genotoxic signature or cause
an independent genotoxic classification [26,52].

In Kreuzer et al. [14], we previously published a gene signature to discriminate GTX
from NGTX in the human liver cell model HepaRG, which is metabolically competent and
similar to human hepatocytes in its enzyme expression [53]. The gene signature, distinct
from previous approaches, was determined by the overlap of the differentially expressed
genes of five food-relevant genotoxins. The 37 genes of the pattern were significantly
regulated by all treatments with high but non-cytotoxic concentrations, the direction of
regulation was always the same for each gene, and the specificity was demonstrated using
various non-genotoxic agents [14]. However, liver samples from humans are difficult to
obtain, and genetic signatures from non-accessible target organs are of very limited use for
biomonitoring approaches in humans. Therefore, to analyze GTX-induced gene expression
changes in an easily accessible tissue, and to address the question of transferability of
the obtained liver gene expression signature to another cell model, we selected the TP53-
competent lymphoblastoid cell model TK6 as the representative model for blood cells. The
protein TP53 plays a crucial role in the regulation of DNA damage and repair to prevent



Int. J. Mol. Sci. 2022, 23, 3420 11 of 19

mutations, but the TP53 gene (encoding TP53) is known to be mutated and/or silenced in
many immortalized cell lines [54,55].

Comparative gene expression analyses of different in vitro models show a depen-
dence of the results on the individual cell models, often due to differences in metabolic
processes. Hart et al. [56] compared the gene expression of 115 genes involved in xeno-
biotic metabolism in HepaRG and HepG2 human hepatoma cells with human primary
hepatocytes and liver tissues and showed that the gene expression of HepaRG cells is
more similar to human primary hepatocytes and human liver tissue than to HepG2 cells.
Since HepG2 cells have little metabolic activity, HepaRG cells were also considered by
Jennen et al. [57] and Berger et al. [58] to be the more suited liver cell model for exposure
and metabolism studies.

Despite the described differences in different liver cell models, a similar response to
xenobiotic substances seems to be present in cell models of different species. The impact
of environmental pollutants in the liver hepatocellular carcinoma cell line HepG2 and
the human leukemia cell line HL-60 cells was investigated by Song et al. [45], suggesting
that transcriptomic responses are toxicant-specific, indicating a characteristic molecular
signature for each pollutant group. Specific studies of the responses between cell models
have not been performed, but with a gene signature of 265 genes, there appeared to be many
similarities between HepG2 and HL-60. Using machine learning, Li et al. [59] identified
the TGx-DDI biomarker consisting of 64 genes, which responded specifically to DNA
damage. The development of this biomarker started with transcriptomic profiles for TK6
cells exposed to 28 model chemicals representing a wide range of well-characterized modes
of action, followed by validation studies with further chemicals and including several
methods for gene expression analysis. The compatibility of the TGx-DDI biomarker set
with another cell line was tested successfully using HepaRG cells [60]. HepaRG samples
were analyzed using an Ampliseq whole-transcriptome profiling approach and aligned
with the TK6-derived TGx-DDI biomarker set, resulting in accurate predictions.

Even though we performed treatment and gene expression analyses as similar as
possible in HepaRG and TK6 cells, most of the measured 33 genes of the HepaRG pattern
were not significantly expressed in the TK6 cells. Therefore, it is particularly important to
look not only at the individually regulated genes but also especially at the overall regulated
signaling pathways for a statement about the comparability between the liver cell model
HepaRG and the blood cell model TK6. New insights into signaling pathways and/or
the differences and similarities in various in vitro models could contribute to improving
the mode of action and adverse outcome pathways (AOPs). AOPs are a relatively new
approach that could be used for risk characterization of genotoxicity [61].

In this study, a pathway analysis was performed using IPA on “upstream regulators”
and “canonical pathways”. Here, the DEGs of both RNA sequencing analyses with Hep-
aRG and TK6 cells were uploaded for the prediction of transcription factors and classical
pathways based on the given genes. The results showed that the predictions for each
cell line were consistent across the different treatments, but when comparing the two cell
lines, the direction of prediction was mostly the opposite. The most surprising result here
was the prediction of the transcription factor TP53. Additionally known as the “guardian
of the genome”, this tumor suppressor accumulates in the cell after DNA damage and
consequently regulates, amongst other functions, gene expression for DNA repair and
apoptosis [62]. The addition of GTX to a cell system would be expected to increase the TP53
protein levels, and IPA analysis could conceivably predict activation of the TP53 transcrip-
tion factor. This is the case for HepaRG cells, whereas, for TK6 cells, IPA predicts inhibition
of the TP53 protein. It has been shown that TP53 is not mutated and that the TP53 signaling
pathway is wildtype and activated by the incubation with GTX in HepaRG [4,63,64] and
TK6 cells [28,65]. Therefore, an actual inhibition of TP53 protein seems unlikely. Classical
genes related to the TP53 pathway, such as ATF3, CDKN1A, or GADD45A, are described as
robustly upregulated in TK6 cells upon the application of stress agents [21,23,26,66]. In our
study, GADD45A was significantly downregulated by NPYR, while ATF3 and CDKN1A
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were downregulated by BaP, Las, NPYR, and 3-MCPD, respectively. Shortly after, e.g.,
DNA damage, TP53 undergoes protein modifications, the half-life of the TP53 protein and
its concentration in the cell are increased, and enhanced binding of TP53 to the target gene
promoters occurs [62]. While, in our study, the incubation time was 4 h plus a 20 h recovery
period due to the use of S9 mix, the incubation time often has been either 4 h [26,66] or
24 h [21,23] in previous studies. The differences in the TP53 pathway response might
have occurred due to the recovery phase. While the other studies recorded the effects
of genotoxic stress during continuous exposure to GTX, in our work, the impact of GTX
and its metabolites after 4 h of exposure and 20 h of action was measured. With the time
point chosen, the phase of TP53 activation could have already ended, which is why the
genes ATF3, CDKN1A, and GADD45A were downregulated, and TP53 was predicted
by IPA to be inhibited. In HepaRG cells, where the incubation time was 24 h, activation
of the TP53 signaling pathway was predicted, leading to cellular effects such as DNA
repair programs [14]. While some people might argue that the recovery phase could be
perceived as a drawback of our experimental setup for comparing the results with previous
studies, it should be emphasized that the data gained in the present study may be more
realistic with respect to future applications of marker gene expression analyses from human
blood samples, where a time point of sampling distant from the time point of exposure
appears likely. Nonetheless, much more transcriptomic data on the response to GTX and
NGTX in in vitro systems is required to reach a future routine application of transcriptomic
approaches for genotoxicity testing. In addition to analyses of comparability with classic
genotoxicity assays, this also includes the testing of further compounds in additional cell
lines at a wide range of concentrations and time points.

Within the present study, we were able to distinguish between GTX and NGTX com-
pounds in TK6 cells based on a bioinformatic analysis of the transcriptional data. The
possibility to discriminate between GTX and NGTX substances and/or carcinogens based
on an mRNA transcript signature has been demonstrated in different cell types and tissues.
Within that context, liver cell models such as HepaRG [17,67] and HepG2 [6,68], as well
as comparative approaches with different cell lines [4,57,69], have been used frequently.
Moreover, mouse liver [5,70] and rat liver [71,72] have been analyzed. In addition, blood
cell models have been used [42,45], including TK6 cells [22,26,30].

In our approach, using the PLS-DA approach, we successfully determined 11 genes
that can be used for a gene signature to discriminate GTX from NGTX in TK6 cells. Only
a few of those have been previously listed in the literature as potential marker genes,
primarily for cancer. The expression level of AFAP1L2, involved in signal transduction, has
been described as a potential tumor marker in soft tissue tumors [73], while endonuclease-
encoding ANKLE1, which plays a role in DNA damage and repair, has been suggested as a
breast cancer marker [74]. FSCN1 has been proposed for renal cells, as well as for tongue
squamous cell carcinoma; this gene encodes a member of the fascin family of actin-binding
proteins [75,76]. However, none of the 11 genes are described in the biomarker set TGx-
DDI [59], nor are they contained in other published signatures obtained from GTX-treated
TK6 cells [23,29,30,66,77,78]. With the exception of ANKLE1, the classifiers are not linked to
DNA damage and repair but express proteins related to, for example, voltage-gated calcium
channels (CACNB2), the inner ear (OTOA), or urate uptake in the kidney (SLC22A13). This
is different from the HepaRG signature, where within the elaborated 37 genes, many were
associated with the DNA damage response and/or cell death and others with cell cycle
progression or cell adhesion [14].

Thus, these contrasts highlight the differences between the two cell lines consid-
ered and suggests that a uniform gene signature in vitro for genotoxicity is difficult to
achieve and the selected marker genes require detailed screening when applied to another
cell system.
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4. Materials and Methods
4.1. Chemicals

AB1 was obtained from Sigma-Aldrich (Steinheim, Germany; catalog no. A6636;
purity ≥ 98%; lot 028M4088V), BaP from Supelco (Bellefonte, PA, USA; catalog no. 48564;
analytical grade, lot LC15023V), Las from PhytoLab (Vestenbergsgreuth, Germany; cat-
alog no. 80412; analytical grade; lot 12080), ME from Sigma-Aldrich (catalog no. 04607;
analytical grade; lot BCBV6695), and NPYR also from Sigma-Aldrich (catalog no. 158240;
purity ≥ 99%; lot MKCB3427).

3-MCPD was purchased from Sigma-Aldrich (catalog no. 10721, purity 98%, lot
MKCC7598), MPH was obtained from Supelco (catalog no. 44-2641; purity 99.9%, lot
LC1217V), PFOA from Sigma-Aldrich (catalog no. 171468; purity 96%; lot 11419LE), and
PFOS from abcr (Karlsruhe, Germany; catalog no. AB128838; purity 97%; lot 1307952).

For use in cell viability assays, 100× stock solutions of the test chemicals were prepared
in dimethyl sulfoxide (DMSO; AppliChem, Darmstadt, Germany). DMSO concentrations
in the experiments therefore never exceeded 1%. 3-MCPD was diluted in culture medium.
For use in the RNA sequencing experiment, 1000× stock solutions were prepared in DMSO,
while 3-MCPD was diluted in the medium and NPYR was used in its undiluted form.

4.2. Cell Culture

The human lymphoblastoid cell line TK6 (CLS, Eppelheim, Germany) was cultured
in RPMI 1640 Medium with L-glutamine and 2.0 g/L NaHCO3 (PAN-Biotech, Aiden-
bach, Germany) supplemented with 10% fetal bovine serum (Biochrom, Berlin, Germany),
100 U/mL penicillin, and 100 µg/mL streptomycin (Capricorn Scientific, Ebsdorfergrund,
Germany). The cells were maintained in suspension culture at a density between 0.5 × 105

and 1 × 106 cells/mL. For all studies, 1 × 105 cells/mL were seeded and cultured for 48 h
prior to treatment at 37 ◦C and 5% CO2. For incubation with the test compounds, the cells
were counted with a hemocytometer EVE (NanoEnTek, Seoul, Korea) using trypan blue
(NanoEnTek) and diluted to 0.5 × 106 viable cells/mL with fresh medium.

TK6 cells were treated with genotoxic and non-genotoxic compounds in the presence
of 1% induced rat liver S9 mix from male Wistar rats for metabolic activation. Rat S9 mix
was prepared as previously described [49]. Animal experiments for rat S9 preparation were
performed in accordance with the European laws and with the consent of the Regional
Office for Health and Social Affairs Berlin (LaGeSo), approval numbers H0256/02 (treat-
ment of rats) and T0258/02 (killing of animals and isolation of organs). The activation
solution consisted of 33 mM potassium chloride (Merck, Darmstadt, Germany), 8 mM
magnesium chloride (Merck), 4 mM NADP (Carl Roth, Karlsruhe, Germany), 5 mM glucose-
6-phosphate (Carl Roth), and 10% rat S9 fraction diluted in 15 mM sodium phosphate
buffer (pH 7.4) (Merck) and was preincubated with test compounds before adding TK6
cells for treatment as follows: According to the calculated final volume in the experiment,
the activation solution and cell culture medium containing the appropriate concentration
of the test compound (max. 1% of test compound stock solution in DMSO dissolved in the
medium) were mixed at a 1:1 ratio and incubated at 37 ◦C. After 30 min, cell suspension was
added to the result in a final concentration of 0.4 × 106 cells/mL (i.e., 20% preincubation
mix and 80% of a 0.5 × 106 cells/mL cell suspension), and incubation started for 4 h, fol-
lowed by a recovery phase of 20 h. For recovery, cells were centrifuged at 400× g for 5 min,
the supernatant was removed carefully, and cells were washed three times carefully with
prewarmed (37 ◦C) phosphate-buffered saline (PBS) and a centrifugation step at 400× g
for 5 min. Subsequently, fresh culture medium was added, and the cells were put in the
incubator at 37 ◦C until a total incubation time of 24 h.

4.3. Cell Viability Assay

Cell viability was measured using a live staining with the fluorescent marker calcein-
AM (PromoCell, Heidelberg, Germany). Three controls were included: a medium control
with culture medium instead of treatment, a solvent control with 1% DMSO, and a positive
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control with heat-inactivated cells (95 ◦C, 20 min). Following treatment and recovery, with
and without exogenous metabolic activation, 1.5 µL calcein-AM (10 µM in DMSO) was
applied and incubated for 1 h at room temperature in the dark. Cells were analyzed using
a flow cytometer (BD Accuri C6, Becton Dickinson, Franklin Lakes, NJ, USA). A total of
three biological replicates were measured and evaluated by calculating the mean of the
live staining calcein-AM. Only non-cytotoxic concentrations with a viability of at least 80%
compared to the control were used for gene expression analyses.

4.4. RNA Isolation

Cells were washed twice with ice-cold PBS and harvested with RLT buffer contain-
ing β-mercaptoethanol (Qiagen, Hilden, Germany). RNA isolation was performed with
the RNeasy Mini Kit (Qiagen). For RNA quality and quantity determination, an Agi-
lent 2100 Bioanalyzer with RNA Nano Chips (Agilent Technologies, Santa Clara, CA,
USA) was used. RNA isolation and characterization were conducted according to the
manufacturers’ protocols.

4.5. RNA Sequencing

Total RNA sequencing was performed at CeGaT (Tübingen, Germany). In brief, li-
braries were prepared from 100 ng of RNA using the TruSeq Stranded Total RNA kit
(Illumina, San Diego, CA, USA). Sequencing was performed on a NovaSeq 6000 system,
2 × 100 bp (Illumina). Demultiplexing of sequencing reads was accomplished using Illu-
mina bcl2fastq (version 2.20). Depths of ~60–140 million reads were generated for each
sample (see Supplementary Table S7 for details). The raw RNA sequencing data are avail-
able from GEO under accession number GSE185362. Adapters were trimmed by Skewer
version 0.2.2 (Jiang et al. 2014), and the data quality was assessed by FastQC version
0.11.5 [79]. Reads were aligned to the human genome (hg19) and counted per gene ID
using STAR (version 2.7.3) [80].

4.6. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR)

qRT-PCR was used to investigate the transferability of a published gene signature for
genotoxicity from HepaRG cells to TK6 cells (of the 37 published genes, 33 genes were
chosen for further analysis), as well as to verify the TK6 RNA sequencing data. Cultivation,
treatment and RNA isolation were performed as described above. The transcription of
RNA into cDNA was conducted with the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s protocol.

qRT-PCR was carried out with the Maxima SYBR Green/ROX qPCR Master Mix
(Thermo Fisher Scientific, Waltham, MA, USA) on a ABI7900HT (Thermo Fisher Scientific).
The thermal cycling procedure started with an initial denaturation at 95 ◦C for 15 min.
This was followed by 40 cycles of denaturation for 15 s at 95 ◦C and primer binding and
elongation for 1 min at 60 ◦C. The procedure ended with a final elongation at 60 ◦C for
15 min and the addition of a dissociation curve step. Primers were purchased from Eurofins
Genomics (Ebersberg, Germany); the sequences are shown in Supplementary Table S8.
ACTB, GAPDH, and GUSB were used as housekeepers and geometrically averaged.

4.7. Bioinformatic Analysis and Statistics

After removing samples with poor RNA sequencing data quality (samples 15 and 23)
and genes with low expression (sum of reads across all samples below two), the retained
genes were analyzed by the R package [81] DESeq2 version 1.30.1 [82] using the default
settings for estimation of the size factors and dispersion. Negative Binomial GLM fitting
and Wald statistics were applied to test for differential gene expression between each
treatment and control condition, respectively. The false discovery rate (FDR) was used
to control for multiple testing [83]. Only genes with a padj < 0.05 and a |FC| > 1.5 were
identified as DEGs and included in further analyses. Variance stabilizing transformation
was applied prior to probabilistic Principal Component Analysis (ppca) on pareto-scaled
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and centered data by the R package pcaMethods version 1.82.0 [84]. Heatmaps were
generated by the R package ComplexHeatmap version 2.9.3 [85] using the default settings.
Intersections of gene sets were visualized as UpSet plots using R package UpSetR version
1.4.0 [86].

PLS-DA was performed to discriminate GTX and NGTX compounds using R package
mixOmics version 6.14.1 [87] and select marker candidates for qRT-PCR verification. The
performance of the PLS-DA model was evaluated by leave-one-out cross-validation and
measured by the BER and AUC using the maximum distance.

4.8. Pathway Analysis

For the pathway analysis, significant DEG results were evaluated by using the software
IPA (version 65367011; QIAGEN, Redwood City, CA, USA; www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis, accessed on 17 March 2022). We performed
the IPA Canonical Pathway and Upstream Regulator Analysis to investigate potentially
effected pathways and transcriptional regulators. Fisher’s exact test was used to estimate
the statistical significance of the predictions, and significance was assumed at p-value < 0.05.
Upstream regulator results were filtered to include only transcriptional regulators. A
z-score ≥ 2 or ≤−2 predicted a significantly activated or inhibited transcriptional regulator
state, respectively.

5. Conclusions

Overall, our study, including a comparative RNA sequencing approach of GTX-treated
human liver and GTX- and NGTX-treated blood cells, presents a transcriptomic signature
for genotoxin exposure in a human TK6 blood cell model. The data showed that responses
vary widely in different cell models. Nevertheless, it was possible to detect a transcriptomic
genotoxin signature in the blood cell model. This suggests that gene expression analyses of
blood samples could be a valuable approach to also evaluate responses to toxic exposure
in target organs, such as the liver. This way, the determination of transcript signatures
from human blood cells might be of future use for risk assessment, possibly to complement
genotoxicity testing, as transcriptional alterations in blood cells could be used for indirectly
monitoring genotoxic stress in target organs not accessible for such analyses.
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