Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress
Abstract
:1. Introduction
2. Results
2.1. Characterization of MGO Modified Proteins
2.2. Enrichment Analysis of MGO Modified Proteins
2.3. Modification of Glycolytic Enzymes
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. WIL2-NS Cell Culture
4.3. Whole-Cell Quantification of MG-H1 and CEL
4.4. Isolation and Purification of Peripheral Blood Lymphocytes
4.5. Proteomic Analysis of WIL2-NS and PBL
4.6. High-Resolution Orbitrap Mass Spectrometry
4.7. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, C.T.; Garneau-Tsodikova, S.; Gatto, G.J., Jr. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl. 2005, 44, 7342–7372. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Maksimovic, I.; Upad, A.; David, Y. Non-enzymatic covalent modifications: A new link between metabolism and epigenetics. Protein Cell 2020, 11, 401–416. [Google Scholar] [CrossRef]
- Harmel, R.; Fiedler, D. Features and regulation of non-enzymatic post-translational modifications. Nat. Chem. Biol. 2018, 14, 244–252. [Google Scholar] [CrossRef]
- Phillips, S.A.; Thornalley, P.J. The formation of methylglyoxal from triose phosphates: Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. 1993, 212, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef] [PubMed]
- Bellier, J.; Nokin, M.J.; Caprasse, M.; Tiamiou, A.; Blomme, A.; Scheijen, J.L.; Koopmansch, B.; MacKay, G.M.; Chiavarina, B.; Costanza, B.; et al. Methylglyoxal Scavengers Resensitize KRAS-Mutated Colorectal Tumors to Cetuximab. Cell Rep. 2020, 30, 1400–1416.e6. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 2015, 458, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornalley, P.J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 2003, 375, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Dicarbonyl proteome and genome damage in metabolic and vascular disease. Biochem. Soc. Trans. 2014, 42, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Shaheen, F.; Anwar, A.; Masania, J.; Thornalley, P.J. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem. Soc. Trans. 2014, 42, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Glycation research in amino acids: A place to call home. Amino Acids 2012, 42, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Irshad, Z.; Xue, M.; Ashour, A.; Larkin, J.R.; Thornalley, P.J.; Rabbani, N. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal. Sci. Rep. 2019, 9, 7889. [Google Scholar] [CrossRef] [Green Version]
- Ashour, A.; Xue, M.; Al-Motawa, M.; Thornalley, P.J.; Rabbani, N. Glycolytic overload-driven dysfunction of periodontal ligament fibroblasts in high glucose concentration, corrected by glyoxalase 1 inducer. BMJ Open Diabetes Res. Care 2020, 8, e001458. [Google Scholar] [CrossRef] [PubMed]
- Alhujaily, M.; Abbas, H.; Xue, M.; de la Fuente, A.; Rabbani, N.; Thornalley, P. Studies of Glyoxalase 1-Linked Multidrug Resistance Reveal Glycolysis-Derived Reactive Metabolite, Methylglyoxal, Is a Common Contributor in Cancer Chemotherapy Targeting the Spliceosome. Front. Oncol. 2021, 11, 4413. [Google Scholar] [CrossRef]
- Keilhauer, E.C.; Geyer, P.E.; Mann, M. HCD Fragmentation of Glycated Peptides. J. Proteome Res. 2016, 15, 2881–2890. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; Wepy, J.A.; Streeter, M.D.; Kingsley, P.J.; Mitchener, M.M.; Wauchope, O.R.; Beavers, W.N.; Rose, K.L.; Wang, T.; Spiegel, D.A.; et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc. Natl. Acad. Sci. USA 2018, 115, 9228–9233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorentzen, E.; Siebers, B.; Hensel, R.; Pohl, E. Mechanism of the Schiff base forming fructose-1, 6-bisphosphate aldolase: Structural analysis of reaction intermediates. Biochemistry 2005, 44, 4222–4229. [Google Scholar] [CrossRef] [PubMed]
- Pancholi, V. Multifunctional α-enolase: Its role in diseases. Cell. Mol. Life Sci. CMLS 2001, 58, 902–920. [Google Scholar] [CrossRef] [PubMed]
- Sibbersen, C.; Johannsen, M. Dicarbonyl derived post-translational modifications: Chemistry bridging biology and aging-related disease. Essays Biochem. 2020, 64, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Di Sanzo, S.; Spengler, K.; Leheis, A.; Kirkpatrick, J.M.; Rändler, T.L.; Baldensperger, T.; Dau, T.; Henning, C.; Parca, L.; Marx, C.; et al. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat. Commun. 2021, 12, 6743. [Google Scholar] [CrossRef] [PubMed]
- Sibbersen, C.; Schou Oxvig, A.M.; Bisgaard Olesen, S.; Nielsen, C.B.; Galligan, J.J.; Jørgensen, K.A.; Palmfeldt, J.; Johannsen, M. Profiling of Methylglyoxal Blood Metabolism and Advanced Glycation End-Product Proteome Using a Chemical Probe. ACS Chem. Biol. 2018, 13, 3294–3305. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Dobler, D.; Dean, M.; Thornalley, P. Peptide Mapping Identifies Hotspot Site of Modification in Human Serum Albumin by Methylglyoxal Involved in Ligand Binding and Esterase Activity. J. Biol. Chem. 2005, 280, 5724–5732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samodova, D.; Hosfield, C.M.; Cramer, C.N.; Giuli, M.V.; Cappellini, E.; Franciosa, G.; Rosenblatt, M.M.; Kelstrup, C.D.; Olsen, J.V. ProAlanase is an Effective Alternative to Trypsin for Proteomics Applications and Disulfide Bond Mapping. Mol. Cell. Proteom. 2020, 19, 2139–2156. [Google Scholar] [CrossRef]
- Priego-Capote, F.; Scherl, A.; Müller, M.; Waridel, P.; Lisacek, F.; Sanchez, J.-C. Glycation Isotopic Labeling with 13C-Reducing Sugars for Quantitative Analysis of Glycated Proteins in Human Plasma. Mol. Cell. Proteom. 2010, 9, 579–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Wang, Z.; Huang, C.; Wang, Z.; Chi, L. Investigation of Non-Enzymatic Glycosylation of Human Serum Albumin Using Ion Trap-Time of Flight Mass Spectrometry. Molecules 2012, 17, 8782–8794. [Google Scholar] [CrossRef] [Green Version]
- Giansanti, P.; Tsiatsiani, L.; Low, T.Y.; Heck, A.J.R. Six alternative proteases for mass spectrometry–based proteomics beyond trypsin. Nat. Protoc. 2016, 11, 993–1006. [Google Scholar] [CrossRef] [PubMed]
- Tittmann, K. Sweet siblings with different faces: The mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorganic Chem. 2014, 57, 263–280. [Google Scholar] [CrossRef]
- Dalby, A.; Dauter, Z.; Littlechild, J.A. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: Mechanistic implications. Protein Sci. 2008, 8, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Chakraborti, A.S. In Vitro Study on Structural Alteration of Myoglobin by Methylglyoxal. J. Protein Chem. 2013, 32, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Mariño, L.; Ramis, R.; Casasnovas, R.; Ortega-Castro, J.; Vilanova, B.; Frau, J.; Adrover, M. Unravelling the effect of N(epsilon)-(carboxyethyl)lysine on the conformation, dynamics and aggregation propensity of alpha-synuclein. Chem. Sci. 2020, 11, 3332–3344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Tang, S.; Ji, M.; Tang, Z.; Shimada, M.; Liu, X.; Qi, S.; Locasale, J.W.; Roeder, R.G.; Zhao, Y.; et al. p300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis. Mol. Cell 2018, 70, 663–678.e6. [Google Scholar] [CrossRef] [PubMed]
- Leoncini, G.; Maresca, M.; Bonsignore, A. The effect of methylglyoxal on the glycolytic enzymes. FEBS Lett. 1980, 117, 17–18. [Google Scholar] [CrossRef] [Green Version]
- Morgan, P.; Dean, R.T.; Davies, M.J. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch. Biochem. Biophys. 2002, 403, 259–269. [Google Scholar] [CrossRef]
- Gomes, R.A.; Miranda, H.V.; Silva, M.S.; Graça, G.; Coelho, A.V.; Ferreira, A.E.; Cordeiro, C.; Freire, A.P. Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins. FEBS J. 2006, 273, 5273–5287. [Google Scholar] [PubMed]
- Leoncini, G.; Maresca, M.; Buzzi, E. Inhibition of the glycolytic pathway by methylglyoxal in human platelets. Cell Biochem. Funct. 1989, 7, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, D.O.; Jennings, E.Q.; Anderson, C.C.; Marentette, J.O.; Shi, T.; Oxvig, A.-M.S.; Streeter, M.D.; Johannsen, M.; Spiegel, D.A.; Chapman, E.; et al. Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem. Biol. 2020, 27, 206–213.e6. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Peng, Q.; Wang, L.; Zhang, X.; Huang, L.; Wang, J.; Qin, Z. Serine/arginine-rich splicing factors: The bridge linking alternative splicing and cancer. Int. J. Biol. Sci. 2020, 16, 2442–2453. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Sun, Y.; Ding, J.-H.; Lin, S.; Rose, D.W.; Rosenfeld, M.G.; Fu, X.-D.; Li, X. Splicing Regulator SC35 Is Essential for Genomic Stability and Cell Proliferation during Mammalian Organogenesis. Mol. Cell. Biol. 2007, 27, 5393–5402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Sanada, M.; Shiraishi, Y.; Nowak, D.; Nagata, Y.; Yamamoto, R.; Sato, Y.; Sato-Otsubo, A.; Kon, A.; Nagasaki, M.; et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011, 478, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, L.; Simpson, B.; Dhillon, V.S.; Costabile, M.; Fenech, M.; Deo, P. Methylglyoxal induces chromosomal instability and mitotic dysfunction in lymphocytes. Mutagenesis 2021, 36, 339–348. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Gaugaz, F.Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Anal. Chem. 2015, 87, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
Biological Process | Count | Fold Enrichment | FDR | Genes |
---|---|---|---|---|
Canonical Glycolysis | 9 | 13.4 | 3.6 × 10−5 | ALDOA, ALDOC, ENO1, ENO3, GPI, GAPDH, PGK1, PKM, TPI |
Gluconeogenesis | 9 | 7.9 | 1.6 × 10−3 | ALDOA, ALDOC, ENO1, ENO3, GPI, GOT2, GAPDH, PGK1, TPI |
Translation initiation | 22 | 6.2 | 2.3 × 10−8 | DDX3Y, DHX29, EIF3F, EIF4A1, PABPC1, PAIP1, RPL10, RPL13, RPL19, RPL21, RPL24, RPL31, RPL34, RPL4, RPS15, RPS2, RPS25, RPS26, RPS27A, RPS4X, RPS4Y1, RPS6 |
Regulation of cellular response to heat | 12 | 6.2 | 4.7 × 10−4 | FKBP4, HSP90AA1, HSP90AB1, HSPA8, HSPH1, NUP153, NUPL2, POM121C, POM121, RANBP2, RPA3, YWHAE |
Nucleosome assembly | 17 | 5.5 | 1.4 × 10−5 | ATRX, H2AFX, ANP32A, ANP32B, DAXX, HMGB2, HIST1H1A, HIST1H2BB, HIST1H2BD, HIST1H2BK, HIST1H2BM, HIST1H3A, HIST1H4I, HIST2H2BF, HIST2H3PS2, H3F3A, NPM1 |
Cell-cell adhesion | 38 | 5.4 | 1.3 × 10−13 | ALDOA, AHNAK, CCT8, CKAP5, DDX6, DHX29, EEF1G, EEF2, EHD4, ENO1, FASN, FLNB, LASP1, HSP90AB1, HSPA8, HDLBP, HIST1H3A, HCFC1, LDHA, PARK7, PRDX1, PCBP1, PSMB6, PPME1, PKM, RAB1A, RANGAP1, RACK1, RPL24, RPL34, RPS2, RPS26, SPTAN1, SPTBN1, TAGLN2, YWHAB, YWHAE, YWHAZ |
mRNA splicing, via spliceosome | 26 | 4.5 | 2.4 × 10−7 | ALYREF, CSTF2, DNAJC8, FUS, HSPA8, HNRNPC, HNRNPH1, HNRNPH2, HNRNPL, HNRNPM, HNRNPR, HNRNPU, NONO, PPIE, PABPC1, PCBP1, POLR2B, RBMX2, RBMX, SRSF2, SNRPB, SPEN, SF3B1, SF3B2, SYNCRIP, TRA2B |
Protein folding | 21 | 4.5 | 9.9 × 10−6 | CANX, CCT2, CCT5, CCT8, FKBP4, FKBP5, GRPEL1, HSPE1-MOB4, HSP90AA1, HSP90AA2P, HSP90AB1, HSP90AB2P, HSP90B1, HSPA8, HSPA9, HSPE1, PPIA, PPIE, RANBP2, ST13, TXN |
Protein sumoylation | 13 | 4.3 | 5.2 × 10−3 | BIRC5, HNRNPC, IFIH1, NUP153, NUPL2, POM121C, POM121, RAD21, RANBP2, RING1, SMC3, TRIM28 |
G2/M transition of mitotic cell cycle | 15 | 4.2 | 1.5 × 10−3 | ALMS1, BIRC5, CNTRL, CEP250, CKAP5, HAUS5, HSP90AA1, KHDRBS1, ODF2, PPP1CB, RPS27A, TUBA4A, TUBB4B, YWHAE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donnellan, L.; Young, C.; Simpson, B.S.; Acland, M.; Dhillon, V.S.; Costabile, M.; Fenech, M.; Hoffmann, P.; Deo, P. Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress. Int. J. Mol. Sci. 2022, 23, 3689. https://doi.org/10.3390/ijms23073689
Donnellan L, Young C, Simpson BS, Acland M, Dhillon VS, Costabile M, Fenech M, Hoffmann P, Deo P. Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress. International Journal of Molecular Sciences. 2022; 23(7):3689. https://doi.org/10.3390/ijms23073689
Chicago/Turabian StyleDonnellan, Leigh, Clifford Young, Bradley S. Simpson, Mitchell Acland, Varinderpal S. Dhillon, Maurizio Costabile, Michael Fenech, Peter Hoffmann, and Permal Deo. 2022. "Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress" International Journal of Molecular Sciences 23, no. 7: 3689. https://doi.org/10.3390/ijms23073689
APA StyleDonnellan, L., Young, C., Simpson, B. S., Acland, M., Dhillon, V. S., Costabile, M., Fenech, M., Hoffmann, P., & Deo, P. (2022). Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress. International Journal of Molecular Sciences, 23(7), 3689. https://doi.org/10.3390/ijms23073689